Химические свойства водорода: особенности и применение. Различные формы водорода

Водород – первый химический элемент Периодической Системы химических элементов Д.И. Менделеева. Химический элемент водород расположен в первой группе, главной подгруппе, первом периоде Периодической Системы.

Относительная атомная масса водорода = 1.

Водород имеет наиболее простое строение атома, он состоит из единственного электрона, который находится в околоядерном пространстве. Ядро атома водорода состоит из одного протона.

Атом водорода, в химических реакциях может как отдавать, так и присоединять электрон, образуя два вида ионов:

H0 + 1ē → H1− H0 – 1ē → H1+.

Водород – самый распространённый элемент во Вселенной. На его долю приходится около 88,6% всех атомов (около 11,3% составляют атомы гелия, доля всех остальных вместе взятых элементов – порядка 0,1%). Таким образом, водород – основная составная часть звёзд и межзвёздного газа. В межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Массовая доля водорода в земной коре составляет 1%. Это девятый по распространённости элемент. Значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объёму для сухого воздуха).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках.

Физические свойства водорода

Простое вещество, образованное химическим элементом водородом, имеет молекулярное строение. Его состав отвечает формуле Н2. Как и химический элемент, простое вещество также называют водородом.

Водород – бесцветный газ без запаха и вкуса, практически нерастворим в воде. При комнатной температуре и нормальном атмосферном давлении растворимость составляет 18,8 мл газа на 1 л воды.

Водород – самый легкий газ, его плотность составляет 0,08987 г/л. Для сравнения: плотность воздуха равна 1,3 г/л.

Водород способен растворяться в металлах, так например, в одном объеме палладия может раствориться до 850 объемов водорода. Из-за крайне малого размера молекул водород способен к диффузии через многие материалы

Подобно другим газам водород при низких температурах конденсируется в бесцветную прозрачную жидкость, это происходит при температуре –252,8°С. При достижении температуры –259,2°С водород кристаллизуется в виде белых кристаллов, похожих на снег.

В отличие от кислорода, для водорода не характерна аллотропия

Применение водорода

Водород используют в различных отраслях промышленности. Много водорода уходит на производство аммиака (NH3). Из аммиака получают азотные удобрения, синтетические волокна и пластмассы, лекарства.

В пищевой промышленности водород используют при производстве маргарина, в состав которого входят твердые жиры. Чтобы их получить из жидких жиров, через них пропускают водород.

Когда водород горит в кислороде, то температура пламени составляет около 2500°C. При такой температуре можно плавить и сваривать тугоплавкие металлы. Таким образом, водород используется при сварке.

Смесь жидких водорода и кислорода применяют как ракетное топливо.

В настоящее время в ряде стран начаты исследования по замене невозобновляемых источников энергии (нефти, газа, угля) на водород. При сгорании водорода в кислороде образуется экологически чистый продукт – вода, а не углекислый газ, вызывающий парниковый эффект.

Ученые предполагают, что в середине XXI века должно быть начато серийное производство автомобилей на водороде. Широкое применение найдут домашние топливные элементы, работа которых также основана на окислении водорода кислородом.

В конце XIX – начале ХХ веков, на заре эры воздухоплавания, водородом заполняли воздушные шары, дирижабли и аэростаты, так как он намного легче воздуха. Однако эпоха дирижаблей начала стремительно уходить в прошлое после катастрофы, случившейся с дирижаблем Гинденбург. 6 мая 1937 года дирижабль, заполненный водородом, загорелся, что повлекло за собой гибель десятков его пассажиров.

Водород крайне взрывоопасен в определенной пропорции с кислородом. Несоблюдение правил техники безопасности и привело к воспламенению и взрыву дирижабля.

  • Водород – первый химический элемент Периодической Системы химических элементов Д.И. Менделеева
  • Водород расположен в I группе, главной подгруппе, 1 периоде Периодической Системы
  • Валентность водорода в соединениях – I
  • Водород – бесцветный газ без запаха и вкуса, практически нерастворим в воде
  • Водород – самый легкий газ
  • При низких температурах получают жидкий и твердый водород
  • Водород способен растворяться в металлах
  • Сферы применения водорода разнообразны

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:




Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:




Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

ВОДОРОД, Н (лат. hydrogenium; а. hydrogen; н. Wasserstoff; ф. hydrogene; и. hidrogeno), — химический элемент периодической системы элементов Менделеева, который относят одновременно к I и VII группам, атомный номер 1, атомная масса 1,0079. Природный водород имеет стабильные изотопы — протий (1 Н), дейтерий (2 Н, или D) и радиоактивный — тритий (3 Н, или Т). Для природных соединений среднее отношение D/Н = (158±2).10 -6 Равновесное содержание 3 Н на Земле ~5.10 27 атомов.

Физические свойства водорода

Водород впервые описал в 1766 английский учёный Г. Кавендиш. При обычных условиях водород — газ без цвета, запаха и вкуса. В природе в свободном состоянии находится в форме молекул Н 2 . Энергия диссоциации молекулы Н 2 — 4,776 эВ; потенциал ионизации атома водорода 13,595 эВ. Водород — самое лёгкое вещество из всех известных, при 0°С и 0,1 МПа 0,0899 кг/м 3 ; t кипения- 252,6°С, t плавления — 259,1°С; критические параметры: t — 240°С, давление 1,28 МПа, плотность 31,2 кг/ м 3 . Наиболее теплопроводный из всех газов — 0,174 Вт/(м.К) при 0°С и 1 МПа, удельная теплоёмкость 14,208.10 3 Дж(кг.К).

Химические свойства водорода

Жидкий водород очень лёгок (плотность при -253°С 70,8 кг/м 3) и текуч ( при -253°С равна 13,8 сП). В большинстве соединений водород проявляет степень окисления +1 (подобен щелочным металлам), реже -1 (подобен гидридам металлов). В обычных условиях молекулярный водород малоактивен; растворимость в воде при 20°С и 1 МПа 0,0182 мл/г; хорошо растворим в металлах — Ni, Pt, Pd и др. С кислородом образует воду с выделением тепла 143,3 МДж/кг (при 25°С и 0,1 МПа); при 550°С и выше реакция сопровождается взрывом. При взаимодействии с фтором и хлором реакции идут также со взрывом. Основные соединения водорода: Н 2 О, аммиак NH 3 , сероводород Н 2 S, CH 4 , гидриды металлов и галогенов CaH 2 , HBr, Hl, а также органические соединения С 2 Н 4 , HCHO, CH 3 OH и др.

Водород в природе

Водород — широко распространённый в природе элемент, содержание его в 1 % (по массе). Главный резервуар водорода на Земле — вода (11,19%, по массе). Водород — один из основных компонентов всех природных органических соединений. В свободном состоянии присутствует в вулканических и других природных газах, в (0,0001%, по числу атомов). Составляет основную часть массы Солнца, звёзд, межзвёздного газа, газовых туманностей. В атмосферах планет присутствует в форме Н 2 , CH 4 , NH 3 , Н 2 О, CH, NHOH и др. Входит в состав корпускулярного излучения Солнца (потоки протонов) и космических лучей (потоки электронов).

Получение и применение водорода

Сырьё для промышленного получения водорода — газы нефтепереработки, продукты газификации и др. Основные способы получения водорода: реакция углеводородов с водяным паром, неполное окисление углеводородов , конверсия окиси , электролиз воды. Водород применяют для производства аммиака, спиртов, синтетического бензина, соляной кислоты, гидроочистки нефтепродуктов, резки металлов водородно-кислородным пламенем.

Водород — перспективное газообразное горючее. Дейтерий и тритий нашли применение в атомной энергетике.

Приступая к рассмотрению химических и физических свойств водорода, необходимо отметить, что в привычном состоянии, этот химический элемент находится в газообразном виде. Бесцветный газ водород не имеет запаха, он безвкусен. Впервые данный химический элемент был назван водородом после того, как ученым А. Лавуазье были проведены опыты с водой, по результатам которых, мировая наука узнала, что вода – это многокомпонентная жидкость, в состав которой входит Водород. Событие это произошло в 1787 году, но задолго до этой даты водород был известен ученым под названием «горючий газ».

Водород в природе

По данным ученых, водород содержится в земной коре и в воде (приблизительно 11,2% в общем объеме воды). Этот газ входит в состав многих полезных ископаемых, которые человечество на протяжении веков извлекает из недр земли. Частично свойства водорода характерны для нефти, природных газов и глины, для организмов животных и растений. Но в чистом виде, то есть, не соединенный с другими химическими элементами таблицы Менделеева, этот газ встречается крайне редко в природе. Этот газ может выходить на поверхность земли при извержении вулканов. Свободный водород в ничтожных количествах присутствует в атмосфере.

Химические свойства водорода

Поскольку химические свойства водорода неоднообразны, то этот химический элемент относится как к I группе системы Менделеева, так и к VII группе системы. Являясь представителем первой группы, водород является, по сути, щелочным металлом, который имеет степень окисления +1 в большей части соединений, в которые он входит. Такая же валентность характерна для натрия и других щелочных металлов. Ввиду таких химических свойств, водород рассматривается, как элемент, подобный этим металлам.

Если же речь идет о гидридах металлов, то ион водорода имеет отрицательную валентность – его степень окисления равна -1. Na+H- строится по той же схеме, что и хлориду Na+Cl-. Этот факт и является причиной того, чтобы отнести водород к VII группе системы Менделеева. Водород, будучи в состоянии молекулы, при условии, что он пребывает в обычной среде, малоподвижен, и может соединяться исключительно с неметаллами, более активными за него. К таким металлам можно отнести фтор, при наличии света, водород соединяется с хлором. Если водород нагревать, то он становится более активным, вступая в реакции со многими элементами периодической системы Менделеева.

Атомарный водород проявляет более активные химические свойства, чем молекулярный. Молекулы кислорода с формируют воду - Н2 + 1/2О2 = Н2О. При взаимодействии водорода с галогенами, образуются галогеноводороды Н2 + Cl2 = 2НСl, причем в эту реакцию водород вступает при отсутствии света и при достаточно больших отрицательных температурах – до - 252°С. Химические свойства водорода позволяют использовать его для восстановления многих металлов, поскольку вступая в реакцию, водород поглощает у оксидов металлов кислород, например, CuO + H2 = Cu + H2O. Водород участвует в формировании аммиака, взаимодействуя с азотом в реакции ЗН2 + N2 = 2NН3, но при условии, что будет использоваться катализатор, а температура и давление – повышены.

Энергичная реакция происходит при взаимодействии водорода с серой в реакции Н2 + S = H2S, результатом которой становится сероводород. Немного менее активно взаимодействие водорода с теллуром и селеном. Если нет катализатора, то вступает в реакцию с чистым углеродом, водород только при условии, что будут созданы высокие температуры. 2Н2 + С (аморфный) = СН4 (метан). В процессе активности водорода с некоторыми щелочными и прочими металлами, получаются гидриды, например, Н2 + 2Li = 2LiH.

Физические свойства водорода

Водород является очень легким химическим веществом. По крайней мере, ученые утверждают, что на данный момент, нет легче вещества, чем водород. Его масса в 14,4 раза легче за воздух, плотность составляет 0,0899 г/л при 0°С. При температурах в -259,1°С водород способен плавится – это очень критическая температура, которая не характерна для преобразования большинства химических соединений из одного состояния в другое. Только такой элемент, как гелий, превышает физические свойства водорода в этом плане. Сжижение водорода затруднительно, так как его критическая температура равна (-240°С). Водород – наиболее теплопродный газ из всех, известных человечеству. Все, описанные выше свойства, являются наиболее значимыми физическими свойствами водорода, которые используются человеком для конкретных целей. Также данные свойства являются наиболее актуальными для современной науки.

Атом водорода по сравнению с атомами других элементов имеет простейшую структуру: он состоит из одного протона.

образующего атомное ядро, и одного электрона, расположенно­го на ls-орбитали. Уникальность атома водорода заключается в том, что его единственный валентный электрон находится не­посредственно в поле действия ядра атома, поскольку он не экранируется другими электронами. Это обеспечивает ему специ­фические свойства. Он может в химических реакциях отдавать свой электрон, образуя катион Н + (подобно атомам щелочных металлов), или присоединять электрон от партнера с образо­ванием аниона Н- (подобно атомам галогенов). Поэтому водород в периодической системе помещают чаще в IA группе, иногда в VIIA группе, но встречаются варианты таблиц, где водород не принадлежит ни к одной из групп периодической таблицы.

Молекула водорода двухатомна - Н2. Водород - самый лег­кий из всех газов. Вследствие неполярности и большой прочно­сти молекулы Н2 (Е св = 436 кДж/моль) при нормальных усло­виях водород активно взаимодействует только со фтором, а при освещении также с хлором и бромом. При нагревании реагиру­ет со многими неметаллами, хлором, бромом, кислородом, се­рой, проявляя восстановительные свойства, а вступая во взаи­модействие со щелочными и щелочноземельными металлами, является окислителем и образует гидриды этих металлов:

Среди всех органогенов у водорода наименьшая относитель­ная электроотрицательность (0Э0 = 2,1), поэтому в природных соединениях водород всегда проявляет степень окисления +1. С позиции химической термодинамики водород в живых систе­мах, содержащих воду, не может образовывать ни молекуляр­ный водород (Н 2), ни гидрид-ион (Н~). Молекулярный водород при обычных условиях химически малоактивен и при этом сильно летуч, из-за чего он не может удерживаться организмом и участвовать в обмене веществ. Гидрид-ион химически чрез­вычайно активен и сразу взаимодействует даже с очень малым количеством воды с образованием молекулярного водорода. По­этому водород в организме находится или в виде соединений с другими органогенами, или в виде катиона Н + .

Водород с элементами-органогенами образует только ковалентные связи. По степени полярности эти связи располагаются в сле­дующий ряд:


Этот ряд очень важен для химии природных соединений, так как полярность этих связей и их поляризуемость предопре­деляют кислотные свойства соединений, т. е. диссоциацию с образованием протона.

Кислотные свойства. В зависимости от природы элемента, образующего связь Х-Н, выделяют 4 типа кислот:

ОН-кислоты (карбоновые кислоты, фенолы, спирты);

SH-кислоты (тиолы);

NH-кислоты (амиды, имиды, амины);

СН-кислоты (углеводороды и их производные).

С учетом высокой поляризуемости связи S-Н можно соста­вить следующий ряд кислот по способности к диссоциации:

Концентрация катионов водорода в водной среде определяет ее кислотность, которая выражается с помощью водородного показателя рН = -lg (разд. 7.5). Большинство физиологиче­ских сред организма имеет реакцию, близкую к нейтральной (рН = 5,0-7,5), только у желудочного сока рН = 1,0-2,0. Это обеспечивает, с одной стороны, противомикробное действие, уби­вая многие микроорганизмы, занесенные в желудок с пищей; с другой стороны, кислая среда оказывает каталитическое дейст­вие при гидролизе белков, полисахаридов и других биосубстра­тов, способствуя получению необходимых метаболитов.

Окислительно-восстановительные свойства. Вследствие боль­шой плотности положительного заряда катион водорода являет­ся довольно сильным окислителем (ф° = 0 В), окисляя актив­ные и средней активности металлы при взаимодействии с ки­слотами и водой:


В живых системах таких сильных восстановителей нет, а окислительная способность катионов водорода в нейтральной среде (рН = 7) значительно понижена (ф° = -0,42 В). Поэтому в организме катион водорода не проявляет окислительных свойств, но активно участвует в окислительно-восстановительных реак­циях, способствуя превращению исходных веществ в продукты реакции:

Во всех приведенных примерах атомы водорода своей степе­ни окисления +1 не изменили.

Восстановительные свойства характерны для молекулярного и особенно для атомарного водорода, т. е. водорода в момент ныделения непосредственно в реакционной среде, а также для гидрид-иона:

Однако в живых системах таких восстановителей (Н2 или Н-) нет, и поэтому нет подобных реакций. Встречающееся в литера­туре, в том числе и в учебниках, мнение, что водород является носителем восстановительных свойств органических соединений, не соответствует действительности; так, в живых системах вос­становителем биосубстратов выступает восстановленная форма кофермента дегидрогеназы, в которой донором электронов явля­ются атомы углерода, а не атомы водорода (разд. 9.3.3).

Комплексообразующие свойства. Вследствие наличия у ка­тиона водорода свободной атомной орбитали и высокого поляри­зующего действия самого катиона Н + он является активным ионом-комплексообразователем. Так, в водной среде катион водоро­да образует ион гидроксония Н3О + , а при наличии аммиака -ион аммония NH4:

Склонность к образованию ассоциатов. Атомы водорода силь­нополярных связей О-Н и N--Н образуют водородные связи (разд. 3.1). Прочность водородной связи (от 10 до 100 кДж/моль) зависит от величины локализованных зарядов и длины водородной связи, т. е. от расстояния между атомами электро­отрицательных элементов, участвующих в ее образовании. Для аминокислот, углеводов, белков, нуклеиновых кислот харак­терны следующие длины водородных связей, пм:

Благодаря водородным связям возникают обратимые меж­молекулярные взаимодействия между субстратом и ферментом, между отдельными группами в природных полимерах, опре­деляющие их вторичную, третичную и четвертичную структуру (разд. 21.4, 23.4). Ведущую роль водородная связь играет в свойствах воды как растворителя и реагента.

Вода и ее свойства. Вода - важнейшее соединение водорода. Все химические реакции в организме протекают только в водной среде, жизнь без воды невозможна. Вода как растворитель рас­сматривалась в разд. 6.1.

Кислотно-основные свойства. Вода как реагент с по­зиции кислотно-основных свойств является истинным амфолитом (разд. 8.1). Это проявляется и при гидролизе солей (разд. 8.3.1), и при диссоциации кислот и оснований в водной среде (разд. 8.3.2).

Количественной характеристикой кислотности водных сред яв­ляется водородный показатель рН.

Вода как кислотно-основной реагент участвует в реакциях гидролиза биосубстратов. Например, гидролиз аденозинтрифосфата служит источником запасенной энергии для организма, ферментативный гидролиз ненужных белков служит для получения аминокислот, являющихся исходным материалом для син­теза необходимых белков. При этом катионы Н + или анионы ОН- являются кислотно-основными катализаторами реакций гидролиза биосубстратов (разд. 21.4, 23.4).

Окислительно-восстановительные свойства. В молекуле воды и водород, и кислород находятся в устойчи­вых степенях окисления. Поэтому вода не проявляет ярко вы­раженных окислительно-восстановительных свойств. Окислитель­но-восстановительные реакции возможны при взаимодействии воды только с очень активными восстановителями или очень активными окислителями, или в условиях сильной активации реагентов.

Вода может быть окислителем за счет катионов водорода при взаимодействии с сильными восстановителями, например щелоч­ными и щелочноземельными металлами или их гидридами:

При высоких температурах возможно взаимодействие воды с менее активными восстановителями:

В живых системах их компонент вода никогда не выступает как окислитель, поскольку это привело бы к уничтожению этих систем из-за образования и необратимого удаления молекуляр­ного водорода из организмов.

Вода может выступать в роли восстановителя за счет атомов кислорода например при взаимодействии с таким сильнейшим окислителем, как фтор:

Под действием света и при участии хлорофилла в растени­ях протекает процесс фотосинтеза с образованием О2 из воды (разд. 9.3.6):

Кроме непосредственного участия в окислительно-восстано­вительных превращениях вода и продукты ее диссоциации Н + и ОН- принимают участие как среда, которая способствует про­теканию многих окислительно-восстановительных реакций вследствие ее высокой полярности ( = 79) и участия образуемых ею ионов в превращениях исходных веществ в конечные (разд. 9.1).

Комплексообразующие свойства. Молекула во­ды из-за наличия у атома кислорода двух неподеленных элек­тронных пар является достаточно активным монодентатным лигандом, который с катионом водорода образует комплексный ион оксония Н 3 0 + , а с катионами металлов в водных растворах -достаточно устойчивые аквакомплексы, например [Са(Н 2 0) 6 ] 2+ , [ Fe(H 2 0) 6 ] 3+ , 2+ . В этих комплексных ионах молекулы ноды ковалентно связаны с комплексообразователями достаточ­но прочно. Катионы щелочных металлов аквакомплексов не обра­зуют, а за счет электростатических сил образуют гидратированные катионы. Время оседлой жизни молекул воды в гидратных обо­лочках этих катионов не превышает 0,1 с, а их состав по числу молекул воды может легко изменяться.

Склонность к образованию ассоциатов. Вслед­ствие большой полярности, способствующей электростатическому взаимодействию и образованию водородных связей, молекулы воды даже в чистой воде (разд. 6.1) образуют межмолекулярные ассоциаты, различающиеся по структуре, числу молекул и вре­мени их оседлой жизни в ассоциатах, а также времени жизни самих ассоциатов. Таким образом, чистая вода является откры­той сложной динамической системой. Под действием внешних факторов: радиоактивное, ультрафиолетовое и лазерное излуче­ния, упругие волны, температура, давление, электрические, маг­нитные и электромагнитные поля от искусственных и естествен­ных источников (космос, Солнце, Земля, живые объекты) - вода изменяет свои структурно-информационные свойства, а следова­тельно, изменяются ее биологические и физиологические функ­ции.

Кроме самоассоциации молекулы воды гидратируют ионы, по­лярные молекулы и макромолекулы, образуя вокруг них гидратные оболочки, тем самым стабилизируют их в растворе и способ­ствуют их растворению (разд. 6.1). Вещества, молекулы которых неполярны и имеют относительно небольшие размеры, способны только незначительно растворяться в воде, заполняя пустоты ее ассоциатов с определенной структурой. При этом в результате гидрофобного взаимодействия неполярные молекулы структу­рируют окружающую их гидратную оболочку, превращая ее в структурированный ассоциат, обычно с льдоподобной структурой, внутри которого расположена данная неполярная молекула.

В живых организмах можно выделить две категории воды -"связанную" и "свободную", последняя, по-видимому, есть только в межклеточной жидкости (разд. 6.1). Связанная вода, в свою очередь, подразделяется на "структурированную" (прочносвязанную) и "деструктурированную" (слабосвязанную или рых­лую) воду. Вероятно, все перечисленные выше внешние факто­ры влияют на состояние воды в организме, изменяя соотноше­ния: "структурированная"/ "деструктурированная" и "связанная"/ "свободная" вода, а также ее структурно-динамические пара­метры. Это проявляется в изменениях физиологического со­стояния организма. Не исключено, что внутриклеточная вода непрерывно претерпевает регулируемые, в основном белками, пульсационные переходы из "структурированного" в "деструктурированное" состояние. Эти переходы взаимосвязаны с выталки­ванием из клетки отслуживших метаболитов (шлаков) и всасы­ванием необходимых веществ. С современной точки зрения вода участвует в формировании единой внутриклеточной структуры, благодаря которой достигается упорядоченность процессов жиз­недеятельности. Поэтому, по образному выражению А. Сент-Дьёрдьи, вода в организме является "матрицей жизни".

Вода в природе. Вода - самое важное и распространен­ное вещество на Земле. Поверхность земного шара на 75 % по­крыта водой. Объем Мирового океана составляет 1,4 млрд. км 3 . Столько же воды находится в минералах в виде кристаллиза­ционной воды. Атмосфера содержит 13 тыс. км 3 воды. В то же время запасы пресной воды, пригодной для питья и бытовых нужд, довольно ограничены (объем всех пресноводных водоемов составляет 200 тыс. км 3). Пресная вода, употребляемая в быту, содержит различные примеси от 0,05 до 1 г/л, чаще всего это соли: гидрокарбонаты, хлориды, сульфаты, - в том числе рас­творимые соли кальция и магния, присутствие которых делает воду жесткой (разд. 14.3). В настоящее время охрана водных ресурсов и очистка сточных вод являются наиболее актуальны­ми экологическими проблемами.

В обычной воде присутствует около 0,02 % тяжелой воды D2O (D - дейтерий). Она накапливается при испарении или электролизе обычной воды. Тяжелая вода токсична. Тяжелую воду применяют для изучения движения воды в живых орга­низмах. С ее помощью установлено, что скорость движения во­ды в тканях некоторых растений достигает 14 м/ч, а вода, вы­питая человеком, за 2 ч полностью распределяется по его органам и тканям и лишь через две недели полностью выводится из организма. Живые организмы содержат от 50 до 93 % воды, которая является непременным участником всех процессов жиз­недеятельности. Без воды жизнь невозможна. При продолжи­тельности жизни 70 лет человек с пищей и питьем потребляет около 70 т воды.

В научной и медицинской практике широко используется дистиллированная вода - бесцветная прозрачная жидкость без запаха и вкуса, рН = 5,2-6,8. Это фармакопейный препарат для приготовления многих лекарственных форм.

Вода для инъекций (апирогенная вода) - также фармако­пейный препарат. Эта вода не содержит пирогенных веществ. Пирогены - вещества бактериального происхождения - метабо­литы или продукты жизнедеятельности бактерий, которые, по­падая в организм, вызывают озноб, повышение температуры тела, головные боли, нарушение сердечно-сосудистой деятельности. Приготавливают апирогенную воду двойной перегонкой ноды (бидистиллят) с соблюдением асептических условий и ис­пользуют в течение 24 ч.

Заканчивая раздел, необходимо подчеркнуть особенности водорода как биогенного элемента. В живых системах водород всегда проявляет степень окисления +1 и встречается или свя­занным полярной ковалентной связью с другими биогенными элементами, или в виде катиона Н + . Катион водорода является носителем кислотных свойств и активным комплексообразователем, взаимодействующим со свободными электронными па­рами атомов других органогенов. С позиции окислительно-восстановительных свойств связанный водород в условиях ор­ганизма не проявляет свойств ни окислителя, ни восстановите­ля, однако катион водорода активно участвует во многих окис­лительно-восстановительных реакциях, не изменяя при этом своей степени окисления, но способствуя превращению биосуб­стратов в продукты реакции. Водород, связанный с электроот­рицательными элементами, образует водородные связи.