Использование фуллерена. Другие области применения

Фуллерены в Природе существуют повсюду, и особенно там, где есть углерод и высокие энергии. Они существуют вблизи углеродных звезд, в межзвездном пространстве, в местах попадания молний, вблизи кратеров вулканов, образуются при горении газа в домашней газовой плите или в пламени обычной зажигалки.

В местах скопления древних углеродных пород также обнаруживаются фуллерены. Особое место принадлежит карельским минералам - шунгитам. Этим породам, содержащим до 80% чистого углерода, около 2-х миллиардов лет. Природа их происхождения до сих пор не ясна. Одно из предположений – падение большого углеродного метеорита.

Фуллерены в шунгитах (Fullerenes in Shungites Stone) - тема, широко обсуждаемая во многих печатных изданиях и на страницах Интернет-сайтов. По этому поводу существует немало противоречивых мнений, в связи, с чем и у читателей, и у пользователей шунгитной продукцией возникает немало вопросов. Действительно ли шунгиты содержат молекулярную форму углерода – фуллерены? Содержат ли лечебные «Марциальные воды» фуллерены? Можно ли пить воду, настоянную на шунгите, и какова от этого будет польза? Основываясь на своем опыте научных исследований свойств различных шунгитов, ниже мы приводим свое мнение по поводу этих и некоторых других, часто задаваемых вопросов.

В настоящее время широкое распространение получила продукция, изготовляемая с использованием карельских шунгитов. Это различные фильтры для водоочистки, пирамиды, кулоны, изделия, экранирующие от электро-магнитных излучений, пасты и просто шунгитный щебень и многие другие виды продукции, предлагаемой в качестве профилактических, лечебно-оздоровительных средств. При этом, как правило, в последние годы лечебные свойства различных видов шунгитов приписывают содержащимся в них фуллеренам.

Вскоре, после открытия в 1985 году фуллеренов, начался активный поиск их в Природе. Фуллерены были обнаружены в карельском шунгите, о чем сообщалось в различных научных изданиях . В свою очередь нами были разработаны альтернативные методические подходы по выделению фуллеренов из шунгитов и доказательству их присутствия. В исследованиях анализировались образцы, отобранные в разных районах Заонежья, где залегают шунгитовые породы. Перед анализом образцы шунгитов измельчались до микродисперсного состояния.

Напомним, что шунгиты представляют собой ажурную силикатную решетку, пустоты которой заполнены шунгитным углеродом, который по своей структуре является промежуточным продуктом между аморфным углеродом и графитом. Также в шунгитном углероде присутствуют природные органические низкои высокомолекулярные соединения (ПОНВС) невыясненного химического состава. Шунгиты различаются по составу минеральной основы (алюмосиликатной, кремнистой, карбонатной) и составу шунгитного углерода. Шунгиты подразделяются на малоуглеродистые (до 5% С), среднеуглеродистые (5 - 25% С) и высокоуглеродистые (25 - 80% С). После полного сжигания шунгитов в золе, кроме кремния, находят Fe, Ni, Ca, Mg, Zn, Cd, V, Mo, Cu, Ce, As, W и др. элементы.

Фуллерен в шунгитном углероде находится в виде особых, полярных донорно-акцепторных комплексов с ПОНВС. Поэтому эффективная экстракция фуллеренов из него органическими растворителями, например толуолом, в котором фуллерены хорошо растворимы, не происходит и выбор такого метода извлечения часто приводит к противоречивым результатам об истинном наличии фуллеренов в шунгитах.

В связи с этим нами был разработан метод ультразвуковой экстракции водно-детергентной дисперсии шунгитов с последующим переводом фуллеренов из полярной среды в фазу органического растворителя . После нескольких стадий экстракции, концентрирования и очистки удается получить раствор в гексане, УФ-вид и ИК-спектры которого являются характерными спектрам чистого фуллерена С 60 . Также четкий сигнал в масс-спектре с m/z = 720 (рис. ниже) является однозначным подтверждением наличия в шунгитах только фуллерена С 60 .

252 Cf-ПД масс-спектр экстракта из шунгита. Сигнал при 720 а.е.м – фуллерен С 60 , а сигналы с 696, 672 –характерные осколочные ионы фуллерена С 60 , образующиеся в условиях плазменно-десорбционной ионизации.

Однако нами было обнаружено, что далеко не каждый образец шунгита содержит фуллерены. Из всех образцов шунгита, предоставленных нам Институтом геологии Карельского НЦ РАН (Петрозаводск, Россия) и отобранных из разных районов залегания шунгитовых пород – фуллерен С 60 был обнаружен только в одном образце высокоуглеродистого шунгита, содержащего более 80 % углерода. Причем фуллерена в нем содержалось около 0,04 мас. %. Из этого можно сделать вывод, что далеко не каждый образец шунгита содержит фуллерен, по крайней мере, в количестве доступном для его обнаружения современными высокочувствительными методами физико-химического анализа.

Наравне с этим, хорошо известно, что шунгиты могут содержать достаточно большое количество примесей, в том числе ионов тяжелых поливалентных металлов. И поэтому вода, настоянная на шунгитах, может содержать нежелательные, токсичные примеси.

Но, почему же тогда Марциальная вода (Карельская природная вода, проходящая через шунгитосодержащие породы) обладает столь уникальными биологическими свойствами. Напомним, что еще во времена Петра I, и по его личной инициативе, в Карелии был открыт лечебный источник «Марциальные воды» (подробней, см. ). Долгое время никто не мог объяснить причину особых лечебных свойств этого источника. Предполагалось, что повышенное содержание железа в этих водах является причиной оздоровительных эффектов. Однако есть много железосодержащих источников на Земле, но, как правило, лечебные эффекты от их приема весьма ограничены. Лишь после обнаружения фуллерена в шунгитовых породах, сквозь которые протекает источник, возникло предположение о том, что фуллерен и есть главная причина, квитэсценция лечебного действия Марциальных вод .

Действительно, вода длительное время проходящая через пласты «отмытой» шунгитовой породы, уже не содержит ощутимых количеств вредных примесей. Вода «насыщается» той структурой, которую ей задает порода. Фуллерен, содержащийся в шунгите, способствует упорядочению водных структур и образованию в ней фуллереноподобных гидратных кластеров и приобретению уникальных биологических свойств Марциальных вод. Шунгит, допированный фуллереном, является своеобразным природным структуризатором проходящей через него воды. В то же время никто ещё не смог обнаружить фуллерены в Марциальных водах или в водном настое шунгита: или они из шунгитов не вымываются, или если и вымываются, то в столь мизерных количествах, которые не детектируются ни одним из известных методов. К тому же хорошо известно, что фуллерены в воде самопроизвольно не растворяются. И если бы молекулы фуллеренов содержались бы в Марциальной воде, то ее полезные свойства сохранялись бы очень долгое время. Однако она активна лишь непродолжительное время. Также, как и «талая вода», насыщенная кластерными, льдоподобными структурами, Марциальная вода, содержащая живительные фуллереноподобные структуры, сохраняет свои свойства лишь несколько часов. При хранении Марциальной воды, также как и «талой», упорядоченные водные кластеры саморазрушаются и вода приобретает структурные свойства, как у обычной воды. Поэтому такую воду нет смысла разливать в емкости и хранить длительное время. В ней отсутствует структурообразующий и структуроподдерживающий элемент – фуллерен С 60 в гидратированном состоянии, который способен сохранять упорядоченные кластеры воды сколь угодно долго. Другими словами, для того, чтобы вода в течение длительного времени сохраняла свои естественные кластерные структуры, необходимо постоянное присутствие в ней структурообразующего фактора. Для этого молекула фуллерена является оптимальной, в чем мы убедились, исследуя многие годы уникальные свойства гидратированного фуллерена С 60 .

Все началось в 1995 году, когда нами был разработан метод получения молекулярно–коллоидных растворов гидратированных фуллеренов в воде. Тогда же мы познакомились с книгой, рассказывающей о необычных свойствах Марциальных вод . Мы попробовали воспроизвести природную суть Марциальных вод в лабораторных условиях. Для этого была использована вода высокой степени очистки, к которой по специальной технологии добавлялся гидратированный фуллерена С 60 в очень малых дозах. После этого стали проводить различные биологические испытания на уровне отдельных биомолекул, живых клеток и целостного организма. Результаты оказались поразительными. Практически при любой патологии мы обнаруживали только положительные биологические эффекты действия воды с гидратированным фуллереном С 60 , причем эффекты её применения не только полностью совпадали, но и даже превосходили по многим параметрам, эффекты, которые были описаны для Марциальных вод еще в Петровские времена. Многие патологические изменения в живом организме уходят, и он возвращается к своему нормальному, здоровому состоянию. А ведь это не лекарственный препарат целенаправленного действия и не чужеродное химическое соединение, а просто шарик углерода, растворенный в воде. Причем, складывается впечатление, что гидратированный фуллерен C 60 помогает вернуть в «нормальное состояние» любые негативные изменения в организме за счет восстановления и поддержания тех структур, которые он породил, как матрица, в процессе зарождения жизни.

Поэтому, видимо, неслучайно Орлов А.Д. в своей книге "Шунгит - камень чистой воды., сравнивая свойства шунгитов и фуллеренов, говорит о последних как о квинтэссенции здоровья.

1. Buseck et al. Fullerenes from the Geological Environment. Science 10 July 1992: 215-217. DOI: 10.1126/science.257.5067.215.
2. Н.П. Юшкин. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. ДАН, 1994, т. 337, № 6 с. 800-803.
3. В.А. Резников. Ю.С. Полеховский. Аморфный шунгитовый углерод – естественная среда образования фуллеренов. Письма в ЖТФ. 2000. т. 26. в. 15. с.94-102.
4. Peter R. Buseck. Geological fullerenes: review and analysis. Earth and Planetary Science Letters.V 203, I 3-4, 15 November 2002, Pages 781-792
5. N.N. Rozhkova, G. V.Andrievsky. Aqueous colloidal systems based on shungite carbon and extraction of fullerenes from them. The 4 th Biennial International Workshop in Russia "Fullerenes and Atomic Clusters" IWFAC"99 October 4 - 8, 1999, St. Petersburg, Russia. Book of Abstracts, p.330.
6. Н.Н Рожкова, Г.В. Андриевский. Фуллерены в шунгитовом углероде. Сб. научн. трудов междунар. симпозиума “Фуллерены и фуллереноподобные структуры”: 5-8 июня 2000, БГУ, Минск, 2000, С. 63-69.
7. Н.Н. Рожкова, Г.В. Андриевский. Наноколлоиды шунгитового углерода. экстракция фуллеренов водосодержащими растворителями. Сб. Научн. трудов III международного семинара "Минералогия и жизнь: биоминеральные гомологи", 6-8 июня 2000 г., Сыктывкар, Россия, Геопринт, 2000, С.53-55.
8. С.А. Вишневский. Лечебные местности Карелии. Государственное издательство Карельской АССР, Петрозаводск, 1957, 57 с.
9. Фуллерены: Квинтэссенция Здоровья. Глава на с. 79-98 в книге: А.Д. Орлов. "Шунгит - камень чистой воды."Москва-СПб: "Издательство "ДИЛЯ", 2004. - 112 с.; и в Интернете на сайте (www.golkom.ru/book/36.html).

Физики и химики нашли фуллеренам множество применений: их используют при синтезе новых соединений в оптике и при производстве проводников. О биологических же свойствах фуллеренов долгое время поступали неоднозначные данные: биологи то объявляли их токсичными , то обнаруживали антиоксидантные свойства фуллеренов и предлагали использовать их в лечении таких серьезных заболеваний, как бронхиальная астма .

Крысы-долгожители

В 2012 году увидела свет публикация, которая привлекла внимание геронтологов - специалистов, работающих над проблемами старения. В этой работе Тарек Баати и соавторы * продемонстрировали впечатляющие результаты - крысы, которых кормили суспензией фуллеренов в оливковом масле, жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов (таких как четыреххлористый углерод). Токсичность этого соединения обусловлена его способностью генерировать активные формы кислорода (АФК) , а значит, биологические эффекты фуллеренов, скорее всего, можно объяснить их антиоксидантными свойствами (способностью «перехватывать» и дезактивировать АФК).

* - Подробно об этом «биомолекула» уже рассказывала: « » . - Ред.

Связь активных форм кислорода с процессами, происходящими при старении, в настоящее время уже практически не подвергается сомнению. С 60-х годов ХХ века, когда была сформулирована свободнорадикальная теория старения , и до настоящего времени объем данных, подтверждающих такую точку зрения, только накапливается. Однако до сих пор ни один антиоксидант - ни природный, ни синтетический - не давал столь поразительного увеличения продолжительности жизни экспериментальных животных, как в опытах Баати и коллег. Даже специально сконструированные коллективом под руководством академика Скулачева антиоксиданты «адресного действия» - так называемые «ионы Скулачева », или соединения ряда SkQ, - демонстрировали менее значительные эффекты .

Эти вещества представляют собой липофильные положительно заряженные молекулы с присоединенным антиоксидантным «хвостом», которые благодаря своей структуре способны накапливаться в митохондриях (именно в этих органоидах эукариотических клеток происходит генерация активных форм кислорода). Однако соединения ряда SkQ продлевали жизнь подопытных мышей в среднем всего на 30%.

Рисунок 2. Слева - мышь, старение которой замедлено благодаря приему «ионов Скулачева», справа - мышь из контрольной группы .

Почему же фуллерены оказались столь эффективными в борьбе со старением?

Задавшись этим вопросом, мы стали рассматривать возможность существования дополнительного механизма биологического действия фуллеренов - кроме уже известного антиоксидантного. Подсказка обнаружилась при изучении одного из соединений ряда SkQ - SkQR1, содержащего остаток родамина. Это соединение относится к группе протонофоров - молекул, способных переносить протоны из межмембранного пространства через мембрану в матрикс митохондрии, снижая, таким образом, трансмембранный потенциал (Δψ). Как известно, именно этот потенциал, существующий благодаря разнице в содержании протонов по разные стороны мембраны, и обеспечивает выработку энергии в клетке. Однако он же и является источником генерации АФК. В сущности, активные формы кислорода здесь сродни «токсическим отходам» при производстве энергии. Хотя они имеют и ряд полезных функций , в основном АФК - источник повреждения ДНК, липидов и многих внутриклеточных структур.

Рисунок 3. Схема строения митохондрии (слева ), перенос протонов органическими кислотами - «мягкими разобщителями» (в центре ) - и динитрофенол - самый известный из «разобщителей» (справа ).

Есть сведения, что некоторое снижение митохондриального трансмембранного потенциала может быть полезным для клеток . Снижение его всего на 10% приводит к уменьшению продукции АФК в 10 раз ! Существуют так называемые «мягкие разобщители», повышающие протонную проводимость мембран, в результате чего происходит «разобщение» дыхания и фосфорилирования АТФ .

Пожалуй, самый известный «разобщитель» - DNF, или 2,4-динитрофенол (рис. 3). В 30-е годы ХХ века им очень активно пользовались при лечении ожирения. Собственно, динитрофенол - первый «жиросжигатель», использовавшийся в официальной медицине. Под его действием клетка переключается на альтернативный путь метаболизма, запуская «сжигание» жиров, а получаемая клеткой энергия не запасается в АТФ, как обычно, а излучается в виде тепла.

Поиск легких способов похудения будет актуален всегда, пока представители Homo Sapiens будут беспокоиться о своем внешнем виде; однако для нашего исследования более интересен тот факт, что подобные «мягкие разобщители» снижают выработку АФК и в небольших дозах могут способствовать продлению жизни .

Возникает вопрос - а могут ли фуллерены, кроме антиоксидантных свойств, проявлять еще и свойства «переносчиков» протонов, действуя, таким образом, сразу с двух сторон? Ведь шарообразная молекула фуллерена - полая изнутри, а значит, в ней вполне могут уместиться небольшие частицы - такие как протоны.

Моделирование in silico : что сделали физики

Для проверки этой гипотезы коллективом НОЦ «Наноразмерная структура вещества» были выполнены сложные расчеты. Как и в истории с открытием фуллерена, в нашем исследовании компьютерное моделирование предшествовало экспериментам. Моделирование возможности проникновения протона в фуллерен и распределения заряда в такой системе производилось на основе теории функционала плотности (DFT). Это широко используемый инструмент квантово-химических расчетов, позволяющий вычислять свойства молекул с высокой точностью.

При моделировании один или несколько протонов помещали вне фуллерена, а затем производился расчет наиболее оптимальной конфигурации - такой, при которой полная энергия системы будет минимальной. Результаты расчетов показали: протоны могут проникать внутрь фуллерена! Оказалось, внутри молекулы C 60 может накапливаться до шести протонов одновременно, а вот седьмой и последующие уже не смогут проникнуть внутрь и будут отталкиваться - дело в том, что «заряженный» протонами фуллерен приобретает положительный заряд (а, как известно, одноименно заряженные частицы отталкиваются).

Рисунок 4. Распределение положительного заряда внутри системы «фуллерен+протоны». Слева направо: два, четыре или шесть протонов внутри фуллерена. Цветом обозначено распределение заряда: от нейтрального (красный ) до слабоположительного (синий ).

Происходит это потому, что проникающие внутрь фуллеренового «шарика» протоны оттягивают на себя электронные облака атомов углерода, что приводит к перераспределению заряда в системе «протоны+фуллерен». Чем больше протонов проникает внутрь, тем сильнее положительный заряд на поверхности фуллерена, тогда как протоны, напротив, все сильнее приближаются к нейтральным значениям. Эту закономерность можно проследить и на рисунке 4: когда количество протонов внутри сферы превышает 4, они становятся нейтральными (желто-оранжевый цвет), ну а поверхность фуллерена всё сильнее «синеет».

Вначале расчеты были выполнены только в системе «фуллерен+протоны» (без учета влияния других молекул). Но ведь в клетке фуллерен находится не в вакууме, а в водной среде, заполненной множеством соединений разной степени сложности. Поэтому на следующем этапе моделирования физики добавили к системе 47 молекул воды, окружающих фуллерен, и проверили, не повлияет ли их присутствие на взаимодействие с протонами. Однако и в присутствии воды модель действовала успешно.

Биологи подтверждают гипотезу?

Известие о том, что фуллерены могут адсорбировать протоны, да еще и приобретают при этом положительный заряд, вдохновило биологов. Похоже, что эти уникальные молекулы и вправду действуют сразу несколькими путями: инактивируют активные формы кислорода (в частности, гидроксильные радикалы, присоединяя их по многочисленным двойным связям ), адресно накапливаются в митохондриях благодаря своим липофильным свойствам и приобретенному положительному заряду, и, вдобавок ко всему, снижают трансмембранный потенциал, перенося протоны внутрь митохондрий, подобно другим «мягким разобщителям» дыхания и окислительного фосфорилирования.

Для изучения антиоксидантных свойств фуллеренов мы использовали систему экспресс-тестов на основе биолюминесцентных бактериальных биосенсоров. Биосенсоры в данном случае - генетически-модифицированные бактерии, способные улавливать повышение внутриклеточной генерации АФК и «сигнализировать» об этом исследователям. При создании биосенсоров в генóм одного из безвредных штаммов кишечной палочки Escherichia coli вводится искусственная конструкция, состоящая из генов люминесценции (свечения), поставленных под контроль специфических промоторов - регуляторных элементов, «включающихся» при повышении внутриклеточной генерации активных форм кислорода, или же при действии иных стресс-факторов - например, при повреждении ДНК. Стоит начать действовать на клетку таким стресс-фактором - бактерия начинает светиться, и по уровню этого свечения можно с достаточной точностью определить уровень повреждений.

Рисунок 5. Светящиеся бактерии на чашке Петри (слева ) и принцип действия биосенсоров (справа ).

Такие модифицированные штаммы разрабатываются в ГосНИИ Генетики и широко применяются в генетической токсикологии при изучении механизмов действия излучений и окислительного стресса , действия антиоксидантов (в частности, SkQ1 ), а также для поиска новых перспективных антиоксидантов среди синтезируемых химиками веществ .

В нашем случае использование именно бактериальной модели обусловлено следующим: бактерии, как известно, относятся к прокариотам, и клетки их устроены проще, чем эукариотические. Процессы, происходящие в мембране митохондрий эукариот, у прокариот реализуются прямо в клеточной мембране; в этом смысле бактерии - «сами себе митохондрии». (Удивительное сходство строения этих органелл с бактериями даже послужило в свое время основой для так называемой симбиотической теории происхождения эукариот .) Следовательно, для изучения процессов, происходящих в митохондриях, подобная модель вполне подходит.

Первые же результаты показали, что водная суспензия фуллерена C 60 , для более эффективного растворения обработанная ультразвуком, при добавлении к культуре биосенсоров увеличивала их устойчивость к повреждению ДНК активными формами кислорода. Уровень таких повреждений в опыте был на 50–60% ниже, чем в контроле.

Кроме того, было зафиксировано снижение уровня спонтанной продукции супероксид-анион-радикала в клетках SoxS-lux штамма при добавлении суспензии C 60 . Особенностью этого штамма как раз и является связь уровня его свечения с количеством супероксид-анион-радикала. Именно такого эффекта следует ожидать от соединения, действующего по принципу «мягких разобщителей» - если снижается трансмембранный потенциал, то и АФК (в частности, супероксид) будут вырабатываться в меньших количествах.

Полученные результаты, конечно, весьма предварительны, и работы еще продолжаются, именно поэтому в подзаголовке данного раздела и стоит вопросительный знак. Время покажет, сможем ли мы со временем заменить его на уверенный восклицательный. Ясно одно - в ближайшее время фуллерены неизбежно окажутся в фокусе внимания научных коллективов, изучающих проблемы старения и занимающихся поиском геропротекторов - веществ, замедляющих старение. И кто знает, не станут ли эти крохотные «шарики» надеждой на продление столь короткой пока человеческой жизни?

Работа проводилась в лаборатории экспериментального мутагенеза и лаборатории промышленных микроорганизмов НИИ биологии ЮФУ, а также в НОЦ «Наноразмерная структура вещества», ЮФУ, под руководством проф. А.В. Солдатова. Основные результаты моделирования системы «фуллерен+протоны» и биологические эффекты описаны, соответственно, в работах:

  1. Chistyakov V.A., Smirnova Yu.O., Prazdnova E.V., Soldatov A.V. (2013). Possible Mechanisms of Fullerene C60 Antioxidant Action . Biomed. Res. Int. 2013, 821498 и
  2. Prazdnova E.V., Chistyakov V.A., Smirnova Yu.O., Soldatov A.V., Alperovich I.G. (2013). Possible Mechanisms of Fullerene C60 Antioxidant Action. In: II German-Russian Interdisciplinary Workshop «Nanodesign: Physics, Chemistry and Computer modeling». Rostov-on-Don, 2013, 23.

Литература

  1. Соколов В. И., Станкевич И. В. (1993). Фуллерены - новые аллотропные формы углерода: структура, электронное строение и химические свойства. Успехи химии 62б, 455;
  2. Buseck P.R., Tsipursky S.J., Hettich R. (1992). Fullerenes from the Geological Environment . Science 257, 215–217; ;
  3. Око планет: «В космосе впервые обнаружен фуллерен »;
  4. Андриевский Г.В., Клочков В.К., Деревянченко Л.И. Токсична ли молекула фуллерена С 60 ? Или к вопросу: «Какой свет будет дан фуллереновым нанотехнологиям - Красный или все-таки зеленый?» . Электронный журнал «Вся медицина в Интернете!»;
  5. Ширинкин С.В., Чурносов М.И., Андриевский Г.В., Васильченко Л.В. (2009). Перспективы использования фуллеренов в качестве антиоксидантов в патогенетической терапии бронхиальной астмы. Клиническая медицина № 5 (2009), 56–58 ;
  6. Baati T., Bourasset F., Gharb N., et al. (2012) . Biochemistry (Moscow) 73, 1329–1342; ;et al. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C 60 fullerene nanostructures in vitro and in vivo . Free Radic. Biol. Med. 47, 786–793; ;
  7. Xiao Y., Wiesner M.R. (2012). Characterization of surface hydrophobicity of engineered nanoparticles . J. Hazard. Mat. 215, 146–151; ;
  8. Zavilgelsky G.B., Kotova V.Y., Manukhov I.V. (2007). Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide . Mutat. Res. 634, 172–176; ;
  9. Празднова Е.В., Севрюков А.В., Новикова Е.В. (2011). Детекция сырой нефти при помощи бактериальных Lux-биосенсоров. Известия ВУЗов. Северо-Кавказский регион. Естественные науки № 4 (2011), 80–83; ;
  10. Празднова Е.В., Чистяков В.А., Сазыкина М.А., Сазыкин И.С., Кхатаб З.С. (2012). Перекись водорода и генотоксичность ультрафиолетового излучения с длиной волны 300–400 нм. Известия ВУЗов. Северо-Кавказский регион. Естественные науки № 1 (2012), 85–87; ;
  11. Чистяков В.А., Празднова Е.В., Гутникова Л.В., Сазыкина М.А., Сазыкин И.С. (2012). Супероксидустраняющая активность производного пластохинона - 10-(6’-пластохинонил) децилтрифенилфосфония (SkQ1). Биохимия 77, 932–935; ;
  12. Олудина Ю.Н и др. (2013). Синтез модифицированных пространственно-затрудненных фенолов и исследование их способности защищать ДНК бактерий от повреждения ультрафиолетом B. Химико-фармацевтический журнал (в печати);
  13. Кулаев И.С. (1998). Происхождение эукариотических клеток . Соросовский Образовательный Журнал № 5 (1998), 17–22. .

Фуллерен — молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства.

Другие формы углерода: графен, карбин, алмаз, фуллерен, углеродные нанотрубки, «вискерсы» .

Описание и структура фуллерена:

Фуллерен, бакибол, или букибол - молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода .

Фуллерены названы таким образом по имени инженера и архитектора Ричарда Бакминстера Фуллера, который разработал и построил пространственную конструкцию «геодезического купола», представляющую собой полусферу, собранную из тетраэдров. Данная конструкция принесла Фуллеру международное признание и известность. Сегодня по его разработкам разрабатываются и строятся купольные дома . Фуллерен по своей структуре и форме напоминает указанные конструкции Ричарда Бакминстера Фуллера.

Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства. В соединении с другими веществами они позволяют получить материалы с принципиально новыми свойствами.

В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе).

Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула фуллерена C 60 является вытянутой и напоминает своей формой мяч для игры в регби.

Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400 и более), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , где n = 74, 76, 78, 80, 82 и 84.

Связь между вершинами, ребрами и гранями фуллерена может быть выражена математической формулой согласно теореме Эйлера для многогранников:

В — Р + Г = 2,

где В — число вершин выпуклого многогранника, Р — число его рёбер и Г — число граней.

Необходимым условием существования выпуклого многогранника согласно теореме Эйлера (и соответственно существования фуллерена с определенной структурой и формой) является наличие ровно 12 пятиугольных граней и В/2 — 10 граней.

Возможность существования фуллерена была предсказана японскими учеными в 1971 году, теоретически обоснование было сделано советскими учеными в 1973 году. Впервые фуллерен был синтезирован в 1985 г. в США.

Практически весь фуллерен получают искусственным путем. В природе он содержится в очень малых количествах. Он образуются при горении природного газа и разряде молнии, а также содержится в очень малых количествах в шунгитах, фульгуритах, метеоритах и донных отложениях, возраст которых достигает 65 миллионов лет.

Соединения фуллерена:

Фуллерен легко вступает в соединения с другими химическими элементами. В настоящее время на основе фуллеренов уже синтезировано более 3 тысяч новых и производных соединений.

Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи - экзоэдральными.

Преимущества и свойства фуллерена:

– материалы с применением фуллеренов обладают повышенной прочностью, износостойкостью, термо – и хемостабильностью и уменьшенной истираемостью,

– механические свойства фуллеренов позволяют использовать их в качестве высокоэффективной антифрикационной твердой смазки. На поверхностях контртел они образуют защитную фуллерено-полимерную плёнку толщиной десятки и сотни нанометров, которая защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, увеличивает термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел,

– фуллерены способны полимеризоваться и образовывать тонкие пленки ,

– резкое снижение прозрачности раствора фуллеренов при превышении интенсивности оптического излучения некоторого критического значения за счет нелинейных оптических свойств,

– возможность использования фуллеренов в качестве основы для нелинейных оптических затворов, применяемых для защиты оптических устройств от интенсивного оптического облучения,

– фуллерены имеют способность проявлять свойства антиоксиданта или окислителя. В качестве антиоксидантов они превосходят действие всех известных антиоксидантов в 100 — 1000 раз. Были проведены опыты на крысах, которых кормили фуллеренами в оливковом масле. При этом крысы жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов,

– является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников,

– фуллерены С60, выступая в качестве лиганда, взаимодействуют с щелочными и некоторыми другими металлами. При этом образуются комплексные соединения состава Ме 3 С60, обладающие свойствами сверхпроводников.

Свойства молекулы фуллерена*:

* применительно к фуллерену С60.

Получение фуллеренов:

Основными способами получения фуллеренов считаются:

— сжигание графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях,

– лекарства и фармацевтические препараты,

– геомодификаторы трения,

– косметика,

– в качестве добавки для получения синтетических алмазов методом высокого давления. Выход алмазов увеличивается на 30%,

Автоматическая система машинного доения коров «Сти...

Квантовый компьютер

Электробус с динамической подзарядкой...

Защищенный ноутбук на базе процессора Эльбрус-1С+...

Гибкий камень

ФУЛЛЕРЕНЫ – НОВАЯ АЛЛОТРОПНАЯ ФОРМА УГЛЕРОДА

1. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

1.1. Известные аллотропные формы углерода

До недавнего времени было известно, что углерод образует три аллотропных формы: – алмаз, графит и карбин. Аллотропия, от греч. Allos - иной, tropos - поворот, свойство, существование одного и того же элемента в виде различных по свойствам и строению структур В настоящее время известна четвертая аллотропная форма углерода, так называемый фуллерен (многоатомные молекулы углерода С n).

Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие в виде шестиугольников и пятиугольников.

В середине 60-х годов Дэвид Джонс конструировал замкнутые сфероидальные клетки из своеобразным образом свернутых графитовых слоев. Было показано, что в качестве дефекта, внедренного в гексагональную решетку обычного графита, и приводящего к образованию сложной искривленной поверхности, может быть пятиугольник.

В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, высокосимметричной молекулыС 60 , со структурой в виде усеченного икосаэдра, похожей на футбольный мяч. Чуть позже (1973 г.) российские ученые Д.А. Бочвар и Е.Г. Гальперин сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность.

В 1985 году, коллективу ученых: Г.Крото (Англия, Сассекский университет), Хит, 0"Брайен, Р.Ф.Керл и Р. Смолли (США, Университет Раиса) удалось обнаружить молекулу фуллерена при исследовании масс-спектров паров графита после лазерного облучения твердого образца.

Первый способ получения и выделения твердого кристаллического фуллерена был предложен в 1990 г. В.Кречмером и Д.Хафманом с коллегами в институте ядерной физики в г. Гейдельберге (Германия).

В 1991 году японский ученый Иджима на полярном ионном микроскопе впервые наблюдал различные структуры, составленные, как и в случае графита, из шестичленных колец углерода: нанотрубки, конусы, наночастицы.

В 1992 в природном углеродном минерале – шунгите (свое название этот минерал получил от названия поселка Шуньга в Карелии) были обнаружены природные фуллерены.

В 1997 году Р.Е.Смолли, Р.Ф.Керл,Г.Крото получили Нобелевскую премию по химии за изучение молекул С 60 , имеющих фору усеченного икосаэдра.

Рассмотрим структуру аллотропных форм углерода: алмаза, графита и карбина.


Алмаз - Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Соседние атомы связаны между собой ковалентными связями (sp 3 -гибридизация). Такая структура определяет свойства алмаза как самого твердого вещества, известного на Земле.

Графит находит широкое применение в самых разнообразных сферах человеческой деятельности, от изготовления карандашных грифелей до блоков замедления нейтронов в ядерных реакторах. Атомы углерода в кристаллической структуре графита связаны между собой прочными ковалентными связями (sp 2 - гибридизация) и формируют шестиугольные кольца, образующие, в свою очередь, прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями. Расстояние между атомами, расположенными в вершинах правильных шестиугольников, равно 0,142 нм., между слоями 0,335 нм. Слои слабо связаны между собой. Такая структура - прочные слои углерода, слабо связанные между собой, определяет специфические свойства графита: низкую твёрдость и способность легко расслаиваться на мельчайшие чешуйки.

Карбин конденсируется в виде белого углеродного осадка на поверхности при облучении пирографита лазерным пучком света. Кристаллическая форма карбина состоит из параллельно ориентированных цепочек углеродных атомов с sp-гибридизацией валентных электронов в виде прямолинейных макромолекул полиинового (-С= С-С= С-...) или кумуленового (=С=С=С=...) типов.

Известны и другие формы углерода, такие как аморфный углерод, белый углерод (чаоит) и т.д. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза.

1.2.Геометрия молекулы фуллерена и кристаллическая решетка фуллерита

Рис.3 Молекула фуллерена С 6 0

В противоположность алмазу, графиту и карбину, фуллерен является новой формой углерода по существу. Молекула С 60 содержит фрагменты с пятикратной симметрией (пентагоны), которые запрещены природой для неорганических соединений. Поэтому следует признать, что молекула фуллерена является органической молекулой, а кристалл, образованный такими молекулами (фуллерит ) это молекулярный кристалл, являющийся связующим звеном между органическим и неорганическим веществом.

Из правильных шестиугольников легко выкладывается плоская поверхность, однако ими не может быть сформирована замкнутая поверхность. Для этого необходимо часть шестиугольных колец разрезать и из разрезанных частей сформировать пятиугольники. В фуллерене плоская сетка шестиугольников (графитовая сетка) свернута и сшита в замкнутую сферу. При этом часть шестиугольников преобразуется в пятиугольники. Образуется структура – усеченный икосаэдр, который имеет 10 осей симметрии третьего порядка, б осей симметрии пятого порядка. Каждая вершина этой фигуры имеет трех ближайших соседей. Каждый шестиугольник граничит с тремя шестиугольниками и тремя пятиугольниками, а каждый пятиугольник граничит только с шестиугольниками.Каждый атом углерода в молекуле C 60 находится в вершинах двух шестиугольников и одного пятиугольника и принципиально неотличим от других атомов углерода. Атомы углерода,образующие сферу, связаны между собой сильной ковалентной связью. Толщина сферической оболочки 0,1 нм, радиус молекулы С 60 0,357 нм. Длина связи С-С в пятиугольнике - 0,143 нм, в шестиугольнике – 0,139 нм.

Молекулы высших фуллеренов С 70 С 74 , С 76 , С 84 , С 164 , С 192 , С 216 , также имеют форму замкнутой поверхности.

Фуллерены с n< 60 оказались неустойчивыми, оказались неустойчивыми, хотя из чисто топологических соображений наименьшим возможным фуллереном является правильный додекаэдр С 20 .

Кристаллический фуллерен, который был назван фуллеритом имеет гранецентрированную кубическую решетку (ГЦК), пространственная группа (Fm3m).. Параметр кубической решетки а 0 = 1.42 нм, расстояние между ближайшими соседями – 1 нм. Число ближайших соседей в ГЦК решетке фуллерита –12.

Между молекулами С 60 в кристалле фуллерита существует слабая связь Ван-дер-Ваальса. Методом ядерного магнитного резонанса было доказано, что при комнатной температуре молекулы С 60 , вращаются вокруг положения равновесия с частотой 10 12 1/с. При понижении температуры вращение замедляется. При 249К в фуллерите наблюдается фазовый переход первого рода, при котором ГЦК решетка (пр. гр.Fm3m) переходит в простую кубическую (пр.гр. РаЗ). При этом объем фулдерита увеличивается на 1%. Кристалл фуллерита имеет плотность 1,7 г/см 3 , что значительно меньше плотности графита (2,3 г/см 3) и алмаза (3,5 г/см).

Молекула С 60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1700 К. В присутствии кислорода при 500 К наблюдается значительное окисление с образованием СО и CO 2 . При комнатной температуре окисление происходит при облучении фотонами с энергией 0,55 эВ. что значительно ниже энергии фотонов видимого света (1,54 эВ). Поэтому чистый фуллерит необходимо хранить в темноте. Процесс, продолжающийся несколько часов, приводит к разрушению ГЦК- решетки фуллерита и образованию неупорядоченной структуры, в которой на исходную молекулу Сбо приходится 12 атомов кислорода. При этом фуллерены полностью теряют свою форму.

1.3. Получение фуллеренов

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита На рис. 4 показана схема установки для получения фуллеренов, которую использовал В.Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение 10-20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием, давление 100 Тор. Скорость испарения графита в этой установке может достигать 10г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи., в нем содержится до 10% фуллеренов С 60 (90%) и С 70 (10%).Описанный дуговой метод получения фуллеренов получил название «фуллереновая дуга».

В описанном способе получения фуллеренов гелий играет роль буферного газа. Атомы гелия наиболее эффективно по сравнению с другими атомами «тушат» колебательные движения возбужденных углеродных фрагментов, препятствующих их объединению в стабильные структуры. Кроме того, атомы гелия уносят энергию, выделяющуюся при объединении углеродных фрагментов. Опыт показывает, что оптимальное давление гелия находится в диапазоне 100 Тор. При более высоких давлениях агрегация фрагментов углерода затруднена.

Рис.4. Схема установки для получения фуллеренов.

1 – графитовые электроды;

2 – охлаждаемая медная шина; 3 – медный кожух,

4 – пружины.

Изменение параметров процесса и конструкции установки ведет к изменению эффективности процесса и состава продукта. Качество продукта подтверждается как масс-спектрометрическими измерениями, так и другими методами (ядерный магнитный резонанс, электронный парамагнитный резонанс, ИК-спектроскопия и др.)

Обзор существующих в настоящее время способов получения фуллеренов и устройств установок, в которых получают для получения различные фуллеренов приведен в работе Г.Н.Чурилова.

Методы очистки и детектирования

Наиболее удобный и широко распространенный метод экстракциифуллеренов из продуктов термического разложения графита (термины: фуллерен-содержащей конденсат, фуллерено-содержащая сажа), а также последующей сепарации и очистки фуллеренов, основан на использовании растворителей и сорбентов.

Этот метод включает в себя несколько стадий. На первой стадии фуллерен-содержащая сажа обрабатывается с помощью неполярного растворителя, в качестве которого используются бензол, толуол и другие вещества. При этом фуллерены, обладающие значительной растворимостью в указанных растворителях, отделяются от нерастворимой фракции, содержание которой в фуллерен содержащей фазе составляет обычно 70-80 %. Типичное значение растворимости фуллеренов в растворах, используемых для их синтеза, составляет несколько десятых долей мольного процента. Выпаривание полученного таким образом раствора фуллеренов приводит к образованию черного поликристаллического порошка, представляющего собой смесь фуллеренов различного сорта. Типичный масс спектр подобного продукта показывает, что экстракт фуллеренов на 80 - 90 % состоит из С 60 и на 10 -15% из С 70 . Кроме того, имеется небольшое количество (на уровне долей процента) высших фуллеренов, выделение которых из экстракта представляет довольно сложную техническую задачу. Экстракт фуллеренов, растворенный в одном из растворителей, пропускается через сорбент, в качестве которого может быть использован алюминий, активированный уголь либо оксиды (Al 2 O 3 , SiO 2) с высокими сорбци- онными характеристиками. Фуллерены собираются этим металлом, а затем экстрагируются из него с помощью чистого растворителя. Эффективность экстракции определяется сочетанием сорбент-фуллерен-растворитель и обычно при использовании определенного сорбента и растворителя заметно зависит от типа фуллерена. Поэтому растворитель, пропущенный через сорбент с сорбированным в нем фуллереном, экстрагирует из сорбента поочередно фуллерены различного сорта, которые тем самым могут быть легко отделены друг от друга. Дальнейшее развитие описанной технологии получения сепарации и очистки фуллеренов, основанной на электродуговом синтезе фуллерено-содержащей сажи и её последующем разделении с помощью сорбентов и растворителей, привело к созданию установок, позволяющих синтезировать С 60 в количестве одного грамма в час.

1.4.Свойства фуллеренов

Кристаллические фуллерены и пленки представляют собой полупроводники с шириной запрещенной зоны 1,2-1,9 эВ и обладают фотопроводимостью. При облучении видимым светом электрическое сопротивление кристалла фуллерита уменьшается. Фотопроводимостью обладают не только чистый фуллерит, но и его различные смеси с другими веществами. Было обнаружено, что добавление атомов калия в пленки С 60 приводит к появлению сверхпроводимости при 19 К.

Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами. Так, недавно получены пленки полифуллерена, в которых молекулы С 60 связаны между собой не ван-дер-ваальсовским, как в кристалле фуллерита, а химическим взаимодействием. Эти плёнки, обладающие пластическими свойствами, являются новьм типом полимерного материала. Интересные результаты достигнуты в направлении синтеза полимеров на основе фуллеренов. При этом фуллерен С 60 служит основой полимерной цепи, а связь между молекулами осуществляется с помощью бензольных колец. Такая структура получила образное название "нить жемчуга".

Присоединение к С 60 радикалов, содержащих металлы платиновой группы, позволяет получить ферромагнитные материалы на основе фуллерена. В настоящее время известно, что более трети элементов периодической таблицы могут быть помещены внутрь молекулы. С 60 . Имеются сообщения о внедрении атомов лантана, никеля, натрия, калия, рубидия, цезия, атомов редкоземельных элементов, таких как тербий, гадолиний и диспрозий.

Разнообразие физико-химических и структурных свойств соединений на основе фуллеренов позволяет говорить о химии фуллеренов как о новом перспективном направлении органической химии.

1.5. Применение фуллеренов

В настоящее время в научной литературе обсуждаются вопросы использования фуллеренов для создания фотоприемников и оптоэлектронных устройств, катализаторов роста,алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются для синтеза металлов и сплавов с новыми свойствами.

Фуллерены планируют использовать в качестве основы для производства аккумуляторных батарей. Эти батареи, принцип действия которых основан на реакции присоединения водорода, во многих отношениях аналогичны широко распространенным никелевым аккумуляторам, однако, обладают, в отличие от последних, способностью запасать примерно в пять раз больше удельное количество водорода. Кроме того, такие батареи характеризуются более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в отношении этих качеств аккумуляторами на основе лития. Такие аккумуляторы могут найти широкое применение для питания персональных компьютеров и слуховых аппаратов.

Растворы фуллеренов в неполярных растворителях (сероуглерод, толуол, бензол, тетрахлорметан, декан, гексан, пентан) характеризуются нелинейными оптическими свойствами, что проявляется, в частности, в резком снижении прозрачности раствора при определенных условиях. Это открывает возможность использования фуллеренов в качестве основы оптических затворов- ограничителей интенсивности лазерного излучения..

Возникает перспектива использования фуллеренов в качестве основы для создания запоминающей среды со сверхвысокой плотностью информации. Фуллерены могут найти применение в качестве присадок для ракетных топлив, смазочного материала.

Большое внимание уделяется проблеме использования фуллеренов в медицине и фармакологии. Обсуждается идея создания противораковых медицинских препаратов на основе водо-растворимых эндоэдральных соединенийфуллеренов с радиоактивными изотопами. (Эндоэдральные соединения – это молекулы фуллеренов, внутри которых помещен один или более атомов какого- либо элемента). Найдены условия синтеза противовирусных и противораковых препаратов на основе фуллеренов. Одна из трудностей при решении этих проблем – создания водорастворимых нетоксичных соединений фуллеренов, которые могли бы вводиться в организм человека и доставляться кровью в орган, подлежащий терапевтическому воздействию.

Применение фуллеренов сдерживается их высокой стоимостью, которая складывается из трудоемкости получения фуллереновой смеси и из выделения из нее отдельных компонентов.

1.6.Углеродные нанотрубки

Структура нанотрубок

Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств.

Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, т.е. поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода..).

Параметр, указывающим координаты шестиугольника, который в результате сворачивания плоскости должен совпасть с шестиугольником, находящимся в начале координат, называется хиральностью нанотрубки и обозначается набором символов (т, п). Хиральностьнанотрубки определяет ее электрические характеристики.

Как показали наблюдения, выполненные с помощью электронных микроскопов, большинство нанотрубок состоят из нескольких графитовых слоев, либо вложенных один в другой, либо навитых на общую ось.

Однослойные нанотрубки



На рис. 4 представлена идеализированная модель однослойной нанотрубки. Такая трубка заканчивается полусферическими вершинами, содержащими наряду

с правильными шестиугольниками, также по шесть правильных пятиугольников. Наличие пятиугольников на концах трубок позволяет рассматривать их как предельный случай молекул фуллеренов, длина продольной оси которых значительно превышает их диаметр.

Структура однослойных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего, это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Многослойные нанотрубки

Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций как в продольном, так и в поперечном направлении. Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рис. 5. Структура типа "русской матрешки" (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга однослойных нанотрубок (рис 5 а). Другая разновидность этой структуры, показанная на рис. 5 б, представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур (рис. 5 в), напоминает свиток. Для всех приведённых структур расстояния между соседними графитовыми слоями близко к величине 0,34 нм, т.е. расстоянию между соседними плоскостями кристаллического графита. Реализация той или иной структуры в конкретной экспериментальной ситуации зависит от условий синтеза нанотрубок.



Следует иметь в виду, что идеализированная поперечная структура нанотрубок, в которой расстояние между соседними слоями близко к значению 0,34 нм и не зависит от аксиальной координаты, на практике искажается вследствие возмущающего воздействия соседних нанотрубок.

Наличие дефектов приводит также к искажению прямолинейной формы нанотрубки и придаёт ей форму гармошки.

Другой тип дефектов, нередко отмечаемых на графитовой поверхности многослойных нанотрубок, связан с внедрением в поверхность, состоящую преимущественно из правильных шестиугольников, некоторого количества пятиугольников или семиугольников. Это приводит к нарушению цилиндрической формы, причём внедрение пятиугольника вызывает выпуклый изгиб, в то время как внедрение семиугольника способствует появлению вогнутого изгиба. Таким образом, подобные дефекты вызывают появление изогнутых и спиралевидных нанотрубок.

Структура наночастиц

В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек.

В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников. Электронно-микроскопическое изучение формы и строения углеродных частиц в фуллерено-содержащем конденсате было недавно проведено в работах Jarkovа S.M., Кашкина В.Б.

Получение углеродных нанотрубок

Углеродных нанотрубок образуются при термическом распыление графитового электрода в плазме дугового разряда, горящей в атмосфере гелия. Этот метод, как и метод лазерного распыления, лежащий в основе эффективной технологии получения фуллеренов, позволяет получать нанотрубки в количестве, достаточном для детального исследования их физико-химических свойств.

Нанотрубка может быть получена из протяжённых фрагментов графита, которые далее скручиваются в трубку. Для образования протяжённых фрагментов необходимы специальные условия нагрева графита. Оптимальные условия получения нанотрубок реализуются в дуговом разряде при использовании электролизного графита в качестве электродов.

Среди различны продуктов термического распыления графита (фуллерены, наночастицы, частицы сажи) небольшая часть (несколько процентов) приходится и на многослойные нанотрубки, которые частично прикрепляются к холодным поверхностям установки, частично осаждаются на поверхности вместе с сажей.

Однослойные нанотрубки образуются при добавлении в анод небольшой примеси Fe, Co, Ni, Cd (т. е. добавлением катализаторов). Кроме того, однослойные нанотрубки получаются при окислении многослойных нанотрубок. С целью окисления многослойные нанотрубоки обрабатываются кислородом при умеренном нагреве, либо кипящей азотной кислотой, причём в последнем случае происходит удаление пятичленных графитовых колец, приводящее к открытию концов трубок Окисление позволяет снять верхние слои с многослойной трубки и открыть её концы. Так как реакционная способность наночастиц выше, чем у нанотрубок, то при значительном разрушении углеродного продукта в результате окисления доля нанотрубок в оставшейся её части увеличивается.

При электродуговом способе получения фуллеренов часть материала, разрушающегося под действием дуги графитового анода, осаждается на катоде. К окончанию процесса разрушения графитового стержня данное образование вырастает настолько, что охватывает собой всю область дуги. Этот нарост имеет форму чаши, в объем которого введен анод. Физические характеристики катодного нароста сильно отличаются от характеристик графита, их которого состоит анод. Микротвердость нароста 5.95 ГПа (графита –0.22 ГПа), плотность нароста 1.32 г/см 3 (графит -2.3 г/см 3), удельное электрическое сопротивление нароста составляет 1.4*10 -4 Ом м, что практически на порядок больше, чем у графита (1.5*10 -5 Ом м). При 35 К обнаружена аномально высокая магнитная восприимчивость нароста на катоде, что позволило предположить, что нарост состоит, в основном, из нанотрубок (Белов Н.Н.).

Свойства нанотрубок

Широкие перспективы использования нанотрубок в материаловедении открываются при капсулипровании внутрь углеродных нанотрубок сверхпроводящих кристаллов (например, ТаС). В литературе описана следующая технология. Использовался дуговой разряд постоянного тока ~30 А при напряжении 30 В в атмосфере гелия с электродами, представляющими собой спрессованную смесь таллиевой пудры с графитовым пигментом. Межэлектродное расстояние составляло 2-3 мм. С помощью туннельного электронного микроскопа в продуктах термического разложения материала электродов было обнаружено значительное количество кристаллов ТаС, капсулированных в нанотрубки . х арактерный поперечный размер кристаллитов составлял около 7 нм, типичная длина нанотрубок – более 200 нм. Нанотрубки представляли собой многослойные цилиндры с расстоянием между слоями 0,3481 ±0,0009 нм, близким к соответствующему параметру для графита. Измерение температурной зависимости магнитной восприимчивости образцов показали, что капсулированные нанокристаллы, переходят в сверхпроводящее состояние при Т=10 К.

Возможность получения сверхпроводящих кристаллов, капсулированных в нанотрубки, позволяет изолировать их от вредного воздействия внешней среды,например, от окисления, открывая тем самым путь к более эффективному развитию соответствующих нанотехнологий..

Большая отрицательная магнитная восприимчивость нанотрубок указывает на их диамагнитные свойства. Предполагают, что диамагнетизм нанотрубок обусловлен протеканием электронных токов по их окружности. Величина магнитной восприимчивости не зависит от ориентации образца, что связано с его неупорядоченной структурой. Относительно большое значение магнитной восприимчивости указывает на то, что, по крайней мере, в одном из направлений эта величина сравнима с соответствующим значением для графита. Отличие температурной зависимости магнитной восприимчивости нанотрубок от соответствующих данных для других форм углерода указывает на то, что углеродные нанотрубки являются отдельной самостоятельной формой углерода, свойства которой принципиально отличаются от свойств углерода в других состояниях .

Применение нанотрубок

В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д.

Материал нанотрубок с успехом может использоваться в качестве несущей подложки для осуществления гетерогенного катализа, причем каталитическая активностьоткрытых нанотрубок заметно превышает соответствующий параметр длязамкнутыхнанотрубок.

Возможно использование нанотрубок с высокой удельной поверхность в качестве электродов для электролитических конденсаторов с большой удельной мощностью.

Углеродные нанотрубки хорошо себя зарекомендовали в экспериментах по использованию их в качестве покрытия, способствующего образованию алмазной пленки. Как показывают фотографии, выполненные с помощью электронного микроскопа, алмазная пленка, напыленная на пленку нанотрубок, отличается в лучшую сторону в отношении плотности и однородности зародышей от пленки, напыленной на С 60 и С 70 .

Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники. Расчетным путем доказано, что введение в идеальную структуру нанотрубки в качестве дефекта пары пятиугольник–семиугольник изменяет ее электронные свойства. Нанотрубка с внедренным в нее дефектом может рассматриваться как гетеропереход металл-полупроводник, который, в принципе, может составить основу полупроводникового элемента рекордно малых размеров.

Нанотрубки могут служить основой тончайшего измерительного инструмента, используемого для контроля неоднородностей поверхности электронных схем.

Интересные применения могут получить нанострубки при заполнении их различными материалами. При этом нанотрубка может использоваться как в качестве носителя заполняющего ее материала, так и в качестве изолирующей оболочки, предохраняющей данный материал от электрического контакта, либо от химического взаимодействия с окружающими объектами.

ЗАКЛЮЧЕНИЕ

Хотя фуллерены имеют короткую историю, это направление науки быстро развивается, привлекая к себе все новых исследователей. Эта область науки включает три направления: физика фуллеренов, химия фуллеренов и технология фуллеренов.

Физика фуллеренов занимается исследованием структурных, механических, электрических, магнитных, оптических свойств фуллеренов и их соединений в различных фазовых состояниях. Сюда относится также изучение характера взаимодействия между атомами углерода в этих соединениях, спектроскопия молекул фуллеренов, свойства и структура систем, состоящих из молекул фуллеренов. Физика фуллеренов является наиболее продвинутой ветвью в области фуллеренов.

Химия фуллеренов связана с созданием и изучением новых химических соединений, основу которых составляют замкнутые молекулы углерода, а также изучает химические процессы, в которых они участвуют. Следует отметить, что по концепциям и методам исследования это направление химии во многом принципиально отличается от традиционной химии.

Технология фуллеренов включает в себя как методы производства фуллеренов, так и различные их приложения.

СПИСОК ЛИТЕРАТУРЫ

1. Соколов В. И., Станкевич И. В. Фуллерены-новые аллотропные формы углерода: структура, электронное строение и химические свойства//Успехи химии, т.62 (5), с.455, 1993.

2. Новые направления в исследованиях фуллеренов//УФН, т. 164 (9), с. 1007, 1994.

3. Елецкий А. В., Смирнов Б.М. Фуллерены и структуры углерода//УФН, т. 165 (9), с.977, 1995.

4. Золотухин И.В. Фуллерит – новая форма углерода//СОЖ №2, с.51, 1996.

5. Мастеров В.Ф. Физические свойства фуллеренов//СОЖ №1, с.92, 1997.

6. Лозовик Ю.В., Попов А.М. Образование и рост углеродных наноструктур – фуллеренов, наночастиц, нанотрубок и конусов//УФН, т. 167 (7), с. 151, 1997/

7. Елецкий А.В. .Углеродные нанотрубки//УФН, т.167(9), с.945, 1997.

8. Смолли Р.Е. Открывая фуллерены//УФН, т.168 (3), с.323, 1998 .

9. Чурилов Г.Н. Обзор методов получения фуллеренов//Материалы 2 межрегиональной конференции с международным участием «Ультрадисперсные порошки, наноструктуры, материалы», Красноярск, КГТУ, 5-7 октября 1999 г,. с. 77-87.

10. Белов Н.Н. и др. Строение поверхности катодного нароста, образующегося при синтезе фуллеренов // Аэрозоли т.4f, N1, 1998 г. с.25-29

11. Jarkov S.M.,. Titarenko Ya .N., Churilov G.N. Elektron microscopy studies off FCC carbon particles// Carbon, v. 36, N 5-6, 1998, p. 595-597

12. Кашкин В.Б., Рублева Т.В., Кашкина Л.В., Мосин Р.А. Цифровая обработка электронно-микроскопических изображений углеродных частиц в фуллерено-содержащей саже // Материалы 2 межрегиональной конференции с международным участием «Ультрадисперсные порошки, наноструктуры, материалы», Красноярск, КГТУ, 5-7 октября 1999 г,. с. 91-92

Молекулярная форма углерода или аллотропная его модификация, фуллерен, - это длинный ряд атомных кластеров C n (n > 20), которые представляют собой выпуклые замкнутые многогранники, построенные из атомов углерода и имеющие пятиугольные или шестиугольные грани (здесь есть очень редкие исключения). Атомам углерода в незамещённых фуллеренах свойственно находиться в sp 2 -гибридном состоянии с координационным числом 3. Таким образом формируется сферическая сопряжённая ненасыщенная система согласно теории валентных связей.

Общее описание

Самая термодинамически устойчивая при нормальных условиях форма углерода - графит, который выглядит как стопка едва связанных друг с другом графеновых листов: плоские решётки, состоящие из шестиугольных ячеек, где на вершинах - атомы углерода. Каждый из них связан с тремя соседними атомами, а четвёртый валентный электрон образует пи-систему. Значит, фуллерен - это именно такая молекулярная форма, то есть картина sp 2 -гибридного состояния очевидна. Если ввести в графеновый лист геометрические дефекты, неизбежно образуется замкнутая структура. Например, такими дефектами служат пятичленные циклы (пятиугольные грани), точно так же распространённые наряду с шестиугольными в химии углерода.

Природа и технологии

Получение фуллеренов в чистом виде возможно путём искусственного синтеза. Эти соединения продолжают интенсивно изучать в разных странах, устанавливая условия, при которых происходит их образование, а также рассматривается структура фуллеренов и их свойства. Всё более ширится сфера их применения. Оказалось, что значительное количество фуллеренов содержится в саже, которая образуется на графитовых электродах в дуговом разряде. Ранее этого факта просто никто не видел.

Когда фуллерены были получены в условиях лаборатории, молекулы углерода начали обнаруживаться и в природе. В Карелии нашли их в образцах шунгитов, в Индии и США - в фурульгитах. Также много и часто встречаются молекулы углерода в метеоритах и отложениях на дне, которым не менее шестидесяти пяти миллионов лет. На Земле чистые фуллерены могут образовываться при разряде молнии и при сгорании природного газа. взятые над Средиземным морем, были изучены в 2011 году, и оказалось, что во всех взятых образцах - от Стамбула до Барселоны - присутствует фуллерен. Физические свойства этого вещества обуславливают самопроизвольное образование. Также огромные его количества обнаружены в космосе - и в газообразном состоянии, и в твёрдом виде.

Синтез

Первые опыты выделения фуллеренов происходили через конденсированные пары графита, которые получали при лазерном воздействии облучением твердых графитовых образцов. Удавалось получить только следы фуллеренов. Лишь в 1990 году химиками Хаффманом, Лэмбом и Кретчмером был разработан новый метод добычи фуллеренов в граммовых количествах. Он заключался в сжигании графитовых электродов электрической дугой в атмосфере гелия и при низком давлении. Происходила эрозия анода, и на стенках камеры появлялась сажа, содержащая фуллерены.

Далее сажу растворяли в толуоле или бензоле, а в полученном растворе выделялись граммы в чистом виде молекул С 70 и С 60 . Соотношение - 1:3. Кроме того, раствор содержал и два процента тяжёлых фуллеренов высшего порядка. Теперь дело было за малым: подбирать оптимальные параметры для испарения - состав атмосферы, давление, диаметр электродов, ток и так далее, чтобы достигнуть наибольшего выхода фуллеренов. Они составляли примерно до двенадцати процентов собственно материала анода. Именно поэтому и столь дорого фуллерены стоят.

Производство

Все попытки учёных экспериментаторов на первых порах были тщетными: производительные и дешёвые способы получения фуллеренов не находились. Ни сжигание в пламени углеводородов, ни химический синтез к успеху не привели. Метод электрической дуги оставался самым продуктивным, позволявшим получать около одного грамма фуллеренов в час. Фирма Mitsubishi наладила промышленное производство методом сжигания углеводородов, но их фуллерены не чисты - они содержат молекулы кислорода. И до сих пор остаётся неясным сам механизм образования данного вещества, потому что процессы горения дуги крайне неустойчивы с термодинамической точки зрения, и это очень сильно тормозит рассмотрение теории. Неопровержимы только факты о том, что фуллерен собирает отдельные атомы углерода, то есть фрагменты С 2 . Однако наглядная картина образования этого вещества так и не сформировалась.

Высокая стоимость фуллеренов определяется не только низким выходом при сжигании. Выделение, очистка, разделение фуллеренов разной массы из сажи - все эти процессы достаточно сложны. Особенно это касается разделения смеси на отдельные молекулярные фракции, которые проводятся посредством жидкостной хроматографии на колонках и с высоким давлением. На последнем этапе удаляются остатки растворителя из уже твёрдого фуллерена. Для этого образец выдерживается в условиях динамического вакуума при температуре до двухсот пятидесяти градусов. Но плюс в том, что во времена разработки фуллерена С 60 и получения его в уже макроколичествах органическая химия приросла самостоятельной ветвью - химией фуллеренов, которая стала невероятно популярной.

Польза

Производные фуллеренов применяются в различных областях техники. Плёнки и кристаллы фуллерена - полупроводники, обладающие при оптическом облучении фотопроводимостью. Кристаллы С 60 , если их легировать атомами щёлочных металлов, переходят в состояние сверхпроводимости. Растворы фуллерена имеют нелинейные оптические свойства, потому могут использоваться как основа оптических затворов, которые необходимы для защиты от интенсивного излучения. Также фуллерен используют в качестве катализатора для синтеза алмазов. Широко применяются фуллерены в биологии и медицине. Здесь работает три свойства данных молекул: определяющая мембранотропность липофильность, электронодефицит, дающий способность взаимодействия со свободными радикалами, а также способность передавать молекуле обычного кислорода их собственное возбуждённое состояние и превращать этот кислород в синглетный.

Подобные активные формы вещества атакуют биомолекулы: нуклеиновые кислоты, белки, липиды. Активные формы кислорода используют в фотодинамической терапии для лечения рака. В кровь пациента вводят фотосенсибилизаторы, генерирующие активные формы кислорода - собственно фуллерены или их производные. Кровоток в опухоли слабее, чем в здоровых тканях, а потому фотосенсибилизаторы накапливаются в ней, и после направленного облучения молекулы возбуждаются, генерируя активные формы кислорода. раковые клетки испытывают апоптоз, и опухоль разрушается. Плюс к этому - фуллерены имеют антиоксидантные свойства и улавливают активные формы кислорода.

Фуллерен понижает активность ВИЧ-интегразы, белка, который отвечает за встраивание вируса в ДНК, взаимодействуя с ним, изменяя конформацию и лишая его основной вредительской функции. Некоторые из производных фуллерена взаимодействуют непосредственно с ДНК и препятствуют действию рестиктаз.

Ещё о медицине

В 2007 году начали использоваться водорастворимые фуллерены для употребления их в качестве противоаллергических средств. Исследования проводились на человеческих клетках и крови, которые подвергались воздействию производных фуллерена - С60(NEt)x и С60(ОН)x. В экспериментах на живых организмах - мышах - результаты были положительными.

Уже сейчас это вещество используется как вектор доставки лекарства, поскольку вода с фуллеренами (вспомним гидрофобность С 60) проникает в мембрану клетки очень легко. Например, эритропоэтин - введённый непосредственно в кровь, в значительном количестве деградируется, а если использовать его вместе с фуллеренами, то концентрация возрастает более чем вдвое, и потому он попадает внутрь клетки.