Работа и мощность кпд техническая механика. Техническая механика

Как известно, на данный момент еще не созданы такие механизмы, которые бы до конца превращали один вид энергии в другой. В процессе работы любой рукотворный прибор расходует часть энергии на сопротивление сил либо же впустую ее рассеивает в окружающую среду. То же самое происходит и в замкнутой электроцепи. Когда заряды протекают по проводникам, осуществляется сопротивление полной и полезной нагрузки работы электричества. Чтобы сопоставить их соотношения, потребуется произвести коэффициент полезного действия (КПД).

Для чего нужен расчет КПД

Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному.

Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию.

Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1.

КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.

Нахождения тока в полной цепи

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу.

Дадим значения каждому элементу цепи:

  • сопротивление – r;
  • сила тока – Е;

Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt.

В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца:

Q = I2 + I2 rt = I2 (R + r) t.

Затем приравниваются правые части формулы:

EIt = I2 (R + r) t.

Осуществив сокращение, получается расчет:

Произведя у формулы перестановку, в итоге получается:

Данное итоговое значение будет являться электрической силой в данном устройстве.

Произведя таким образом предварительный расчет, теперь можно определить КПД.

Расчет КПД электрической цепи

Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2.

Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии. В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д.

Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.

Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу:

  • А полезная. = qU = IUt =I2Rt;
  • А полная = qE = IEt = I2(R+r)t.

В соответствии этих значений, найдем мощности источника тока:

  • Р2 = А полезная /t = IU = I2 R;
  • P1 = А полная /t = IE = I2 (R + r).

Произведя все действия, получаем формулу КПД:

n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r).

У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.

Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут:

  • P2 = I2 R = (E / R + r)2 R;
  • dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0;
  • E2 ((R + r) -2R) = 0.

В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %.

Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.

Видео

Работа А – скалярная физическая величина, измеряемая произведением модуля силы, действующей на тело, на модуль его перемещения под действием этой силы и на косинус угла между векторами силы и перемещения:

Модуль перемещения тела, под действием силы ,

Работа, которую совершила сила

На графиках в осях F-S (рис.1) работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Если на тело действует несколько сил, то в формуле работы F – это не равнодействующая ma всех этих сил, а именно та сила, которая и совершает работу. Если локомотив тянет вагоны, то этой силой является сила тяги локомотива, если на канате поднимают тело, то этой силой является сила натяжения каната. Это может быть и сила тяжести и сила трения, если в условии задачи речь идет о работе именно этих сил.

Пример 1. Тело мас­сой 2 кг под дей­стви­ем силы F пе­ре­ме­ща­ет­ся вверх по на­клон­ной плос­ко­сти на рас­сто­я­ние Рас­сто­я­ние тела от по­верх­но­сти Земли при этом уве­ли­чи­ва­ет­ся на .

Век­тор силы F на­прав­лен па­рал­лель­но на­клон­ной плос­ко­сти, мо­дуль силы F равен 30 Н. Какую ра­бо­ту при этом пе­ре­ме­ще­нии в си­сте­ме от­сче­та, свя­зан­ной с на­клон­ной плос­ко­стью, со­вер­ши­ла сила F ? Уско­ре­ние сво­бод­но­го па­де­ния при­ми­те рав­ным , ко­эф­фи­ци­ент тре­ния

Решение: Ра­бо­та силы опре­де­ля­ет­ся как ска­ляр­ное про­из­ве­де­ние век­то­ра силы и век­то­ра пе­ре­ме­ще­ния тела. Сле­до­ва­тель­но, сила F при подъ­еме тела вверх по на­клон­ной плос­ко­сти со­вер­ши­ла ра­бо­ту.

Если в условии задачи идет речь о коэффициенте полезного действия (КПД) какого либо механизма, надо подумать какая работа, совершаемая им полезная, а какая затраченная.

Коэффициентом полезного действия механизма (КПД) η называют отношение полезной работы, совершенной механизмом, ко всей затраченной при этом работе.

Полезная работа – это та, которую нужно сделать, а затраченная – та, что приходится делать на самом деле.



Пример 2. Пусть тело массой m требуется поднять на высоту h , перемещая его при этом по наклонной плоскости длиной l под действием силы тяги F тяги . В этом случае полезная работа равна произведению силы тяжести на высоту подъема:

А затраченная работа будет равна произведению силы тяги на длину наклонной плоскости:

Значит, КПД наклонной плоскости равен:

Замечание : КПД любого механизма не может быть больше 100 % - зоолотое правило механики.

Мощность N (Вт.) – это количественная мера быстроты совершения работы. Мощность равна отношению работы ко времени за которое она совершена:

Мощность – скалярная величина.

Если тело движется равномерно, то получаем:

Где – скорость равномерного движения.



Работа постоянной силы на прямолинейном участке

Рассмотрим материальную точку М , к которой приложена сила F . Пусть точка переместилась из положения М 0 в положение М 1 , пройдя путь s (рис. 1) .

Чтобы установить количественную меру воздействия силы F на пути s , разложим эту силу на составляющие N и R , направленные соответственно перпендикулярно направлению перемещения и вдоль него. Так как составляющая N (перпендикулярная перемещению) не может двигать точку или сопротивляться ее перемещению в направлении s , то действие силы F на пути s можно определить произведением Rs .
Эта величина называется работой и обозначается W .
Следовательно,

W = Rs = Fs cos α ,

т. е. работа силы равна произведению ее модуля на путь и на косинус угла между направлением вектора силы и направлением перемещения материальной точки.

Таким образом, работа является мерой действия силы, приложенной к материальной точке при некотором ее перемещении .
Работа является скалярной величиной.

Рассматривая работу силы, можно выделить три частных случая: сила направлена вдоль перемещения (α = 0˚) , сила направлена в противоположном перемещению направлении (α = 180˚) , и сила перпендикулярна перемещению (α = 90˚) .
Исходя из величины косинуса угла α , можно сделать вывод, что в первом случае работа будет положительной, во втором – отрицательной, а в третьем случае (cos 90˚ = 0) работа силы равна нулю.
Так, например, при движении тела вниз работа силы тяжести будет положительной (вектор силы совпадает с перемещением), при подъеме тела вверх работа силы тяжести будет отрицательной, а при горизонтальном перемещении тела относительно поверхности Земли работа силы тяжести будет равна нулю.

Силы, совершающие положительную работу, называются движущимися силами , силы, а совершающие отрицательную работу – силами сопротивления .

Единицей работы принят джоуль (Дж) :
1 Дж = сила×длина = ньютон×метр = 1 Нм .

Джоуль – это работа силы в один ньютон на пути в один метр.

Работа силы на криволинейном участке пути

На бесконечно малом участке ds криволинейный путь можно условно считать прямолинейным, а силу – постоянной.
Тогда элементарная работа dW силы на пути ds равна

dW = F ds cos (F ,v) .

Работа на конечном перемещении равна сумме элементарных работ:

W = ∫ F cos (F ,v) ds .


На рисунке 2а изображен график зависимости между пройденным расстоянием и F cos (F ,v) . Площадь заштрихованной полоски, которую при бесконечно малом перемещении ds можно принять за прямоугольник, равна элементарной работе на пути ds :

dW = F cos (F ,v) ds ,

F на конечном пути s графически выражается площадью фигуры ОАВС , ограниченной осью абсцисс, двумя ординатами и кривой АВ , которая называется кривой сил .

Если работа совпадает с направлением перемещения и возрастает от нуля пропорционально пути, то работа графически выражается площадью треугольника ОАВ (рис. 2 б) , которая, как известно, может быть определена половиной произведения основания на высоту, т. е. половиной произведения силы на путь:

W = Fs/2 .

Теорема о работе равнодействующей

Теорема: работа равнодействующей системы сил на каком-то участке пути равна алгебраической сумме работ составляющих сил на том же участке пути .

Пусть к материальной точке М приложена система сил (F 1 , F 2 , F 3 ,...F n) , равнодействующая которых равна F Σ (рис. 3) .

Система сил, приложенных к материальной точке, есть система сходящихся сил, следовательно,

F Σ = F 1 + F 2 + F 3 + .... + F n .

Спроецируем это векторное равенство на касательную к траектории, по которой движется материальная точка, тогда:

F Σ cos γ = F 1 cos α 1 + F 2 cos α 2 + F 3 cos α 3 + .... + F n cos α n .

Умножим обе части равенства на бесконечно малое перемещение ds и проинтегрируем полученное равенство в пределах какого-то конечного перемещения s :

∫ F Σ cos γ ds = ∫ F 1 cos α 1 ds + ∫ F 2 cos α 2 ds + ∫ F 3 cos α 3 ds + .... + ∫ F n cos α n ds ,

что соответствует равенству:

W Σ = W 1 + W 2 + W 3 + ... + W n

или сокращенно:

W Σ = ΣW Fi

Теорема доказана.

Теорема о работе силы тяжести

Теорема: работа силы тяжести не зависит от вида траектории и равна произведению модуля силы на вертикальное перемещение точки ее приложения .

Пусть материальная точка М движется под действием силы тяжести G и за какой-то промежуток времени перемещается из положения М 1 в положение М 2 , пройдя путь s (рис. 4) .
На траектории точки М выделим бесконечно малый участок ds , который можно считать прямолинейным, и из его концов проведем прямые, параллельные осям координат, одна из которых вертикальна, а другая горизонтальна.
Из заштрихованного треугольника получим, что

dy = ds cos α .

Элементарная работа силы G на пути ds равна:

dW = F ds cos α .

Полная работа силы тяжести G на пути s равна

W = ∫ Gds cos α = ∫ Gdy = G ∫ dy = Gh .

Итак, работа силы тяжести равна произведению силы на вертикальное перемещение точки ее приложения:

W = Gh ;

Теорема доказана.

Пример решения задачи по определению работы силы тяжести

Задача: Однородный прямоугольный массив АВСD массой m = 4080 кг имеет размеры, указанные на рис. 5 .
Определить работу, которую необходимо выполнить для опрокидывания массива вокруг ребра D .

Решение.
Очевидно, что искомая работа будет равна работе сопротивления, совершаемой силой тяжести массива, при этом вертикальное перемещение центра тяжести массива при опрокидывании через ребро D является путем, который определяет величину работы силы тяжести.

Для начала определим силу тяжести массива: G = mg = 4080×9,81 = 40 000 Н = 40 кН .

Для определения вертикального перемещения h центра тяжести прямоугольного однородного массива (он находится в точке пересечения диагоналей прямоугольника), используем теорему Пифагора, исходя из которой:

КО 1 = ОD – КD = √(ОК 2 + КD 2) – КD = √(3 2 +4 2) - 4 = 1 м .

На основании теоремы о работе силы тяжести определим искомую работу, необходимую для опрокидывания массива:

W = G×КО 1 = 40 000×1 = 40 000 Дж = 40 кДж.

Задача решена.



Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол dφ сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 Rφ ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании теоремы Вариньона момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность

Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятие мощности , которую обычно обозначают буквой P .

Мощностью называется работа, совершаемая в единицу времени.

Если работа совершается равномерно, то мощность определяют по формуле

P = W/t .

Если направление силы и направление перемещения совпадают, что эту формулу можно записать в иной форме:

P = W/t = Fs/t или P = Fv .

Мощность силы равна произведению модуля силы на скорость точки ее приложения .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Единицей измерения мощности является ватт (Вт):

Ватт = работа/время = джоуль в секунду.

Понятие об энергии и КПД

Способность тела при переходе из одного состояния в другое совершать работу называется энергией . Энергия есть общая мера различных форм движения материи.

В механике для передачи и преобразования энергии применяются различные механизмы и машины, назначение которых – выполнение заданных человеком полезных функций. При этом энергия, передаваемая механизмами, называется механической энергией , которая принципиально отличается от тепловой, электрической, электромагнитной, ядерной и других известных видов энергии. Виды механической энергии тела мы рассмотрим на следующей странице , а здесь лишь определимся с основными понятиями и определениями.

При передаче или преобразовании энергии, а также при совершении работы, имеют место потери энергии, поскольку механизмы и машины, служащие для передачи или преобразования энергии преодолевают различные силы сопротивления (трения, сопротивления окружающей среды и т. п.). По этой причине часть энергии при передаче безвозвратно теряется и не может быть использована для выполнения полезной работы.

Коэффициент полезного действия

Часть энергии, потерянная при ее передаче на преодоление сил сопротивления, учитывается при помощи коэффициента полезного действия механизма (машины), передающего эту энергию.
Коэффициент полезного действия (КПД) обозначается буквой η и определяется, как отношение полезной работы (или мощности) к затраченной:

η = W 2 /W 1 = P 2 /P 1 .

Если коэффициент полезного действия учитывает только механические потери, то его называют механическим КПД .

Очевидно, что КПД – всегда правильная дробь (иногда его выражают в процентах) и его значение не может быть больше единицы. Чем ближе значение КПД к единице (100 %) , тем экономичнее работает машина.

Если энергия или мощность передаются рядом последовательных механизмов, то суммарный КПД может быть определен, как произведение КПД всех механизмов:

η = η 1 η 2 η 3 ....η n ,

где: η 1 , η 2 , η 3 , .... η n – КПД каждого механизма в отдельности.



Теоретическая механика:
Работа и мощность. Коэффициент полезного действия

Смотрите также решения задач по теме «Работа и мощность» в онлайн решебнике Мещерского .

В этой главе рассмотрены задачи на определение работы, совершаемой постоянной силой, и развиваемой мощности при поступательном и вращательном движении тел (Е. М. Никитин , § 81-87).

§ 44. Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле
(1) A = Ps cos α,
где α - угол между направлением действия силы и направлением перемещения.

При α = 90°
cos α = cos 90° = 0 и A = 0,
т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается:
(1") A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин , § 83):
(2) A R = ∑ A i ,
т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, A R =0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид
(2") ∑ A i = 0,
т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз - сила тяжести - движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1") вычислить ее работу.

2. Не определяя непосредственно силы P, определить A p - работу требуемой силы при помощи формул (2) и (2"), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле
(3) N = A/t или N = (Ps cos α)/t.

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то
(3") N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = v ср - средняя скорость и тогда формула (2") выпажает среднюю мощность
N ср = Pv ср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ
(4) η = A пол /A,
где A пол - полезная работа; A - вся произведенная работа, или как отношение соответствующих мощностей:
(4") η = N пол /N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.):
1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами
N (кВт) = 1,36 N (л. с.)
N (л. с.) = 0,736 N (кВт).

§ 45. Работа и мощность при вращательном движении

При вращательном движении тела движущим фактором является пара сил. Рассмотрим диск 1, могущий свободно вращаться вокруг оси 2 (рис. 259). Если к точке A на ободе диска приложить силу P (направим ее вдоль касательной к боковой поверхности диска; направленная таким образом сила называется окружным усилием), то диск станет вращаться. Вращение диска обусловлено появлением пары сил. Сила P, действуя на диск, прижимает его в точке O к оси (сила P давл на рис. 259, приложенная к оси 2) и возникает реакция оси (сила P ркц на рис. 259), приложенная так же, как и сила P, к диску. Так как все эти силы численно равны между собой и линии их действия параллельны, то силы P и P ркц образуют пару сил, которая и приводит диск во вращение.

Как известно, вращающее действие пары сил измеряется ее моментом, но момент пары сил равен произведению модуля любой из сил на плечо пары, поэтому вращающий момент
M вр = M пары = M O P = P*OA.

Единицей момента пары сил, а также момента силы относительно точки или относительно оси является 1 Н*м (ньютон-метр) в СИ и 1 кГ*м (килограмм-сила-метр) в системе МКГСС. Но при этом не следует смешивать эти единицы с единицами работы (1 Н*м=1 Дж или 1 кГ*м), имеющими ту же размерность.

Работу при вращательном движении производят пары сил.

Величина работы пары сил измеряется произведением момента пары (вращающего момента) на угол поворота, выраженный в радианах:
(1) A = M вр φ.

Таким образом, чтобы получить единицу работы, например, 1 Дж=1 Н*м, необходимо единицу момента 1 Н*м умножить на 1 рад. Но так как радиан - безразмерная величина
[радиан] = [длина дуги/радиус] = [м/м] = ,
то
[Дж] = [Н*м] * = [Н*м].

Мощность при вращательном движении
(2) N = A/t = M вр φ/t.

Если тело вращается с постоянной угловой скоростью, то, заменив в формуле (2) φ/t = ω, получим
(2") N = M вр ω.

Если мощность того или иного двигателя - величина постоянная, то
(3) M вр = N/ω,
т. е. вращающий момент двигателя обратно пропорционален угловой скорости его вала .

Это означает, что использование мощности двигателя при различных угловых скоростях позволяет изменять создаваемый им вращающий момент. Используя мощность двигателя при малой угловой скорости, можно получить большой вращающий момент.

Так как угловая скорость вращающейся части двигателя (ротора электродвигателя, коленчатого вала двигателя внутреннего сгорания и т. п.) при его работе практически не изменяется, то между двигателем и рабочей машиной устанавливается какой-либо механизм (редуктор, коробка скоростей и т. п.), могущий передавать мощность двигателя при различных угловых скоростях.

Поэтому формула (3), выражающая зависимость вращающего момента от передаваемой мощности и угловой скорости, имеет очень важное значение.

Используя при решении задач эту зависимость, необходимо иметь в виду следующее. Формула (3) применяется для решения задач, если мощность N задана в ваттах, а угловая скорость ω - в рад/сек (размерность ), тогда вращающий момент M вр получится в Н*м.

Иметь представление о мощности при прямолинейном и кри­волинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

Знать зависимости для определения мощности при поступа­тельном и вращательном движениях, КПД.

Мощность

Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

Мощность - работа, выполненная в единицу времени:

Единицы измерения мощности: ватты, киловатты,

Мощность при поступательном движении (рис. 16.1)

Учитывая, что S/t = v cp , полу­чим

где F - модуль силы, действующей на тело; v ср - средняя скорость движения тела.

Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

Мощность при вращении (рис. 16.2)

Тело движется по дуге радиуса r из точки М 1 в точку M 2

Работа силы:

где М вр - вращающий момент.

Учитывая, что

Получим

где ω cp - средняя угловая скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы со­вершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощ­ности ко всей затраченной мощности называется коэффициентом по­лезного действия (КПД):

Полезная работа (мощность) расходуется на движение с задан­ной скоростью и определяется по формулам:

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Примеры решения задач

Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.

Решение

1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.

Полезная мощность определяется по формуле

Р = Fv cos α.

В данном случае α = 0; груз движется поступательно.

2. Скорость подъема груза

3. Необходимое усилие равно весу груза (равномерный подъем).

6. Полезная мощность Р = 3000 4 = 12 000 Вт.

7. Полная мощность. затрачиваемая мотором,

Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления во­ды движению судна. КПД машины 0,4.

Решение

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном дви­жении движущая сила равна силе сопротивления воды:

Fдв = Fcопр.

3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с

4. Сила сопротивления воды

Сила сопротивления воды движению судна

Fcопр. = 48 кН

Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощ­ность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.

Решение

1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:

Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Ба­рабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка ра­ботала в течение t = 2 мин. Определить коэффициент по­лезного действия наклонной плоскости.

Решение

Как известно,

где А п.с. - полезная работа; А дв - работа движущих сил.

В рассматриваемом примере полезная работа - работа силы тяжести

Вычислим работу движущих сил, т. е. работу вра­щающего момента на выходном валу лебедки:

Угол поворота барабана лебедки определяется по уравнению равномерного вращения:

Подставив в выражение работы движущих сил число­вые значения вращающего момента М и угла поворота φ , получим:

Коэффициент полезного действия наклонной плоскости составит

Контрольные вопросы и задания

1. Запишите формулы для расчета работы при поступательном и вращательном движениях.

2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.

3. Колодочным тормозом останавливают барабан после отклю­чения двигателя (рис. 16.6). Определите работу торможения за 3 обо­рота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.

4. Натяжение ветвей ременной передачи S 1 = 700 Н, S 2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.

5. Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях.

6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.

7. Определите общий КПД механизма, если при мощности дви­гателя 12,5 кВт и общей силе сопротивления движению 2 кН ско­рость движения 5 м/с.

8. Ответьте на вопросы тестового задания.


Тема 1.14. Динамика. Работа и мощность