Исследуйте на четность и нечетность следующие функции. Четные и нечетные функции

Функция называется четной (нечетной), если для любогои выполняется равенство

.

График четной функции симметричен относительно оси
.

График нечетной функции симметричен относительно начала координат.

Пример 6.2. Исследовать на четность или нечетность функции

1)
; 2)
; 3)
.

Решение .

1) Функция определена при
. Найдем
.

Т.е.
. Значит, данная функция является четной.

2) Функция определена при

Т.е.
. Таким образом, данная функция нечетная.

3) функция определена для , т.е. для

,
. Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

3. Исследование функции на монотонность.

Функция
называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

Функции возрастающие (убывающие) на некотором интервале называются монотонными.

Если функция
дифференцируема на интервале
и имеет положительную (отрицательную) производную
, то функция
возрастает (убывает) на этом интервале.

Пример 6.3 . Найти интервалы монотонности функций

1)
; 3)
.

Решение .

1) Данная функция определена на всей числовой оси. Найдем производную .

Производная равна нулю, если
и
. Область определения – числовая ось, разбивается точками
,
на интервалы. Определим знак производной в каждом интервале.

В интервале
производная отрицательна, функция на этом интервале убывает.

В интервале
производная положительна, следовательно, функция на этом интервале возрастает.

2) Данная функция определена, если
или

.

Определяем знак квадратного трехчлена в каждом интервале.

Таким образом, область определения функции

Найдем производную
,
, если
, т.е.
, но
. Определим знак производной в интервалах
.

В интервале
производная отрицательна, следовательно, функция убывает на интервале
. В интервале
производная положительна, функция возрастает на интервале
.

4. Исследование функции на экстремум.

Точка
называется точкой максимума (минимума) функции
, если существует такая окрестность точки, что для всех
из этой окрестности выполняется неравенство

.

Точки максимума и минимума функции называются точками экстремума.

Если функция
в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

Точки, в которых производная равна нулю или не существует называются критическими.

5. Достаточные условия существования экстремума.

Правило 1 . Если при переходе (слева направо) через критическую точку производная
меняет знак с «+» на «–», то в точкефункция
имеет максимум; если с «–» на «+», то минимум; если
не меняет знак, то экстремума нет.

Правило 2 . Пусть в точке
первая производная функции
равна нулю
, а вторая производная существует и отлична от нуля. Если
, то– точка максимума, если
, то– точка минимума функции.

Пример 6.4 . Исследовать на максимум и минимум функции:

1)
; 2)
; 3)
;

4)
.

Решение.

1) Функция определена и непрерывна на интервале
.

Найдем производную
и решим уравнение
, т.е.
.Отсюда
– критические точки.

Определим знак производной в интервалах ,
.

При переходе через точки
и
производная меняет знак с «–» на «+», поэтому по правилу 1
– точки минимума.

При переходе через точку
производная меняет знак с «+» на «–», поэтому
– точка максимума.

,
.

2) Функция определена и непрерывна в интервале
. Найдем производную
.

Решив уравнение
, найдем
и
– критические точки. Если знаменатель
, т.е.
, то производная не существует. Итак,
– третья критическая точка. Определим знак производной в интервалах.

Следовательно, функция имеет минимум в точке
, максимум в точках
и
.

3) Функция определена и непрерывна, если
, т.е. при
.

Найдем производную

.

Найдем критические точки:

Окрестности точек
не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точки
и
.

4) Функция определена и непрерывна на интервале
. Используем правило 2. Найдем производную
.

Найдем критические точки:

Найдем вторую производную
и определим ее знак в точках

В точках
функция имеет минимум.

В точках
функция имеет максимум.

Зависимость переменной y от переменно x, при которой каждому значению х соответствует единственное значение y называется функцией. Для обозначения используют запись y=f(x). У каждой функции существует ряд основных свойств, таких как монотонность, четность, периодичность и другие.

Рассмотри подробнее свойство четности.

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

График четной функции

Если построить график четной функции он будет симметричен относительно оси Оу.

Например, функция y=x^2 является четной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=3. f(x)=3^2=9.

f(-x)=(-3)^2=9. Следовательно, f(x) = f(-x). Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график функции y=x^2.

На рисунке видно, что график симметричен относительно оси Оу.

График нечетной функции

Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x).

График нечетной функции симметричен относительно точки О - начала координат. Например, функция y=x^3 является нечетной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=2. f(x)=2^3=8.

f(-x)=(-2)^3=-8. Следовательно, f(x) = -f(x). Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график функции y=x^3.

На рисунке наглядно представлено, что нечетная функция y=x^3 симметрична относительно начала координат.

Которые в той или иной степени были вам знакомы. Там же было замечено, что запас свойств функций будет постепенно пополняться. О двух новых свойствах и пойдет речь в настоящем параграфе.

Определение 1.

Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х).

Определение 2.

Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х).

Доказать, что у = х 4 - четная функция.

Решение. Имеем: f(х) = х 4 , f(-х) = (-х) 4 . Но (-х) 4 = х 4 . Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной.

Аналогично можно доказать, что функции у - х 2 ,у = х 6 ,у - х 8 являются четными.

Доказать, что у = х 3 ~ нечетная функция.

Решение. Имеем: f(х) = х 3 , f(-х) = (-х) 3 . Но (-х) 3 = -х 3 . Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной.

Аналогично можно доказать, что функции у = х, у = х 5 , у = х 7 являются нечетными.

Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у - х 3 , у = х 5 , у = х 7 - нечетные функции, тогда как у = х 2 , у = х 4 , у = х 6 - четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n - натуральное число , можно сделать вывод: если n - нечетное число, то функция у = х" - нечетная; если же n - четное число, то функция у = хn - четная.

Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х).

Итак, функция может быть четной, нечетной, а также ни той ни другой.

Изучение вопроса о том, является ли заданная функция четной или нечетной, обычно называют исследованием функции на четность.

В определениях 1 и 2 речь идет о значениях функции в точках х и -х. Тем самым предполагается, что функция определена и в точке х, и в точке -х. Это значит, что точка -х принадлежит области определения функции одновременно с точкой х. Если числовое множество X вместе с каждым своим элементом х содержит и противоположный элемент -х, то X называют симметричным множеством. Скажем, (-2, 2), [-5, 5], (-оо, +оо) - симметричные множества, в то время как ; (∞;∞) – симметричные множества, а , [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f ) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f (х ) – чётная или нечётная, то её область определения D(f ) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f (– х ).

3. Сравнить f (– х ).и f (х ):

  • если f (– х ).= f (х ), то функция чётная;
  • если f (– х ).= – f (х ), то функция нечётная;
  • если f (– х ) ≠ f (х ) и f (– х ) ≠ –f (х ), то функция не является ни чётной, ни нечётной.

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у = .

Решение.

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у =,

у = f (х ), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f (х ) = , у = f (х),

1) D(f ) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

Вариант 2

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?


а); б) у = х· (5 – х 2). 2. Исследуйте на чётность функцию:

а) у = х 2 · (2х – х 3), б) у =

3. На рис. построен график у = f (х ), для всех х , удовлетворяющих условию х ? 0.
Постройте график функции у = f (х ), если у = f (х ) – чётная функция.

3. На рис. построен график у = f (х ), для всех х, удовлетворяющих условию х? 0.
Постройте график функции у = f (х ), если у = f (х ) – нечётная функция.

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х ) = х (х + 1)(х + 3)(х – 7). Найдите значение функции h(х ) = при х = 3.

7. Подведение итогов