Линейное дифференциальное уравнение первого порядка определение. Линейные и однородные дифференциальные уравнения первого порядка

Думаю, нам стоит начать с истории такого славного математического инструмента как дифференциальные уравнения. Как и все дифференциальные и интегральные исчисления, эти уравнения были изобретены Ньютоном в конце 17-го века. Он считал именно это своё открытие настолько важным, что даже зашифровал послание, которое сегодня можно перевести примерно так: "Все законы природы описываются дифференциальными уравнениями". Это может показаться преувеличением, но всё так и есть. Любой закон физики, химии, биологии можно описать этими уравнениями.

Огромный вклад в развитие и создание теории дифференциальных уравнений внесли математики Эйлер и Лагранж. Уже в 18-м веке они открыли и развили то, что сейчас изучают на старших курсах университетов.

Новая веха в изучении дифференциальных уравнений началась благодаря Анри Пуанкаре. Он создал «качественную теорию дифференциальных уравнений», которая в сочетании с теорией функций комплексного переменного внесла значительный вклад в основание топологии - науки о пространстве и его свойствах.

Что такое дифференциальные уравнения?

Многие боятся одного словосочетания Однако в этой статье мы подробно изложим всю суть этого очень полезного математического аппарата, который на самом деле не так сложен, как кажется из названия. Для того чтобы начать рассказывать про дифференциальные уравнения первого порядка, следует сначала познакомиться с основными понятиями, которые неотъемлемо связаны с этим определением. И начнём мы с дифференциала.

Дифференциал

Многие знают это понятие ещё со школы. Однако всё же остановимся на нём поподробнее. Представьте себе график функции. Мы можем увеличить его до такой степени, что любой его отрезок примет вид прямой линии. На ней возьмём две точки, находящиеся бесконечно близко друг к другу. Разность их координат (x или y) будет бесконечно малой величиной. Ее и называют дифференциалом и обозначают знаками dy (дифференциал от y) и dx (дифференциал от x). Очень важно понимать, что дифференциал не является конечной величиной, и в этом заключается его смысл и основная функция.

А теперь необходимо рассмотреть следующий элемент, который нам пригодится при объяснении понятия дифференциального уравнения. Это - производная.

Производная

Все мы наверняка слышали в школе и это понятие. Говорят, что производная - это скорость роста или убывания функции. Однако из этого определения многое становится непонятным. Попробуем объяснить производную через дифференциалы. Давайте вернёмся к бесконечно малому отрезку функции с двумя точками, которые находятся на минимальном расстоянии друг от друга. Но даже за это расстояние функция успевает измениться на какую-то величину. И чтобы описать это изменение и придумали производную, которую иначе можно записать как отношение дифференциалов: f(x)"=df/dx.

Теперь стоит рассмотреть основные свойства производной. Их всего три:

  1. Производную суммы или разности можно представить как сумму или разность производных: (a+b)"=a"+b" и (a-b)"=a"-b".
  2. Второе свойство связано с умножением. Производная произведения - это сумма произведений одной функции на производную другой: (a*b)"=a"*b+a*b".
  3. Производную разности записать можно в виде следующего равенства: (a/b)"=(a"*b-a*b")/b 2 .

Все эти свойства нам пригодятся для нахождения решений дифференциальных уравнений первого порядка.

Также бывают частные производные. Допустим, у нас есть функция z, которая зависит от переменных x и y. Чтобы вычислить частную производную этой функции, скажем, по x, нам необходимо принять переменную y за постоянную и просто продифференцировать.

Интеграл

Другое важное понятие - интеграл. По сути это прямая противоположность производной. Интегралы бывают нескольких видов, но для решения простейших дифференциальных уравнений нам понадобятся самые тривиальные

Итак, Допустим, у нас есть некоторая зависимость f от x. Мы возьмём от неё интеграл и получим функцию F(x) (часто её называют первообразной), производная от которой равна первоначальной функции. Таким образом F(x)"=f(x). Отсюда следует также, что интеграл от производной равен первоначальной функции.

При решении дифференциальных уравнений очень важно понимать смысл и функцию интеграла, так как придётся очень часто их брать для нахождения решения.

Уравнения бывают разными в зависимости от своей природы. В следующем разделе мы рассмотрим виды дифференциальных уравнений первого порядка, а потом и научимся их решать.

Классы дифференциальных уравнений

"Диффуры" делятся по порядку производных, участвующих в них. Таким образом бывает первый, второй, третий и более порядок. Их также можно поделить на несколько классов: обыкновенные и в частных производных.

В этой статье мы рассмотрим обыкновенные дифференциальные уравнения первого порядка. Примеры и способы их решения мы также обсудим в следующих разделах. Будем рассматривать только ОДУ, потому что это самые распространённые виды уравнений. Обыкновенные делятся на подвиды: с разделяющимися переменными, однородные и неоднородные. Далее вы узнаете, чем они отличаются друг от друга, и научитесь их решать.

Кроме того, эти уравнения можно объединять, чтобы после у нас получилась система дифференциальных уравнений первого порядка. Такие системы мы тоже рассмотрим и научимся решать.

Почему мы рассматриваем только первый порядок? Потому что нужно начинать с простого, а описать всё, связанное с дифференциальными уравнениями, в одной статье просто невозможно.

Уравнения с разделяющимися переменными

Это, пожалуй, самые простые дифференциальные уравнения первого порядка. К ним относятся примеры, которые можно записать так: y"=f(x)*f(y). Для решения этого уравнения нам понадобится формула представления производной как отношения дифференциалов: y"=dy/dx. С помощью неё получаем такое уравнение: dy/dx=f(x)*f(y). Теперь мы можем обратиться к методу решения стандартных примеров: разделим переменные по частям, т. е. перенесём всё с переменной y в часть, где находится dy, и так же сделаем с переменной x. Получим уравнение вида: dy/f(y)=f(x)dx, которое решается взятием интегралов от обеих частей. Не стоит забывать и о константе, которую нужно ставить после взятия интеграла.

Решение любого "диффура" - это функция зависимости x от y (в нашем случае) или, если присутствует численное условие, то ответ в виде числа. Разберём на конкретном примере весь ход решения:

Переносим переменные в разные стороны:

Теперь берём интегралы. Все их можно найти в специальной таблице интегралов. И получаем:

ln(y) = -2*cos(x) + C

Если требуется, мы можем выразить "игрек" как функцию от "икс". Теперь можно сказать, что наше дифференциальное уравнение решено, если не задано условие. Может быть задано условие, например, y(п/2)=e. Тогда мы просто подставляем значение этих переменных в решение и находим значение постоянной. В нашем примере оно равно 1.

Однородные дифференциальные уравнения первого порядка

Теперь переходим к более сложной части. Однородные дифференциальные уравнения первого порядка можно записать в общем виде так: y"=z(x,y). Следует заметить, что правая функция от двух переменных однородна, и её нельзя разделить на две зависимости: z от x и z от y. Проверить, является ли уравнение однородным или нет, достаточно просто: мы делаем замену x=k*x и y=k*y. Теперь сокращаем все k. Если все эти буквы сократились, значит уравнение однородное и можно смело приступать к его решению. Забегая вперёд, скажем: принцип решения этих примеров тоже очень прост.

Нам нужно сделать замену: y=t(x)*x, где t - некая функция, которая тоже зависит от x. Тогда мы можем выразить производную: y"=t"(x)*x+t. Подставляя всё это в наше исходное уравнение и упрощая его, мы получаем пример с разделяющимися переменными t и x. Решаем его и получаем зависимость t(x). Когда мы ее получили, то просто подставляем в нашу предыдущую замену y=t(x)*x. Тогда получаем зависимость y от x.

Чтобы было понятнее, разберём пример: x*y"=y-x*e y/x .

При проверке с заменой всё сокращается. Значит, уравнение действительно однородное. Теперь делаем другую замену, о которой мы говорили: y=t(x)*x и y"=t"(x)*x+t(x). После упрощения получаем следующее уравнение: t"(x)*x=-e t . Решаем получившийся пример с разделёнными переменными и получаем: e -t =ln(C*x). Нам осталось только заменить t на y/x (ведь если y=t*x, то t=y/x), и мы получаем ответ: e -y/x =ln(x*С).

Линейные дифференциальные уравнения первого порядка

Пришло время рассмотреть ещё одну обширную тему. Мы разберём неоднородные дифференциальные уравнения первого порядка. Чем они отличаются от предыдущих двух? Давайте разберёмся. Линейные дифференциальные уравнения первого порядка в общем виде можно записать таким равенством: y" + g(x)*y=z(x). Стоит уточнить, что z(x) и g(x) могут являться постоянными величинами.

А теперь пример: y" - y*x=x 2 .

Существует два способа решения, и мы по порядку разберём оба. Первый - метод вариации произвольных констант.

Для того чтобы решить уравнение этим способом, необходимо сначала приравнять правую часть к нулю и решить получившееся уравнение, которое после переноса частей примет вид:

ln|y|=x 2 /2 + C;

y=e x2/2 *у С =C 1 *e x2/2 .

Теперь надо заменить константу C 1 на функцию v(x), которую нам предстоит найти.

Проведём замену производной:

y"=v"*e x2/2 -x*v*e x2/2 .

И подставим эти выражения в исходное уравнение:

v"*e x2/2 - x*v*e x2/2 + x*v*e x2/2 = x 2 .

Можно видеть, что в левой части сокращаются два слагаемых. Если в каком-то примере этого не произошло, значит вы что-то сделали не так. Продолжим:

v"*e x2/2 = x 2 .

Теперь решаем обычное уравнение, в котором нужно разделить переменные:

dv/dx=x 2 /e x2/2 ;

dv = x 2 *e - x2/2 dx.

Чтобы извлечь интеграл, нам придётся применить здесь интегрирование по частям. Однако это не тема нашей статьи. Если вам интересно, вы можете самостоятельно научиться выполнять такие действия. Это не сложно, и при достаточном навыке и внимательности не отнимает много времени.

Обратимся ко второму способу решения неоднородных уравнений: методу Бернулли. Какой подход быстрее и проще - решать только вам.

Итак, при решении уравнения этим методом нам необходимо сделать замену: y=k*n. Здесь k и n - некоторые зависящие от x функции. Тогда производная будет выглядеть так: y"=k"*n+k*n". Подставляем обе замены в уравнение:

k"*n+k*n"+x*k*n=x 2 .

Группируем:

k"*n+k*(n"+x*n)=x 2 .

Теперь надо приравнять к нулю то, что находится в скобках. Теперь, если объединить два получившихся уравнения, получается система дифференциальных уравнений первого порядка, которую нужно решить:

Первое равенство решаем, как обычное уравнение. Для этого нужно разделить переменные:

Берём интеграл и получаем: ln(n)=x 2 /2. Тогда, если выразить n:

Теперь подставляем получившееся равенство во второе уравнение системы:

k"*e x2/2 =x 2 .

И преобразовывая, получаем то же самое равенство, что и в первом методе:

dk=x 2 /e x2/2 .

Мы также не будем разбирать дальнейшие действия. Стоит сказать, что поначалу решение дифференциальных уравнений первого порядка вызывает существенные трудности. Однако при более глубоком погружении в тему это начинает получаться всё лучше и лучше.

Где используются дифференциальные уравнения?

Очень активно дифференциальные уравнения применяются в физике, так как почти все основные законы записываются в дифференциальной форме, а те формулы, которые мы видим - решение этих уравнений. В химии они используются по той же причине: основные законы выводятся с их помощью. В биологии дифференциальные уравнения используются для моделирования поведения систем, например хищник - жертва. Они также могут использоваться для создания моделей размножения, скажем, колонии микроорганизмов.

Как дифференциальные уравнения помогут в жизни?

Ответ на этот вопрос прост: никак. Если вы не учёный или инженер, то вряд ли они вам пригодятся. Однако для общего развития не помешает знать, что такое дифференциальное уравнение и как оно решается. И тогда вопрос сына или дочки "что такое дифференциальное уравнение?" не поставит вас в тупик. Ну а если вы учёный или инженер, то и сами понимаете важность этой темы в любой науке. Но самое главное, что теперь на вопрос "как решить дифференциальное уравнение первого порядка?" вы всегда сможете дать ответ. Согласитесь, всегда приятно, когда понимаешь то, в чём люди даже боятся разобраться.

Основные проблемы при изучении

Основной проблемой в понимании этой темы является плохой навык интегрирования и дифференцирования функций. Если вы плохо берёте производные и интегралы, то, наверное, стоит ещё поучиться, освоить разные методы интегрирования и дифференцирования, и только потом приступать к изучению того материала, что был описан в статье.

Некоторые люди удивляются, когда узнают, что dx можно переносить, ведь ранее (в школе) утверждалось, что дробь dy/dx неделима. Тут нужно почитать литературу по производной и понять, что она является отношением бесконечно малых величин, которыми можно манипулировать при решении уравнений.

Многие не сразу осознают, что решение дифференциальных уравнений первого порядка - это зачастую функция или неберущийся интеграл, и это заблуждение доставляет им немало хлопот.

Что ещё можно изучить для лучшего понимания?

Лучше всего начать дальнейшее погружение в мир дифференциального исчисления со специализированных учебников, например, по математическому анализу для студентов нематематических специальностей. Затем можно переходить и к более специализированной литературе.

Стоит сказать, что, кроме дифференциальных, есть ещё интегральные уравнения, так что вам всегда будет к чему стремиться и что изучать.

Заключение

Надеемся, что после прочтения этой статьи у вас появилось представление о том, что такое дифференциальные уравнения и как их правильно решать.

В любом случае математика каким-либо образом пригодится нам в жизни. Она развивает логику и внимание, без которых каждый человек как без рук.

Рассмотрим примеры решения линейных дифференциальных уравнений первого порядка методом Бернулли.

1) y’=3x-y/x

Перепишем уравнение в стандартном виде: y’+y/x=3x. Здесь p(x)=1/x, q(x)=3x.

1) Введем замену y=uv, где u=u(x) и v=v(x) — некоторые новые функции от x. Отсюда y’=(uv)’=u’v+v’u. Подставляем полученные выражения для y и y’ в условие: u’v+v’u+uv/x=3x.

2) Сгруппируем слагаемые, содержащие v: v+v’u=3x. (I) Теперь потребуем равенства нулю выражения в скобках: u’+u/x=0. Получили новое дифференциальное уравнение с разделяющимися переменными относительно u и x. Подставляем u’=du/dx и разделяем переменные: du/dx= — u/x. Умножаем обе части уравнения на dx и делим на u≠0. Пришли к уравнению с разделенными переменными: du/u= — dx/x. Интегрируем его:

Поскольку при нахождении u С берем равным нулю, то получаем, что ln│u│=-ln│x│, используем свойство логарифма: ln│u│= ln│1/x│отсюда u=1/x.

3) В уравнение (I) подставляем =0 и u=1/x. Имеем: v’/x=3x. Умножаем обе части полученного уравнения на x≠0: v’=3x². Можно представить v’=dv/dx и разделить переменные: dv/dx=3x², отсюда, умножив обе части на dx, получаем dv=3x²dx, интегрируем:

здесь С уже не игнорируем, и приходим к v=x³+C. (А можно было просто проинтегрировать обе части равенства: v’=3x²

и сразу получить ответ v=x³+C).

4) Так как y=uv, подставив найденные выражения для u и v, получаем: y=(x³+C)/x. Если преобразовать ответ, получим: y=x²+C/x.

Ответ: y=x²+C/x.

2) y’+y=cosx.

Линейное уравнение в стандартном виде. p(x)=1, q(x)=cosx.

1) y=uv, y’=u’v+v’u. Подставляем в условие:

u’v+v’u+uv=cosx. Группируем слагаемые с v: v+v’u=cosx. (II)

2) Теперь потребуем, чтобы выполнялось условие u’+u=0. Получили уравнение с разделяющимися переменными u и x. Так как u’=du/dx, то du/dx+u=0, откуда du/dx=-u. Умножаем обе части на dx и делим на u≠0: du/u=-dx. Интегрируем уравнение:

3) В уравнение (II) подставляем =0 и

Интегрируем обе части уравнения:

Этот интеграл находится с помощью формулы интегрирования по частям:

4) y=uv, подставляем найденные выражения для u и v:

Рассмотрим еще одно интересное задание.

3) Найти решение уравнения (x+y)y’=1, удовлетворяющее начальному условию y(-1)=0.

Если рассматривать y как функцию от x, то уравнение не получится записать в стандартном виде y’+p(x)y=q(x). А вот если рассматривать x как функцию от y, то с учетом того, что y’=1/x’, получаем: (x+y)·1/x’=1, откуда x’=x+y, теперь переписываем это уравнение в виде x’-x=y. (III)

Мы получили линейное дифференциальное уравнение первого порядка вида x’+p(y)=q(y). Здесь p(y)=-1, q(y)=y. Все рассуждения абсолютно аналогичны. Проведем их.

1) Замена x=uv, где u=u(y), v=v(y). Отсюда x’=u’v+v’u. Подставляем в (III): u’v+v’u-uv=y.

2) Группируем слагаемые с v: v+v’u=y. (IV) Требуем, чтобы выражение в скобках равнялось нулю: u’-u=0. А это — уравнение с разделяющимися переменными. Только не забываем, что вторая переменная здесь y, а не x. С учетом того, что u’=du/dy, разделим переменные: du/dy=u. Умножаем обе части уравнения на dy и делим на u: du/u=dy. Теперь интегрируем:

3) В (IV) подставляем =0 и

Этот интеграл также находим по формуле интегрирования по частям

Подставляем, по формуле интегрирования по частям получаем:

4) Так как x=uv, то, подставив найденные выражения для функций u и v, получаем:

5) В общее решение уравнения

подставляем начальные условия y(-1)=0 (то есть x=-1, y=0):

Отсюда частное решение x=-y-1. Выразив y через x, приходим к окончательному варианту ответа: y=-x-1.

Ответ: y=-x-1.

Задания для самопроверки:

1) y’-y=x. Здесь p(x)=-1, q(x)=x.

1) Вводим замену y=uv, y’=u’v+v’u. Подставляем в условие: u’v+v’u=x+uv, u’v+v’u- uv=x.

2) Группируем слагаемые с v: v+v’u=x (*).

Требуем, чтобы выражение в скобках равнялось нулю: u’- u=0ю Из этого условия находим u: du/dx=u, du/u=dx. Интегрируем:

3) В равенство (*) подставляем =0 и

Интеграл в правой части уравнения будем искать с помощью формулы интегрирования по частям: u=x, du=x’dx=dx.

Отсюда получаем, что

4) Поскольку y-uv, подставлям:

2) Делим обе части уравнения на x: y’-(2/x)y=x. Здесь p(x)=-2/x, q(x)=x.

1) Замена y=uv, y’=u’v+v’u. Подставляем в условие: xu’v+xv’u-2uv=x².

2) Группируем слагаемые с v: v+xv’u=x² (**). Теперь требуем выполнения условия xu’-2u=0. Отсюда x·du/dx=2u, du/u=2dx/x. Интегрируем.

В данной теме поговорим о способах решения линейных неоднородных дифференциальных уравнений вида y " = P (x) · y = Q (x) . Начнем с метода вариации произвольной постоянной и покажем способ применения этого метода для решения задачи Коши. Продолжим рассмотрением метода, который предполагает представление произвольной постоянной у как произведения двух функций u (x) и v (x) . В разделе мы приводим большое количество задач по теме с детальным разбором решения.

На тот случай, если применяемые при разборе темы термины и понятия окажутся незнакомыми для вас, мы рекомендуем заглядывать в раздел «Основные термины и определения теории дифференциальных уравнений».

Метод вариации произвольной постоянной для решения ЛНДУ первого порядка

Для краткости будет обозначать линейное неоднородное дифференциальное уравнение аббревиатурой ЛНДУ, а линейное однородное дифференциальное уравнение (ЛОДУ).

ЛНДУ вида y " = P (x) · y = Q (x) соответствует ЛОДУ вида y " = P (x) · y = 0 , при Q (x) = 0 . Если посмотреть на дифференциальное уравнение y " = P (x) · y = 0 , становится понятно, что мы имеем дело с уравнением с разделяющимися переменными. Мы можем его проинтегрировать: y " = P (x) · y = 0 ⇔ d y y = - P (x) d x , y ≠ 0 ∫ d y y = - ∫ P (x) d x ⇔ ln y + C 1 = - ∫ P (x) d x ⇔ ln y = ln C - ∫ P (x) d x , ln C = - C 1 , C ≠ 0 ⇔ e ln y = e ln C - ∫ P (x) d x ⇔ y = C · e - ∫ P (x) d x

Мы можем утверждать, что значение переменной y = 0 тоже является решением, так как при этом значении переменной уравнение y " = P (x) · y = 0 обращается в тождество. Этому случаю соответствует решение y = C · e - ∫ P (x) d x при значении C = 0 .

Получается, что y = C · e - ∫ P (x) d x - общее решение ЛОДУ, где С – произвольная постоянная.

y = C · e - ∫ P (x) d x - это решение ЛОДУ y " = P (x) · y = 0 .

Для того, чтобы найти общее решение неоднородного уравнения y " = P (x) · y = Q (x) , будем считать С не константой, а функцией аргумента х. Фактически, мы примем y = C (x) · e - ∫ P (x) d x общим решением ЛНДУ.

Подставим y = C (x) · e - ∫ P (x) d x в дифференциальное уравнение y " = P (x) · y = Q (x) . Оно при этом обращается в тождество:

y " = P (x) · y = Q (x) C x · e - ∫ P (x) d x + P (x) · C (x) · e - ∫ P (x) d x = Q (x)

Теперь обратимся к правилу дифференцирования произведения. Получаем:

C " (x) · e - ∫ P (x) d x + C (x) · e - ∫ P (x) d x + P (x) · C (x) · e - ∫ P (x) d x = Q (x)

Производная сложной функции e - ∫ P (x) d x " равна e - ∫ P (x) d x · - ∫ P (x) d x " .

Теперь вспомним свойства неопределенного интеграла. Получаем:

e - ∫ P (x) d x · - ∫ P (x) d x " = - e - ∫ P (x) d x · P (x)

Теперь выполним переход:

C " (x) · e - ∫ P (x) d x + C (x) · e - ∫ P (x) d x " + P (x) · C (x) · e - ∫ P (x) d x = Q (x) C " (x) · e - ∫ P (x) d x - P (x) · C (x) · e - ∫ P (x) d x + P (x) · C (x) · e - ∫ P (x) d x = Q (x) C " (x) · e - ∫ P (x) d x = Q (x)

Так мы пришли к простейшему дифференциальному уравнению первого порядка. В ходе решения этого уравнения мы определим функцию C (x) . Это позволит нам записать решение исходного ЛНДУ первого порядка следующим образом:

y = C (x) · e - ∫ P (x) d x

Подведем итог

Метод вариации произвольной постоянной при решении ЛНДУ предполагает проведение трех этапов:

  • нахождение общего решения соответствующего ЛОДУ y " + P (x) · y = 0 в виде y = C · e - ∫ P (x) d x ;
  • варьирование произвольной постоянной С, что заключается в замене ее функцией С (x) ;
  • подстановка функции y = C (x) · e - ∫ P (x) d x в исходное дифференциальное уравнение, откуда мы можем вычислить C (x) и записать ответ.

Теперь применим этот алгоритм к решению задачи.

Пример 1

Найдите решение задачи Коши y " - 2 x y 1 + x 2 = 1 + x 2 , y (1) = 3 .

Решение

Нам нужно отыскать частное решение ЛНДУ y " - 2 x y 1 + x 2 = 1 + x 2 при начальном условии y (1) = 3 .

В нашем примере P (x) = - 2 x 1 + x 2 и Q (x) = x 2 + 1 . Начнем с того, что найдем общее решение ЛОДУ. После этого применим метод вариации произвольной постоянной и определим общее решение ЛНДУ. Это позволит нам найти искомое частное решение.

Общим решением соответствующего ЛОДУ y " - 2 x y 1 + x 2 = 0 будет семейство функций y = C · (x 2 + 1) , где С – произвольная постоянная.

Варьируем произвольную постоянную y = C (x) · (x 2 + 1) и подставляем эту функцию в исходное уравнение:
y " - 2 x y 1 + x 2 = 1 + x 2 C x · (x 2 + 1 " - 2 x · C (x) · (x 2 + 1) 1 + x 2 = 1 + x 2 C " (x) · (x 2 + 1) + C (x) · 2 x - 2 x · C (x) = 1 + x 2 C " (x) = 1 ,

откуда C (x) = ∫ d x = x + C 1 , где C 1 – произвольная постоянная.

Это значит, что y = C (x) · (x 2 + 1) = (x + C 1) · (x 2 + 1) - общее решение неоднородного уравнения.

Теперь приступим к отысканию частного решения, которое будет удовлетворять начальному условию y (1) = 3 .

Так как y = (x + C 1) · (x 2 + 1) , то y (1) = (1 + C 1) · (1 2 + 1) = 2 · (1 + C 1) . Обратившись к начальному условию, получаем уравнение 2 · (1 + C 1) = 3 , откуда C 1 = 1 2 . Следовательно, искомое решение задачи Коши имеет вид y = x + 1 2 · (x 2 + 1)

Теперь рассмотрим еще один метод решения линейных неоднородных дифференциальных уравнений y " + P (x) · y = Q (x) .

Еще один метод решения ЛНДУ первого порядка

Мы можем представить неизвестную функцию как произведение y = u ⋅ v , где u и v – функции аргумента x .

Мы можем подставить эту функцию в ЛНДУ первого порядка. Имеем:

y " + P (x) · y = Q (x) (u · v) " + P (x) · u · v = Q (x) u " · v + u · v " + P (x) · u · v = Q (x) u " · v + u · (v " + P (x) · v) = Q (x)

Если найти такое v , чтобы оно было ненулевым частным решением дифференциального уравнения v " + P (x) · v = 0 , то u можно будет определить из уравнения с разделяющимися переменными u " · v = Q (x) .

Рассмотрим этот алгоритм решения на предыдущем примере. Это позволит нам сосредоточиться на главном, не отвлекаясь на второстепенные детали.

Пример 2

Найдите общее решение линейного неоднородного дифференциального уравнения y " - 2 x y 1 + x 2 = 1 + x 2 .

Решение

Пусть y = u ⋅ v , тогда
y " - 2 x y x 2 + 1 = x 2 + 1 ⇔ (u · v) - 2 x · u · v x 2 + 1 = x 2 + 1 u " · v + u · v " - 2 x · u · v x 2 + 1 = x 2 + 1 u " · v + u · v " - 2 x · v x 2 + 1 = x 2 + 1

Находим такое v , отличное от нуля, чтобы выражение в скобках обращалось в ноль. Иными словами, находим частное решение дифференциального уравнения v " - 2 x · v x 2 + 1 = 0 .
v " - 2 x · v x 2 + 1 = 0 ⇔ d v d x = 2 x · v x 2 + 1 ⇒ d v v = 2 x d x x 2 + 1 ⇔ d v v = d (x 2 + 1) x 2 + 1 ∫ d v v = ∫ d (x 2 + 1) x 2 + 1 ln v + C 1 = ln (x 2 + 1) + C 2

Возьмем частное решение v = x 2 + 1 , соответствующее C 2 – С 1 = 0 .

Для этого частного решения имеем
u " · v + u · v " - 2 x · v x 2 + 1 = x 2 + 1 ⇔ u " · (x 2 + 1) + u · 0 = x 2 + 1 ⇔ u " = 1 ⇔ u = x + C

Следовательно, общее решение исходного линейного неоднородного дифференциального уравнения есть y = u · v = (x + C) · (x 2 + 1)

Ответы в обоих случаях совпадают. Это значит, что оба метода решения, которые мы привели в статье, равнозначны. Выбирать, какой из них применить для решения задачи, вам.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Первого порядка, имеющее стандартний вид $y"+P\left(x\right)\cdot y=0$, где $P\left(x\right)$ -- непрерывная функция , называется линейным однородным. Название "линейное" объясняется тем, что неизвестная функция $y$ и её первая производная $y"$ входят в состав уравнения линейно, то есть в первой степени. Название "однородное" объясняется тем, что в правой части уравнения находится нуль.

Такое дифференциальное уравнение можно решить методом разделения переменных. Представим его в стандартном виде метода: $y"=-P\left(x\right)\cdot y$, где $f_{1} \left(x\right)=-P\left(x\right)$ и $f_{2} \left(y\right)=y$.

Вычислим интеграл $I_{1} =\int f_{1} \left(x\right)\cdot dx =-\int P\left(x\right)\cdot dx $.

Вычислим интеграл $I_{2} =\int \frac{dy}{f_{2} \left(y\right)} =\int \frac{dy}{y} =\ln \left|y\right|$.

Запишем общее решение в виде $\ln \left|y\right|+\int P\left(x\right)\cdot dx =\ln \left|C_{1} \right|$, где $\ln \left|C_{1} \right|$ -- произвольная постоянная, взятая в удобном для дальнейших преобразований виде.

Выполним преобразования:

\[\ln \left|y\right|-\ln \left|C_{1} \right|=-\int P\left(x\right)\cdot dx ; \ln \frac{\left|y\right|}{\left|C_{1} \right|} =-\int P\left(x\right)\cdot dx .\]

Используя определение логарифма, получим: $\left|y\right|=\left|C_{1} \right|\cdot e^{-\int P\left(x\right)\cdot dx } $. Это равенство, в свою очередь, эквивалентно равенству $y=\pm C_{1} \cdot e^{-\int P\left(x\right)\cdot dx } $.

Заменив произвольную постоянную $C=\pm C_{1} $, получим общее решение линейного однородного дифференциального уравнения: $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $.

Решив уравнение $f_{2} \left(y\right)=y=0$, найдем особые решения. Обычной проверкой убеждаемся, что функция $y=0$ является особым решением данного дифференциального уравнения.

Однако это же решение можно получить из общего решения $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $, положив в нём $C=0$.

Таким образом, окончательный результат: $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $.

Общий метод решения линейного однородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y"+P\left(x\right)\cdot y=0$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I=\int P\left(x\right)\cdot dx $.
  3. Записываем общее решение в виде $y=C\cdot e^{-I} $ и при необходимости выполняем упрощающие преобразования.

Задача 1

Найти общее решение дифференциального уравнения $y"+3\cdot x^{2} \cdot y=0$.

Имеем линейное однородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=3\cdot x^{2} $.

Вычисляем интеграл $I=\int 3\cdot x^{2} \cdot dx =x^{3} $.

Общее решение имеет вид: $y=C\cdot e^{-x^{3} } $.

Линейные неоднородные дифференциальные уравнения первого порядка

Определение

Дифференциальное уравнение первого порядка, которое можно представить в стандартном виде $y"+P\left(x\right)\cdot y=Q\left(x\right)$, где $P\left(x\right)$ и $Q\left(x\right)$ -- известные непрерывные функции, называется линейным неоднородным дифференциальным уравнением. Название "неоднородное" объясняется тем, что правая часть дифференциального уравнения отлична от нуля.

Решение одного сложного линейного неоднородного дифференциального уравнения может быть сведено к решению двух более простых дифференциальных уравнений. Для этого искомую функцию $y$ следует заменить произведением двух вспомогательных функций $u$ и $v$, то есть положить $y=u\cdot v$.

Выполняем дифференцирование принятой замены: $\frac{dy}{dx} =\frac{du}{dx} \cdot v+u\cdot \frac{dv}{dx} $. Подставляем полученное выражение в данное дифференциальное уравнение: $\frac{du}{dx} \cdot v+u\cdot \frac{dv}{dx} +P\left(x\right)\cdot u\cdot v=Q\left(x\right)$ или $\frac{du}{dx} \cdot v+u\cdot \left[\frac{dv}{dx} +P\left(x\right)\cdot v\right]=Q\left(x\right)$.

Отметим, что если принято $y=u\cdot v$, то в составе произведения $u\cdot v$ одну из вспомогательных функций можно выбирать произвольно. Выберем вспомогательную функцию $v$ так, чтобы выражение в квадратных скобках обратилось в нуль. Для этого достаточно решить дифференциальное уравнение $\frac{dv}{dx} +P\left(x\right)\cdot v=0$ относительно функции $v$ и выбрать для неё простейшее частное решение $v=v\left(x\right)$, отличное от нуля. Это дифференциальное уравнение является линейным однородным и решается оно вышерассмотренным методом.

Полученное решение $v=v\left(x\right)$ подставляем в данное дифференциальное уравнение с учетом того, что теперь выражение в квадратных скобках равно нулю, и получаем еще одно дифференциальное уравнение, но теперь относительно вспомогательной функции $u$: $\frac{du}{dx} \cdot v\left(x\right)=Q\left(x\right)$. Это дифференциальное уравнение можно представить в виде $\frac{du}{dx} =\frac{Q\left(x\right)}{v\left(x\right)} $, после чего становится очевидно, что оно допускает непосредственное интегрирование. Для этого дифференциального уравнения необходимо найти общее решение в виде $u=u\left(x,\; C\right)$.

Теперь можно найти общее решение данного линейного неоднородного дифференциального уравнения первого порядка в виде $y=u\left(x,C\right)\cdot v\left(x\right)$.

Общий метод решения линейного неоднородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y"+P\left(x\right)\cdot y=Q\left(x\right)$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I_{1} =\int P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  3. Вычисляем интеграл $I_{2} =\int \frac{Q\left(x\right)}{v\left(x\right)} \cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_{2} +C$.
  4. Записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$ и при необходимости выполняем упрощающие преобразования.

Задача 2

Найти общее решение дифференциального уравнения $y"-\frac{y}{x} =3\cdot x$.

Имеем линейное неоднородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=-\frac{1}{x} $ и $Q\left(x\right)=3\cdot x$.

Вычисляем интеграл $I_{1} =\int P\left(x\right)\cdot dx =-\int \frac{1}{x} \cdot dx=-\ln \left|x\right| $.

Записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $ и выполняем упрощающие преобразования: $v\left(x\right)=e^{\ln \left|x\right|} $; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$. Вибираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_{2} =\int \frac{Q\left(x\right)}{v\left(x\right)} \cdot dx =\int \frac{3\cdot x}{x} \cdot dx=3\cdot x $.

Записываем выражение $u\left(x,C\right)=I_{2} +C=3\cdot x+C$.

Окончательно записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$, то есть $y=\left(3\cdot x+C\right)\cdot x$.