Сила всемирного тяготения сила тяжести определение. Что такое гравитация для чайников: определение и теория простыми словами

  • 5. Движение точки по окружности. Угловые перемещение, скорость, ускорение. Связь между линейными и угловыми характеристиками.
  • 6. Динамика материальной точки. Сила и движение. Инерциальные системы отсчета и первый закон Ньютона.
  • 7. Фундаментальные взаимодействия. Силы различной природы (упругие, гравитационные, трения), второй закон Ньютона. Третий закон Ньютона.
  • 8. Закон всемирного тяготения. Сила тяжести и вес тела.
  • 9. Силы сухого и вязкого трения. Движение по наклонной плоскости.
  • 10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.
  • 11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.
  • 12. Работа, совершаемая постоянной и переменной силой. Мощность.
  • 13. Кинетическая энергия и связь энергии и работы.
  • 14. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
  • 15. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
  • 16. Работа по перемещению тела в поле тяготения.
  • 17. Механическая энергия и её сохранение.
  • 18. Соударение тел. Абсолютно упругий и неупругий удары.
  • 19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
  • 20. Вычисление момента инерции. Примеры. Теорема Штейнера.
  • 21. Момент импульса и его сохранение. Гироскопические явления.
  • 22. Кинетическая энергия вращающегося твердого тела.
  • 24. Математический маятник.
  • 25. Физический маятник. Приведенная длина. Свойство оборотности.
  • 26. Энергия колебательного движения.
  • 27. Векторная диаграмма. Сложение параллельных колебаний одинаковой частоты.
  • (2) (3)
  • 28. Биения
  • 29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
  • 30. Статистическая физика (мкт) и термодинамика. Состояние термодинамической системы. Равновесное, неравновесное состояния. Термодинамические параметры. Процесс. Основные положения мкт.
  • 31. Температура в термодинамике. Термометры. Температурные шкалы. Идеальный газ. Уравнение состояния идеального газа.
  • 32. Давление газа на стенку сосуда. Закон идеального газа в мкт.
  • 33. Температура в мкт(31 вопрос). Средняя энергия молекул. Среднеквадратичная скорость молекул.
  • 34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
  • 35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
  • 37.Первое начало тд. Применение первого начала к различным изопроцессам.
  • 38. Теплоемкость идеального газа. Уравнение Майера.
  • 39. Уравнение адиабаты идеального газа.
  • 40. Политропические процессы.
  • 41. Второе начало тд. Тепловые двигатели и холодильники. Формулировка Клаузиуса.
  • 42. Двигатель Карно. Кпд двигателя Карно. Теорема Карно.
  • 43. Энтропия.
  • 44. Энтропия и второе начало тд.
  • 45. Энтропия как количественная мера беспорядка в системе. Статистическая интерпретация энтропии. Микро и микросостояния системы.
  • 46. Распределение молекул газа по скоростям. Распределение Максвелла.
  • 47. Барометрическая формула. Распределение Больцмана.
  • 48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.
  • 49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.
  • 8. Закон всемирного тяготения. Сила тяжести и вес тела.

    Закон всемирного тяготения – две материальные точки притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

    , где G гравитационная постоянная = 6,67*Н

    На полюсе – mg== ,

    На экваторе – mg= –m

    Если тело над землей – mg== ,

    Сила тяжести – это сила с которой планета действует на тело. Сила тяжести равна произведению массы тела и ускорения свободного падения.

    Вес – это сила воздействия тела на опору, препятствующую падению, возникающую в поле сил тяжести.

    9. Силы сухого и вязкого трения. Движение по наклонной плоскости.

    Силы трения возникают, когда есть контакт м/у телами.

    Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Всегда направлены по касательной к соприкасающимся поверхностям.

    Сила трения покоя равна по величине внешней силе и направлена в противоположную сторону.

    Fтр покоя = -F

    Сила трения скольжения всегда направлена в сторону, противоположную направления движения, зависит от относительной скорости тел.

    Сила вязкого трения – при движении твердого тела в жидкости или газе.

    При вязком трении нет трения покоя.

    Зависит от скорости тела.

    При малых скоростях

    При больших скоростях

    Движение по наклонной плоскости:

    oy: 0=N-mgcosα, µ=tgα

    10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.

    При деформации тела возникает сила, которая стремится восстановить свои прежние размеры и форму тела – сила упругости.

    1.Растяжение x>0,Fy<0

    2.Сжатие x<0,Fy>0

    При малых деформациях (|x|<

    гдеk– жесткость тела (Н/м) зависит от формы и размера тела, а также от материала.

    ε=– относительная деформация.

    σ = =S– площадь поперечного сечения деформированного тела – напряжение.

    ε=E– модуль Юнга зависит от свойств материала.

    11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.

    Импульсом , или количеством движения материальной точки называется векторная величина, равная произведению массы материальной точки m на скорость ее движения v.

    – для материальной точки;

    – для системы материальных точек (через импульсы этих точек);

    – для системы материальных точек (через движение центра масс).

    Центром масс системы называется точка С, радиус-вектор r C которой равен

    Уравнение движения центра масс:

    Смысл уравнения таков: произведение массы системы на ускорение центра масс равно геометрической сумме внешних сил, действующих на тела системы. Как видим, закон движения центра масс напоминает второй закон Ньютона. Если внешние силы на систему не действуют или сумма внешних сил равна нулю, то ускорение центра масс равно нулю, а скорость его неизменна во времени по модулю и наплавлению, т.е. в этом случае центр масс движется равномерно и прямолинейно.

    В частности, это означает, что если система замкнута и центр масс ее неподвижен, то внутренние силы системы не в состоянии привести центр масс в движение. На этом принципе основано движение ракет: чтобы ракету привести в движение, необходимо выбросить выхлопные газы и пыль, образующиеся при сгорании топлива, в обратном направлении.

    Закон Сохранения Импульса

    Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокупность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механической системы называютсявнутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называютсявнешними. Механическая система тел, на которую не действуют

    внешние силы, называется замкнутой (илиизолированной). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

    Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равныт 1 , m 2 , . ..,т n иv 1 ,v 2 , .. .,v n . ПустьF " 1 ,F " 2 , ...,F " n - равнодействующие внутренних сил, действующих на каждое из этих тел, af 1 ,f 2 , ...,F n - равнодействующие внешних сил. Запишем второй закон Ньютона для каждого изn тел механической системы:

    d/dt(m 1 v 1)=F " 1 +F 1 ,

    d/dt(m 2 v 2)=F" 2 +F 2 ,

    d/dt(m n v n)= F " n +F n .

    Складывая почленно эти уравнения, получим

    d/dt (m 1 v 1 +m 2 v 2 +... +m n v n) =F " 1 +F " 2 +...+F " n +F 1 +F 2 +...+F n .

    Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

    d/dt(m 1 v 1 +m 2 v 2 + ... + m n v n)= F 1 + F 2 +...+ F n , или

    dp/dt=F 1 + F 2 +...+ F n , (9.1)

    где

    импульс системы. Таким образом, производная по времени от им пульса механической системы равна гео метрической сумме внешних сил, действующих на систему.

    В случае отсутствия внешних сил (рассматриваем замкнутую систему)

    Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

    Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон со хранения импульса - фундаментальный закон природы.

    "

    По какому закону вы собираетесь меня повесить?
    - А мы вешаем всех по одному закону - закону Всемирного Тяготения.

    Закон всемирного тяготения

    Явление гравитации - это закон всемирного тяготения. Два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

    Математически мы можем выразить этот великий закон формулой


    Тяготение действует на огромных расстояниях во Вселенной . Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Только представьте, известно, что Земля притягивает вас, сидящих на стуле. Но задумывались ли о том, что компьютер и мышка притягивают друг друга? Или карандаш и ручка, лежащие на столе? В этом случае в формулу подставляем массу ручки, массу карандаша, делим на квадрат расстояния между ними, с учетом гравитационной постоянной, получаем силу их взаимного притяжения. Но, она выйдет на столько маленькой (из-за маленьких масс ручки и карандаша), что мы не ощущаем ее наличие. Другое дело, когда речь идет о Земле и стуле, или Солнце и Земле. Массы значительные, а значит действие силы мы уже можем оценить.

    Вспомним об ускорении свободного падения . Это и есть действие закона притяжения. Под действием силы тело изменяет скорость тем медленнее, чем больше масса. В результате, все тела падают на Землю с одинаковым ускорением.

    Чем вызвана эта невидимая уникальная сила? На сегодняшний день известно и доказано существование гравитационного поля. Узнать больше о природе гравитационного поля можно в дополнительном материале темы.

    Задумайтесь, что такое тяготение? Откуда оно? Что оно собой представляет? Ведь не может быть так, что планета смотрит на Солнце, видит, насколько оно удалено, подсчитывает обратный квадрат расстояния в соответствии с этим законом?

    Направление силы притяжения

    Есть два тела, пусть тело А и В. Тело А притягивает тело В. Сила, с которой тело А воздействует, начинается на теле B и направлена в сторону тела А. То есть как бы "берет" тело B и тянет к себе. Тело В "проделывает" то же самое с телом А.



    Каждое тело притягивается Землей. Земля "берет" тело и тянет к своему центру. Поэтому эта сила всегда будет направлена вертикально вниз, и приложена она с центра тяжести тела, называют ее силой тяжести.

    Главное запомнить

    Некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Заблаговременное вычисление положения планет.

    Можем ли мы сами поставить такой опыт, а не гадать, притягиваются ли планеты, предметы?

    Такой прямой опыт сделал Кавендиш (Генри Кавендиш (1731-1810) - английский физик и химик) при помощи прибора, который показан на рисунке. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара. Притяжение шаров слегка перекрутит нить - слегка, потому что силы притяжения между обычными предметами очень слабы. При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G .

    Уникальное открытие постоянной тяготения G, которая характеризует гравитационное поле в пространстве, позволила определить массу Земли, Солнца и других небесных тел. Поэтому Кавендиш назвал свой опыт "взвешиванием Земли".

    Интересно, что у различных законов физики есть некоторые общие черты. Обратимся к законам электричества (сила Кулона) . Электрические силы также обратно пропорциональны квадрату расстояния, но уже между зарядами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

    Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

    Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

    Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

    Эйнштейну пришлось видоизменить законы тяготения в соответствии с принципами относительности. Первый из этих принципов гласит, что расстояние х нельзя преодолеть мгновенно, тогда как по теории Ньютона силы действуют мгновенно. Эйнштейну пришлось изменить законы Ньютона. Эти изменения, уточнения очень малы. Одно из них состоит вот в чем: поскольку свет имеет энергию, энергия эквивалентна массе, а все массы притягиваются, - свет тоже притягивается и, значит, проходя мимо Солнца, должен отклоняться. Так оно и происходит на самом деле. Сила тяготения тоже слегка изменена в теории Эйнштейна. Но этого очень незначительного изменения в законе тяготения как раз достаточно, чтобы объяснить некоторые кажущиеся неправильности в движении Меркурия.

    Физические явления в микромире подчиняются иным законам, нежели явления в мире больших масштабов. Встает вопрос: как проявляется тяготение в мире малых масштабов? На него ответит квантовая теория гравитации. Но квантовой теории гравитации еще нет. Люди пока не очень преуспели в создании теории тяготения, полностью согласованной с квантовомеханическими принципами и с принципом неопределенности.

    Гравитационные силы описываются наиболее простыми количественными закономерностями. Но несмотря на эту простоту проявления сил тяготения могут быть весьма сложны и многообразны.

    Гравитационные взаимодействия описываются законом всемирного тяготения, открытым Ньютоном:

    Материальные точки притягиваются с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

    Гравитационная постоянная. Коэффициент пропорциональности называется гравитациоутой постоянной. Эта величина характеризует интенсивность гравитационного взаимодействия и является одной из основных физических констант. Ее числовое значение зависит от выбора системы единиц и в единицах СИ равно Из формулы видно, что гравитационная постоянная численно равна силе притяжения двух точеных масс по 1 кг, расположенных на расстоянии друг от друга. Значение гравитационной постоянной столь мало, что мы не замечаем притяжения между окружающими нас телами. Только из-за огромной массы Земли притяжение окружающих тел к Земле решающим образом влияет на все, что происходит вокруг нас.

    Рис. 91. Гравитационное взаимодействие

    Формула (1) дает только модуль силы взаимного притяжения точечных тел. На самом деле речь в ней идет о двух силах, поскольку сила тяготения действует на каждое из взаимодействующих тел. Эти силы равны по модулю и противоположны по направлению в соответствии с третьим законом Ньютона. Они направлены вдоль прямой, соединяющей материальные точки. Такие силы называются центральными. Векторное выражение, например для силы с которой тело массы действует на тело массы (рис. 91), имеет вид

    Хотя радиусы-векторы материальных точек зависят от выбора начала координат, их разность, а значит, и сила зависят только от взаимного расположения притягивающихся тел.

    Законы Кеплера. К известной легенде о падающем яблоке, которое якобы навело Ньютона на мысль о тяготении, вряд ли следует относиться серьезно. При установлении закона всемирного тяготения Ньютон исходил из открытых Иоганном Кеплером на основании астрономических наблюдений Тихо Браге законов движения планет Солнечной системы. Три закона Кеплера гласят:

    1. Траектории, по которым движутся планеты, представляют собой эллипсы, в одном из фокусов которых находится Солнце.

    2. Радиус-вектор планеты, проведенный из Солнца, ометает за равные промежутки времени одинаковые площади.

    3. Для всех планет отношение квадрата периода обращения к кубу большой полуоси эллиптической орбиты имеет одно и то же значение.

    Орбиты большинства планет мало отличаются от круговых. Для простоты будем считать их точно круговыми. Это не противоречит первому закону Кеплера, так как окружность представляет собой частный случай эллипса, у которого оба фокуса совпадают. Согласно второму закону Кеплера движение планеты по круговой траектории происходит равномерно, т. е. с постоянной по модулю скоростью. При этом третий закон Кеплера говорит о том, что отношение квадрата периода обращения Т к кубу радиуса круговой орбиты одинаково для всех планет:

    Движущаяся по окружности с постоянной скоростью планета обладает центростремительным ускорением, равным Воспользуемся этим, чтобы определить силу, которая сообщает планете такое ускорение при выполнении условия (3). Согласно второму закону Ньютона ускорение планеты равно отношению действующей на нее силы к массе планеты:

    Отсюда, учитывая третий закон Кеплера (3), легко установить, как сила зависит от массы планеты и от радиуса ее круговой орбиты. Умножая обе части (4) на видим, что в левой части согласно (3) стоит одинаковая для всех планет величина. Значит, и правая часть, равная одинакова для всех планет. Поэтому т. е. сила тяготения обратно пропорциональна квадрату расстояния от Солнца и прямо пропорциональна массе планеты. Но Солнце и планета выступают в их гравитационном

    взаимодействии как равноправные партнеры. Они отличаются друг от друга только массами. И поскольку сила притяжения пропорциональна массе планеты то она должна быть пропорциональна и массе Солнца М:

    Вводя в эту формулу коэффициент пропорциональности G, который уже не должен зависеть ни от масс взаимодействующих тел, ни от расстояния между ними, приходим к закону всемирного тяготения (1).

    Гравитационное поле. Гравитационное взаимодействие тел можно описывать, используя понятие гравитационного поля. Ньютоновская формулировка закона всемирного тяготения соответствует представлению о непосредственном действии тел друг на друга на расстоянии, так называемом дальнодействии, без какого-либо участия промежуточной среды. В современной физике считается, что передача любых взаимодействий между телами осуществляется посредством создаваемых этими телами полей. Одно из тел непосредственно не действует на другое, оно наделяет окружающее его пространство определенными свойствами - создает гравитационное поле, особую материальную среду, которая и воздействует на другое тело.

    Представление о физическом гравитационном поле выполняет как эстетические, так и вполне практические функции. Силы тяготения действуют на расстоянии, они тянут там, где, мы едва ли можем увидеть, что именно тянет. Силовое поле представляет собой некоторую абстракцию, заменяющую нам крюки, веревочки или резинки. Никакой наглядной картины поля дать невозможно, поскольку само понятие физического поля относится к числу основных понятий, которые невозможно определить через другие, более простые понятия. Можно только описать его свойства.

    Рассматривая способность гравитационного поля создавать силу, мы считаем, что поле зависит только от того тела, со стороны которого действует сила, и не зависит от того тела, на которое она действует.

    Отметим, что в рамках классической механики (механики Ньютона) оба представления - о дальнодействии и взаимодействии через гравитационное поле - приводят к одинаковым результатам и в равной мере допустимы. Выбор одного из этих способов описания определяется исключительно соображениями удобства.

    Напряженность поля тяготения. Силовой характеристикой гравитационного поля является его напряженность измеряемая силой, действующей на материальную точку единичной массы, т. е. отношением

    Очевидно, что гравитационное поле, создаваемое точечной массой М, обладает сферической симметрией. Это значит, что вектор напряженности в любой его точке направлен к массе М, создающей поле. Модуль напряженности поля как следует из закона всемирного тяготения (1), равен

    и зависит только от расстояния до источника поля. Напряженность поля точечной массы убывает с расстоянием по закону обратных квадратов. В таких полях движение тел происходит в соответствии с законами Кеплера.

    Принцип суперпозиции. Опыт показывает, что гравитационные поля удовлетворяют принципу суперпозиции. Согласно этому принципу гравитационное поле, создаваемое какой-либо массой, не зависит от наличия других масс. Напряженность поля, создаваемого несколькими телами, равна векторной сумме напряженностей полей, создаваемых этими телами в отдельности.

    Принцип суперпозиции позволяет рассчитывать гравитационные поля, создаваемые протяженными телами. Для этого нужно мысленно разбить тело на отдельные элементы, которые можно считать материальными точками, и найти векторную сумму напряженностей полей, создаваемых этими элементами. Пользуясь принципом суперпозиции, можно показать, что гравитационное поле, создаваемое шаром со сферически-симметричным распределением массы (в частности, и однородным шаром), вне этого шара неотличимо от гравитационного поля материальной точки такой же массы, как и шар, помещенной в центр шара. Это значит, что напряженность гравитационного поля шара дается той же формулой (6). Этот простой результат приводится здесь без доказательства. Оно будет дано для случая электростатического взаимодействия при рассмотрении поля заряженного шара, где сила также убывает обратно пропорционально квадрату расстояния.

    Притяжение сферических тел. Используя этот результат и привлекая третий закон Ньютона, можно показать, что два шара со сферически-симметричным распределением масс у каждого притягиваются друг к другу так, как если бы их массы были сосредоточены в их центрах, т. е. просто как точечные массы. Приведем соответствующее доказательство.

    Пусть два шара массами притягивают друг друга с силами (рис. 92а). Если заменить первый шар точечной массой (рис. 92б), то создаваемое им гравитационное поле в месте расположения второго шара не изменится и, следовательно, не изменится сила действующая на второй шар. На основании третьего

    закона Ньютона отсюда можно сделать вывод, что второй шар действует с одной и той же силой как на первый шар, так и на заменяющую его материальную точку Эту силу легко найти, учитывая, что создаваемое вторым шаром гравитационное поле в том месте, где находится первый шар, неотличимо от поля точечной массы помещенной в его центр (рис. 92в).

    Рис. 92. Сферические тела притягиваются друг к другу так, как если бы их массы были сосредоточены в их центрах

    Таким образом, сила притяжения шаров совпадает с силой притяжения двух точечных масс ту и расстояние между которыми равно расстоянию между центрами шаров.

    Из этого примера наглядно видна практическая ценность концепции гравитационного поля. В самом деле, было бы очень неудобно описывать силу, действующую на один из шаров, как векторную сумму сил, действующих на отдельные его элементы, учитывая при этом, что каждая из этих сил, в свою очередь, представляет собой векторную сумму сил взаимодействия этого элемента со всеми элементами, на которые мы должны мысленно разбить и второй шар. Обратим внимание еще и на то, что в процессе приведенного доказательства мы поочередно рассматривали в качестве источника гравитационного поля то один шар, то другой, в зависимости от того, интересовала ли нас сила, действующая на тот или на другой шар.

    Теперь очевидно, что на любое находящееся вблизи поверхности Земли тело массы линейные размеры которого малы по сравнению с радиусом Земли, действует сила тяжести которая в соответствии с (5) может быть записана как Значение модуля напряженности гравитационного поля Земли дается выражением (6), в котором под М следует понимать массу земного шара, а вместо следует подставить радиус Земли

    Для применимости формулы (7) необязательно Землю считать однородным шаром, достаточно, чтобы распределение масс было сферически-симметричным.

    Свободное падение. Если тело вблизи поверхности Земли движется только под действием силы тяжести т. е. свободно падает, то его ускорение согласно второму закону Ньютона равно Видно, что оно направлено к центру Земли и в соответствии с (7) по модулю равно

    Но правая часть (8) дает значение напряженности гравитационного поля Земли вблизи ее поверхности. Итак, напряженность гравитационного поля и ускорение свободного падения в этом поле - это одно и то же. Именно поэтому мы сразу обозначили эти величины одной буквой

    Взвешивание Земли. Остановимся теперь на вопросе об экспериментальном определении значения гравитационной постоянной Прежде всего отметим, что его нельзя найти из астрономических наблюдений. Действительно, из наблюдений за движением планет можно найти только произведение гравитационной постоянной на массу Солнца. Из наблюдений за движением Луны, искусственных спутников Земли или за свободным падением тел вблизи земной поверхности можно найти только произведение гравитационной постоянной на массу Земли. Для определения необходимо иметь возможность независимо измерить массу источника гравитационного поля. Это можно сделать только в опыте, производимом в лабораторных условиях.

    Рис. 93. Схема опыта Кавендиша

    Такой опыт был впервые выполнен Генри Кавендишем в с помощью крутильных весов, к концам коромысла которых были прикреплены небольшие свинцовые шары (рис. 93). Вблизи от них закреплялись большие тяжелые шары. Под действием сил притяжения малых шаров к большим коромысло крутильных весов немного поворачивалось, и по закручиванию упругой нити подвеса измерялась сила. Для интерпретации этого опыта важно знать, что шары взаимодействуют так же, как и соответствующие материальные точки такой же массы, ибо здесь в отличие от планет размеры шаров Нельзя считать малыми по сравнению с расстоянием между ними.

    В своих опытах Кавендиш получил значение гравитационной постоянной всего на отличающееся от принятого в настоящее время. В современных модификациях опыта Кавендиша производится измерение ускорений, сообщаемых малым шарам на коромысле гравитационным полем тяжелых шаров, что позволяет повысить точность измерений. Знание гравитационной постоянной позволяет определить массы Земли, Солнца и других источников тяготения по наблюдениям за движением тел в создаваемых ими гравитационных полях. В этом смысле опыт Кавендиша иногда образно называют взвешиванием Земли.

    Всемирное тяготение описывается очень простым законом, который, как мы видели, легко устанавливается на основе законов Кеплера. В чем же величие открытия Ньютона? В нем нашла воплощение идея о том, что падение яблока на Землю и движение Луны вокруг Земли, которое тоже в известном смысле представляет собой падение на Землю, имеют общую причину. В те далекие времена это была удивительная мысль, поскольку общая мудрость гласила, что небесные тела движутся по своим «совершенным» законам, а земные объекты подчиняются «мирским» правилам. Ньютон пришел к мысли о том, что единые законы природы справедливы для всей Вселенной.

    Введите такую единицу силы, чтобы в законе всемирного тяготения (1) значение гравитационной постоянной С равнялось единице. Сравните эту единицу силы с ньютоном.

    Существуют ли отклонения от законов Кеплера для планет Солнечной системы? Чем они обусловлены?

    Как из законов Кеплера установить зависимость силы тяготения от расстояния?

    Почему гравитационную постоянную нельзя определить на основе астрономических наблюдений?

    Что такое гравитационное поле? Какие преимущества дает описание гравитационного взаимодействия с помощью понятия поля по сравнению с представлением о дальнодействии?

    В чем заключается принцип суперпозиции для гравитационного поля? Что можно сказать о гравитационном поле однородного шара?

    Как связаны между собой напряженность гравитационного поля и ускорение свободного падения?

    Рассчитайте массу Земли М, используя значения гравитационной постоянной радиуса Земли км и ускорения свободного падения

    Геометрия и тяготение. С простой формулой закона всемирного тяготения (1) связано несколько тонких моментов, заслуживающих отдельного обсуждения. Из законов Кеплера следует,

    что расстояние в знаменатель выражения для силы тяготения входит во второй степени. Вся совокупность астрономических наблюдений приводит к выводу, что значение показателя степени равно двум с очень высокой точностью, а именно Этот факт в высшей степени замечателен: точное равенство показателя степени двум отражает евклидову природу трехмерного физического пространства. Это значит, что положение тел и расстояние между ними в пространстве, сложение перемещений тел и т. д. описывается геометрией Евклида. Точное равенство двум показателя степени подчеркивает то обстоятельство, что в трехмерном евклидовом мире поверхность сферы точно пропорциональна квадрату ее радиуса.

    Инертная и гравитационная массы. Из приведенного вывода закона тяготения следует также, что сила гравитационного взаимодействия тел пропорциональна их массам, а точнее - инертным массам, фигурирующим во втором законе Ньютона и описывающим инертные свойства тел. Но инертность и способность к гравитационным взаимодействиям представляют собой совершенно разные свойства материи.

    В определении массы на основе инертных свойств используется закон . Измерения массы в соответствии с этим ее определением требуют проведения динамического эксперимента - прикладывается известная сила и измеряется ускорение. Именно так с помощью масс-спектрометров определяются массы заряженных элементарных частиц и ионов (а тем самым и атомов).

    В определении массы на основе явления тяготения используется закон Измерение массы в соответствии с таким определением производится с помощью статического эксперимента - взвешиванием. Тела располагают неподвижно в гравитационном поле (обычно это поле Земли) и сравнивают действующие на них силы тяготения. Определенная таким образом масса называется тяжелой или гравитационной.

    Будут ли значения инертной и гравитационной масс одинаковыми? Ведь количественные меры этих свойств в принципе могли бы быть различными. Впервые ответ на этот вопрос был дан Галилеем, хотя он, по-видимому, и не подозревал об этом. В своих опытах он намеревался доказать, что неверны господствовавшие тогда утверждения Аристотеля о том, что тяжелые тела падают быстрее легких.

    Чтобы лучше проследить за рассуждениями, обозначим инертную массу через а гравитационную - через На поверхности Земли сила тяжести тогда запишется как

    где - напряженность гравитационного поля Земли, одинаковая для всех тел. Теперь сравним, что произойдет, если два тела одновременно сбросить с одной высоты. В соответствии со вторым законом Ньютона для каждого из тел можно написать

    Но опыт показывает, что ускорения обоих тел одинаковы. Следовательно, одним и тем же будет для них и отношение Итак, для всех тел

    Гравитационные массы тел пропорциональны их инертным массам. Надлежащим выбором единиц их можно сделать просто равными.

    Совпадение значений инертной и гравитационной масс подтверждалось много раз со все возрастающей точностью в разнообразных опытах ученых разных эпох - Ньютона, Бесселя, Этвеша, Дикке и, наконец, Брагинского и Панова, которые довели относительную погрешность измерений до . Чтобы лучше представить себе чувствительность приборов в таких опытах, отметим, что это эквивалентно возможности обнаружить изменение массы теплохода водоизмещением в тысячу тонн при добавлении к нему одного миллиграмма.

    В ньютоновской механике совпадение значений инертной и гравитационной масс не имеет под собой физической причины и в этом смысле является случайным. Это просто экспериментальный факт, установленный с очень высокой точностью. Если бы это было не так, ньютоновская механика ничуть не пострадала бы. В созданной Эйнштейном релятивистской теории тяготения, называемой также общей теорией относительности, равенство инертной и гравитационной масс имеет принципиальное значение и изначально заложено в основу теории. Эйнштейн предположил, что в этом совпадении нет ничего удивительного или случайного, ибо в действительности инертная и гравитационная массы представляют собой одну и ту же физическую величину.

    Почему значение показателя степени, в которой расстояние между телами входит в закон всемирного тяготения, связано с евклидовостью трехмерного физического пространства?

    Как определяются инертная и гравитационная массы в механике Ньютона? Почему в некоторых книгах даже не упоминается об этих величинах, а фигурирует просто масса тела?

    Предположим, что в некотором мире гравитационная масса тел никак не связана с их инертной массой. Что можно было бы наблюдать при одновременном свободном падении разных тел?

    Какие явления и опыты свидетельствуют о пропорциональности инертной и гравитационной масс?


    Согласно законам Ньютона, движение тела с ускорением возможно только под действием силы. Т.к. падающие тела движутся с ускорением, направленным вниз, то на них действует сила притяжения к Земле. Но не только Земля обладает свойством действовать на все тела силой притяжения. Исаак Ньютон предположил, что между всеми телами действуют силы притяжения. Эти силы называются силами всемирного тяготения илигравитационными силами.

    Распространив установленные закономерности – зависимость силы притяжения тел к Земле от расстояний между телами и от масс взаимодействующих тел, полученные в результате наблюдений,– Ньютон открыл в 1682 г. закон всемирного тяготения :Все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

    Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела. Коэффициент пропорциональности Gназываетсягравитационной постоянной (постоянной всемирного тяготения) и равна

    .

    Силой тяжести называется сила притяжения, действующая со стороны Земли на все тела:

    .

    Пусть
    – масса Земли, а
    – радиус Земли. Рассмотрим зависимость ускорения свободного падения от высоты подъема над поверхностью Земли:

    Вес тела. Невесомость

    Вес тела – сила, с которой тело давит на опору или подвес вследствие притяжения этого тела к земле. Вес тела приложен к опоре (подвесу). Величина веса тела зависит от того, как движется тело с опорой (подвесом).

    Вес тела, т.е. сила, с которой тело действует на опору, и сила упругости, с которой опора действует на тело, в соответствие с третьим законом Ньютона равны по абсолютному значению и противоположны по направлению.

    Если тело находится в покое на горизонтальной опоре или равномерно движется, на него действуют только сила тяжести и сила упругости со стороны опоры, следовательно вес тела равен силе тяжести (но эти силы приложены к разным телам):

    .

    При ускоренном движении вес тела не будет равен силе тяжести. Рассмотрим движение тела массой mпод действием сил тяжести и упругости с ускорением. По 2-му закону Ньютона:

    Если ускорение тела направлено вниз, то вес тела меньше силы тяжести; если ускорение тела направлено вверх, то все тела больше силы тяжести.

    Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой .

    Если тело свободно падает, то из формулы * следует, что вес тела равен нулю. Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью .

    Состояние невесомости наблюдается в самолете или космическом корабле при движении их с ускорением свободного падения независимо от скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.

    Движение тела под действием сил тяжести. Движение искусственных спутников. Первая космическая скорость

    Если модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу всемирного тяготения во время движения постоянной, а движение тела равноускоренным. Самый простой случай движения тела под действием силы тяжести – свободное падение с нулевой начальной скоростью. В этом случае тело движется с ускорением свободного падения к центру Земли. Если есть начальная скорость, направленная не по вертикали, то тело движется по криволинейной траектории (параболе, если не учитывать сопротивление воздуха).

    При некоторой начальной скорости тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии атмосферы может двигаться по окружности вокруг Земли, не падая на нее и не удаляясь от нее. Такая скорость называется первой космической скоростью , а тело, движущееся таким образом –искусственным спутником Земли (ИСЗ) .

    Определим первую космическую скорость для Земли. Если тело под действием силы тяжести движется вокруг Земли равномерно по окружности, то ускорение свободного падения является его центростремительным ускорением:

    .

    Отсюда первая космическая скорость равна

    .

    Первая космическая скорость для любого небесного тела определяется таким же образом. Ускорение свободного падения на расстоянии R от центра небесного тела можно найти, воспользовавшись вторым законом Ньютона и законом всемирного тяготения:

    .

    Следовательно, первая космическая скорость на расстоянии R от центра небесного тела массойM равна

    .

    Для запуска на околоземную орбиту ИСЗ необходимо сначала вывести за пределы атмосферы. Поэтому космические корабли стартуют вертикально. На высоте 200 – 300 км от поверхности Земли, где атмосфера разрежена и почти не влияет на движение ИСЗ, ракета делает поворот и сообщает ИСЗ первую космическую скорость в направлении, перпендикулярном вертикали.

    XVI - XVII века многие по праву называют одним из самых славных периодов в Именно в это время были во многом заложены те основы, без которых дальнейшее развитие этой науки было бы попросту немыслимым. Коперник, Галилей, Кеплер проделали огромную работу, чтобы заявить о физике как о науке, которая может дать ответ практически на любой вопрос. Особняком в целой череде открытий стоит закон всемирного тяготения, окончательная формулировка которого принадлежит выдающемуся английскому ученому Исааку Ньютону.

    Основное значение работ этого ученого заключалось не в открытии им силы всемирного тяготения - о наличии этой величины еще до Ньютона говорил и Галилей, и Кеплер, а в том, что он первым доказал, что и на Земле, и в космическом пространстве действуют одни и те же силы взаимодействия между телами.

    Ньютон на практике подтвердил и теоретически обосновал тот факт, что абсолютно все тела во Вселенной, в том числе и те, которые располагаются на Земле, взаимодействуют друг с другом. Это взаимодействие получило название гравитационного, в то время как сам процесс всемирного тяготения - гравитации.
    Данное взаимодействие возникает между телами потому, что существует особый, непохожий на другие, вид материи, который в науке получил название гравитационного поля. Это поле существует и действует вокруг абсолютно любого предмета, при этом никакой защиты от него не существует, так как он обладает ни на что не похожей способностью проникать в любые материалы.

    Сила всемирного тяготения, определение и формулировку которой дал находится в прямой зависимости от произведения масс взаимодействующих тел, и в обратной зависимости от квадрата расстояния междуэтими объектами. Согласно мнению Ньютона, неопровержимо подтвержденного практическими изысканиями, сила всемирного тяготения находится по следующей формуле:

    В ней особое значение принадлежит гравитационной постоянной G, которая приблизительно равна 6,67*10-11(Н*м2)/кг2.

    Сила всемирного тяготения, с которой тела притягиваются к Земле, представляет собой частный случай закона Ньютона и называется силой тяжести. В данном случае гравитационной постоянной и массой самой Земли можно пренебречь, поэтому формула нахождения силы тяжести будет выглядеть так:

    Здесь g - не что иное, как ускорение числовое значение которого примерно равно 9,8 м/с2.

    Закон Ньютона объясняет не только процессы, происходящие непосредственно на Земле, он дает ответ на множество вопросов, связанных с устройством всей Солнечной системы. В частности, сила всемирного тяготения между оказывает решающее влияние на движение планет по своим орбитам. Теоретическое описание этого движения было дано еще Кеплером, однако обоснование его стало возможно только после того, как Ньютон сформулировал свой знаменитый закон.

    Сам Ньютон связывал явления земной и внеземной гравитации на простом примере: при выстреле из летит не прямо, а по дугообразной траектории. При этом при увеличении заряда пороха и массы ядра последнее будет улетать все дальше и дальше. Наконец, если предположить, что возможно достать столько пороха и сконструировать такую пушку, чтобы ядро облетело вокруг Земного шара, то, проделав это движение, оно не остановится, а будет продолжать свое круговое (эллипсовидное) движение, превратившись в искусственный Как следствие, сила всемирного тяготения одинакова по своей природе и на Земле, и в космическом пространстве.