Преобразуйте в алгебраическую дробь выражение. Преобразование выражений

Учение без принуждения

(Путеводитель в увлекательный мир математики)

Математику уже затем учить надо, что она ум в порядок приводит. (М.В. Ломоносов)

Так как же учить математику?

Этот вопрос интересует многих.

Первым делом нужно ликвидировать пробелы из прошлого. Если вы пропустили (не поняли, принципиально не изучали, и т.д.) какую-нибудь тему, рано или поздно вы обязательно наступите на эти грабли. С классическим результатом... Уж так устроена математика.

Независимо от того, изучаете вы новую тему, или повторяете старую - освойте математические определения и термины! Обратите внимание, я не говорю – «выучите», а говорю «освойте». Это разные вещи. Вы должны понимать, к примеру, что такое знаменатель, дискриминант, или арксинус на простом, даже примитивном уровне. Что это такое, зачем это нужно и как с этим обращаться. Жить станет легче.

Если я вас спрошу, как пользоваться устройством перехода через плотные ограниченные среды, вам будет неуютно отвечать, верно? А если вы понимаете, что это самое устройство - обычная дверь? Правда, как-то веселее.

И, конечно, нужно решать. Если не умеете решать - ничего страшного. Нужно пытаться решать, пробовать. Все когда-то не умели. Но кто пытался и пробовал, пусть и неправильно, с ошибками - тот сейчас умеет решать. А кто не пробовал, не учился - тот так и не научился.

Вот вам три составляющие ответа на вопрос: "Как учить математику?" Ликвидировать пробелы, освоить термины на понятном уровне и осмысленно решать задания.

Если вам математика представляется дебрями каких-то правил, формул, выражений, в которых невозможно ориентироваться, то я вас утешу. Есть там тропы и путеводные звезды! Обживетесь, попривыкнете, еще и любоваться этими дебрями начнете…

Математика школьного курса не решает сложные примеры, так как не умеет. Она хорошо может решить что-нибудь вида 5х = 10, квадратное уравнение через дискриминант, ну и такое же простое из тригонометрии, логарифмов и т.д. И вся мощь математики направлена на упрощение сложных выражений. Именно для этого нужны правила и формулы различных преобразований. Они позволяют записывать исходное выражение в другом, удобном нам виде, не меняя его сущности.



«Математика – это искусство называть разные вещи одним и тем же именем». (А. Пуанкаре)

Например, 8 = 6 + 2 = 2 = = log 6561 = 32: 4. Это всё одно и то же число 8! Только записано в самых разных видах. Какой вид выбрать - решать нам! Сообразуясь с заданием и здравым смыслом.

Главной путеводной звездой в математике является умение преобразовывать выражения. Практически любое решение начинается с преобразования исходного выражения. С помощью правил и формул, которых вовсе не такое безумное количество, как вам кажется.

Мы часто говорим «Все формулы работают слева – направо и справа – налево». Скажем, (a + b) почти каждый распишет как a + 2ab + b . Но не каждый (к сожалению) сообразит, что x + 2x + 1 можно записать, как (x + 1) . А вот это надо уметь! Формулы нужно знать в лицо! Уметь опознавать их в зашифрованных хитрыми преподавателями выражениях, выявлять части формул, доводить, при необходимости, до полных.

Преобразования выражений – вещь, поначалу, хлопотная. Требует труда. На стартовом этапе нужно проверять, где можно, правильность преобразования обратным преобразованием. Разложили на множители – перемножьте обратно и приведите подобные. Получилось исходное выражение – ура! Нашли корни уравнения – подставьте в исходное выражение. Посмотрите, что получилось. И так далее.

Итак, я приглашаю вас в удивительный мир математики. А начнём наш путь со знакомства с дробями, так это, пожалуй, самое уязвимое место большинства школьников.

В добрый путь!

Занятие 1.

Виды дробей. Преобразования.

Кто знает дроби, тот силён, тот в математике отважен!

Дроби бывают трёх видов.

1. Обыкновенные дроби , например: , , , .

Иногда вместо горизонтальной черты ставят наклонную черту: 1/2, 3/7, 19/5. Черта, и горизонтальная (винкулиум), и наклонная (солидус) означает одну и ту же операцию: деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо черты вполне можно поставить знак деления - две точки. 1/2 = 1: 2.

Когда деление возможно нацело, это надо делать. Так, вместо дроби 32/8 гораздо приятнее написать число 4. Т.е. 32 просто поделить на 8. 32/8 = 32: 8 = 4. Я уж не говорю про дробь 4/1, которая тоже равна 4. А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например: 0,5; 3,28; 0,543; 23,32.

3. Смешанные числа , например: , , , .

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задаче и зависните... На пустом месте. Но мы-то вспомним эту процедуру!

Наиболее универсальны обыкновенные дроби. С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буквы, это ничего не меняет. В том смысле, что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями!

Итак, вперёд! Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

А оно нам надо, все эти превращения? – спросите вы. Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей. Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходиться сокращать не дробь вида 5/10, а дробное рациональное выражение.

Обычно ученик не задумывается над делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение: .

Что мы делаем? Зачеркиваем множитель а сверху и степень снизу! Получаем: .

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на множитель а. Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть букву а в выражении и получить снова . Что будет категорически неверно: непростительная ошибка. Потому что здесь весь числитель на а уже не делится ! Эту дробь сократить нельзя.

При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру, 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и, наоборот, без калькулятора! Это важно на ЦТ, правда?

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это нуль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обыкновенную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Например, 0,3. Это три десятых, т.е. 3/10.

А если целых - не нуль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную.

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обыкновенная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в результате решения получилось 1/2? А ответ нужно записать десятичной…

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель на 5. Но, тогда и числитель надо умножить тоже на 5. Получим 1/2 = 0,5. Вот и всё.

Однако, знаменатели могут быть разными. Например, дробь 3/16. Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и при делении уголком мы получим 0,3333333... Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную!

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать пятиклассника и спросить у него. Но не всегда пятиклассник окажется рядом... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задаче вы с ужасом увидели число:

Спокойно, без паники рассуждаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем: числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Легко? Тогда закрепите успех! Переведите эти смешанные числа , , в обыкновенные дроби. У вас должно получиться 10/3, 23/10 и 21/4.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать. Ну а если написано, к примеру, 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам!

Если в задании сплошь десятичные дроби, но гм... страшные какие-то, перейдите к обыкновенным, попробуйте! Может, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби? 0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. Ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги нашего занятия.

1. Дроби бывают трёх видов: обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Практические советы:

1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Лучше написать две лишние строчки в черновике, чем ошибиться при расчёте в уме.

2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

А теперь попробуйте применить теорию на практике.

Итак, решаем в режиме экзамена! Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний пример. И только потом смотрим ответы.

Решили? Ищем ответы, которые совпадают с вашими. Ответы записаны в беспорядке, подальше от соблазна, так сказать...

0; 17/22; 3; 1; 3/4; 14; -5/4; 17/12; 1/3; 5; 2/5; 25.

А теперь делаем выводы. Если всё получилось - рада за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет... Терпение и труд всё перетрут.


Материал этой статьи представляет собой общий взгляд на преобразование выражений, содержащих дроби. Здесь мы рассмотрим основные преобразования, которые характерны для выражений с дробями.

Навигация по странице.

Выражения с дробями и дробные выражения

Для начала проясним, с преобразованием выражений какого вида мы собрались разбираться.

В заголовке статьи фигурирует говорящее за себя словосочетание «выражения с дробями ». То есть, ниже речь пойдет о преобразовании числовых выражений и выражений с переменными, в записи которых присутствует хотя бы одна дробь .

Сразу заметим, что после выхода в свет статьи «преобразование дробей: общий взгляд » нам уже не интересны отдельные дроби. Таким образом, дальше мы будем рассматривать суммы, разности, произведения, частные и более сложные выражения с корнями, степенями, логарифмами, объединяет которые лишь наличие хотя бы одной дроби.

И еще оговоримся про дробные выражения . Это не то же самое, что выражения с дробями. Выражения с дробями – более общее понятие. Не каждое выражение с дробями есть дробное выражение. Например, выражение не является дробным выражением, хотя и содержит дробь, это целое рациональное выражение . Так что не стоит называть выражение с дробями дробным выражением, не будучи полностью уверенным, что оно является таковым.

Основные тождественные преобразования выражений с дробями

Пример.

Упростите выражение .

Решение.

В данном случае можно раскрыть скобки , что даст выражение , в котором присутствуют подобные слагаемые и , а также −3 и 3 . После их приведения получим дробь .

Покажем краткую форму записи решения:

Ответ:

.

Работа с отдельными дробями

Выражения, о преобразовании которых мы говорим, отличаются от других выражений главным образом наличием дробей. А наличие дробей требует инструментов для работы с ними. В этом пункте мы обсудим преобразование отдельных дробей, входящих в запись данного выражения, а в следующем пункте перейдем к выполнению действий с дробями, составляющими исходное выражение.

С любой дробью, которая является составной частью исходного выражения, можно выполнять любое из преобразований, обозначенных в статье преобразование дробей . То есть, можно взять отдельную дробь, поработать с ее числителем и знаменателем, сократить ее, привести к новому знаменателю и т.д. Понятно, что при этом преобразовании выбранная дробь заменится тождественно равной ей дробью, а исходное выражение – тождественно равным ему выражением. Давайте рассмотрим пример.

Пример.

Преобразовать выражение с дробью к более простому виду.

Решение.

Преобразование начнем с того, что поработаем с дробью . Для начала раскроем скобки и приведем подобные слагаемые в числителе дроби: . Теперь напрашивается вынесение за скобки общего множителя x в числителе и последующее сокращение алгебраической дроби : . Остается лишь подставить полученный результат вместо дроби в исходное выражение, что дает .

Ответ:

.

Выполнение действий с дробями

Частью процесса преобразования выражений с дробями часто является выполнение действий с дробями . Они проводятся в соответствии с принятым порядком выполнения действий. Также стоит иметь в виду, что любое число или выражение всегда можно представить в виде дроби со знаменателем 1 .

Пример.

Упростите выражение .

Решение.

К решению поставленной задачи можно подходить с разных сторон. Мы в контексте разбираемой темы пойдем путем выполнения действий с дробями. Начнем с умножения дробей:

Теперь произведение запишем в виде дроби со знаменателем 1 , после чего проведем вычитание дробей:

При желании и необходимости можно еще освободиться от иррациональности в знаменателе , на чем можно закончить преобразования.

Ответ:

Применение свойств корней, степеней, логарифмов и т.п.

Класс выражений с дробями очень широк. Такие выражения помимо собственно дробей, могут содержать корни, степени с различными показателями, модули, логарифмы, тригонометрические функции и т.п. Естественно, при их преобразовании применяются соответствующие свойства.

Применимо к дробям, стоит выделить свойство корня из дроби , свойство дроби в степени , свойство модуля частного и свойство логарифма разности .

Для наглядности приведем несколько примеров. Например, в выражении может быть полезно на базе свойств степени первую дробь заменить степенью , что в дальнейшем позволяет представить выражение в виде квадрата разности. При преобразовании логарифмического выражения можно логарифм дроби заменить разностью логарифмов, что в дальнейшем позволяет привести подобные слагаемые и тем самым упростить выражение: . Преобразование тригонометрических выражений может потребовать заменить отношение синуса к косинусу одного и того же угла тангенсом. Также возможно придется от половинного аргумента по соответствующим формулам переходить к целому аргументу, тем самым избавляясь от аргумента-дроби, например, .

Применение свойств корней, степеней и т.п. к преобразованию выражений более подробно освещено в статьях:

  • Преобразование иррациональных выражений с использованием свойств корней ,
  • Преобразование выражений с использованием свойств степеней ,
  • Преобразование логарифмических выражений с использованием свойств логарифмов ,
  • Преобразование тригонометрических выражений .

Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе - это целая часть дроби. Цифра после запятой - числитель будущей дроби. Если после запятой однозначное число - в знаменателе будет 10, если двухзначное - 100, трехзначное - 1000 и т.д. Некоторые полученные дроби можно сократить . В наших примерах

Преобразование дроби в десятичное число

Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или

Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 ... В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.

Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,

Некоторые дроби невозможно преобразовать в десятичные числа!
Например,

Преобразование смешанной дроби в неправильную

Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть

При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей

Преобразование неправильной дроби в смешанную (выделение целой части)

Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз "3" вмещается в "23". Или 23 делим на 3 на калькуляторе, целое число до запятой - искомое. Это "7". Далее определяем числитель уже будущей дроби: полученную "7" умножаем на знаменатель "3" и из числителя "23" вычитаем полученное. Как бы находим то лишнее, что остается от числителя "23", если изъять максимальное количество "3". Знаменатель оставляем без изменения. Все сделано, записываем результат

Дроби

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее - знаменателем. Если вы постоянно путаете эти названия (бывает...), скажите себе с выражением фразу: "Ззззз апомни! Ззззз наменатель - вниззззз у!" Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления - две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби "32/8" гораздо приятнее написать число "4". Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь "4/1". Которая тоже просто "4". А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания "В".

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните... На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву "а" сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на "а". Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть "а" в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на "а" уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых - не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела "В" получилось 1/2? Что в ответ писать будем? Там десятичные требуются...

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000... Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333... Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе "В" в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция - перевод неправильной дроби в смешанное число - в старших классах редко требуется. Ну если уж... И если Вы - не в старших классах - можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм... злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего...) Если уж кто совсем крепко забыл, или ещё не освоил... Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения

  1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

    • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

    Приведение подобных членов

    1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

      • Например, упростите выражение 1 + 2x - 3 + 4x .
    2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

      • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
    3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

      • 2x + 4x =
      • 1 - 3 = -2
    4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

      • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
    5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

      • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
        • 5(3x-1) + x((2x)/(2)) + 8 - 3x
        • 15x - 5 + x(x) + 8 - 3x
        • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
        • x 2 + (15x - 3x) + (8 - 5)
        • x 2 + 12x + 3

    Вынесение множителя за скобки

    1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

      • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
    2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

      • В нашем примере разделите каждый член выражения на 3.
        • 9x 2 /3 = 3x 2
        • 27x/3 = 9x
        • -3/3 = -1
        • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
    3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

      • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
    4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

      • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
        • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
        • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
        • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

    Дополнительные методы упрощения

    1. Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение.

      • Например, рассмотрим дробное выражение (5x 2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x 2 не делится на 10 нацело (так как 5 меньше 10).
        • Поэтому запишите упрощенное выражение так: ((5x 2)/10) + x + 2 = (1/2)x 2 + x + 2.
    2. Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня.

      • Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
        • √(90)
        • √(9×10)
        • √(9)×√(10)
        • 3×√(10)
        • 3√(10)
    3. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

      • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
        • 6x 3 × 8x 4 + (x 17 /x 15)
        • (6 × 8)x 3 + 4 + (x 17 - 15)
        • 48x 7 + x 2
      • Далее приведено объяснение правила умножения и деления членов со степенью.
        • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
        • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .