Солнечный ветер астрономия. Солнечный ветер

История

Вероятно, что первым предсказал существование солнечного ветра норвежский исследователь Кристиан Биркеланд (норв. Kristian Birkeland ) в г. «С физической точки зрения наиболее вероятно, что солнечные лучи не являются ни положительными ни отрицательными, но и теми и другими вместе». Другими словами, солнечный ветер состоит из отрицательных электронов и положительных ионов .

В 1930-х годах ученые определили, что температура солнечной короны должна достигать миллиона градусов, поскольку корона остается достаточно яркой при большом удалении от Солнца, что хорошо видно во время солнечных затмений. Позднее спектроскопические наблюдения подтвердили этот вывод. В середине 50-х британский математик и астроном Сидни Чепмен определил свойства газов при таких температурах. Оказалось, что газ становится великолепным проводником тепла и должен рассеивать его в пространство за пределы орбиты Земли. В то же время немецкий ученый Людвиг Бирманн (нем. Ludwig Franz Benedikt Biermann ) заинтересовался тем фактом, что хвосты комет всегда направлены прочь от Солнца. Бирманн постулировал, что Солнце испускает постоянный поток частиц, которые создают давление на газ, окружающий комету, образуя длинный хвост.

В 1955 году советские астрофизики С. К. Всехсвятский, Г. М. Никольский, Е. А. Пономарев и В. И. Чередниченко показали , что протяженная корона теряет энергию на излучение и может находиться в состоянии гидродинамического равновесия только при специальном распределении мощных внутренних источников энергии. Во всех других случаях должен существовать поток вещества и энергии. Этот процесс служит физическим основанием для важного явления - «динамической короны». Величина потока вещества была оценена из следующих соображений: если бы корона находилась в гидростатическом равновесии, то высоты однородной атмосферы для водорода и железа относились бы как 56/1, то есть ионов железа в дальней короне наблюдаться не должно. Но это не так. Железо светится во всей короне, причем FeXIV наблюдается в более высоких слоях, чем FeX, хотя кинетическая температура там ниже. Силой, поддерживающей ионы во «взвешенном» состоянии, может быть импульс, передаваемый при столкновениях восходящим потоком протонов ионам железа. Из условия баланса этих сил легко найти поток протонов. Он оказался таким же, какой следовал из гидродинамической теории, подтвержденной впоследствии прямыми измерениями. Для 1955 г. это было значительным достижением, но в «динамическую корону» никто тогда не поверил.

Тремя годами позже Юджин Паркер (англ. Eugene N. Parker ) сделал вывод, что горячее течение от Солнца в чепменовской модели и поток частиц, сдувающий кометные хвосты в гипотезе Бирманна - это два проявления одного и того же явления, которое он назвал «солнечным ветром» . Паркер показал, что даже несмотря на то, что солнечная корона сильно притягивается Солнцем, она столь хорошо проводит тепло, что остается горячей на большом расстоянии. Так как с расстоянием от Солнца его притяжение ослабевает, из верхней короны начинается сверхзвуковое истечение вещества в межпланетное пространство. Более того, Паркер был первым, кто указал, что эффект ослабления гравитации имеет то же влияние на гидродинамическое течение, что и сопло Лаваля : оно производит переход течения из дозвуковой в сверхзвуковую фазу.

Теория Паркера была подвергнута жесткой критике. Статья, посланная в 1958 году Astrophysical Journal была забракована двумя рецензентами и только благодаря редактору, Субраманьяну Чандрасекару попала на страницы журнала.

Однако, ускорение ветра до высоких скоростей еще не было понято и не могло быть объяснено из теории Паркера. Первые численные модели солнечного ветра в короне с использованием уравнений магнитной гидродинамики были созданы Пневманом и Кноппом (англ. Pneuman and Knopp ) в г.

В конце 1990-х с помощью Ультрафиолетового коронального спектрометра (англ. Ultraviolet Coronal Spectrometer (UVCS) ) на борту спутника SOHO были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах. Оказалось, что ускорение ветра много больше, чем предполагалось, исходя из чисто термодинамического расширения. Модель Паркера предсказывала, что скорость ветра становится сверхзвуковой на высоте 4 радиусов Солнца от фотосферы, а наблюдения показали, что этот переход происходит существенно ниже, примерно на высоте 1 радиуса Солнца, подтверждая, что существует дополнительный механизм ускорения солнечного ветра.

Характеристики

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов , протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает реального состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Интенсивность солнечного ветра зависит от изменений солнечной активности и его источников. Многолетние наблюдения на орбите Земли (около 150 000 000 км от Солнца) показали, что солнечный ветер структурирован и обычно делится на спокойный и возмущенный (спорадический и рекуррентный). В зависимости от скорости, спокойные потоки солнечного ветра делятся на два класса: медленные (примерно 300-500 км/с около орбиты Земли) и быстрые (500-800 км/с около орбиты Земли). Иногда к стационарному ветру относят область гелиосферного токового слоя , который разделяет области различной полярности межпланетного магнитного поля, и по своим характеристикам близок к медленному ветру.

Медленный солнечный ветер

Медленный солнечный ветер порождается «спокойной» частью солнечной короны (областью корональных стримеров) при её газодинамическом расширении: при температуре короны около 2·10 6 К корона не может находиться в условиях гидростатического равновесия, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей. Нагрев солнечной короны до таких температур происходит вследствие конвективной природы теплопереноса в фотосфере солнца: развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн; в свою очередь при распространении в направлении уменьшения плотности солнечной атмосферы звуковые волны трансформируются в ударные; ударные волны эффективно поглощаются веществом короны и разогревают её до температуры (1-3)·10 6 К.

Быстрый солнечный ветер

Потоки рекуррентного быстрого солнечного ветра испускаются Солнцем в течение нескольких месяцев и имеют период повторяемости при наблюдениях с Земли в 27 суток (период вращения Солнца). Эти потоки ассоциированы с корональными дырами - областями короны с относительно низкой температурой (примерно 0,8·10 6 К), пониженной плотностью плазмы (всего четверть плотности спокойных областей короны) и радиальным по отношению к Солнцу магнитным полем .

Возмущенные потоки

К возмущенным потокам относят межпланетное проявление корональных выбросов массы (СМЕ), а также области сжатия перед быстрыми СМЕ (называемыми в англоязычной литературе Sheath) и перед быстрыми потоками из корональных дыр (называемыми в англоязычной литературе Corotating interaction region - CIR). Около половины случаев наблюдений Sheath и CIR могут иметь впереди себя межпланетную ударную волну. Именно в возмущенных типах солнечного ветра межпланетное магнитное поле может отклоняться от плоскости эклиптики и содержать южную компоненту поля, которая приводит ко многим эффектам космической погоды (геомагнитной активности , включая магнитные бури). Ранее предполагалось, что возмущенные спорадические потоки вызываются солнечными вспышками , однако в настоящее время считается, что спорадические потоки в солнечном ветре обусловлены корональными выбросами. Вместе с тем следует отметить, что и солнечные вспышки , и корональные выбросы связаны с одними и теми же источниками энергии на Солнце и между ними существует статистическая зависимость.

По времени наблюдения различных крупномасштабных типов солнечного ветра быстрые и медленные потоки составляют около 53%, гелиосферный токовый слой 6%, CIR – 10%, CME – 22%, Sheath – 9%, и соотношение между временем наблюдения различных типов сильно изменяется в цикле солнечной активности. .

Феномены, порождаемые солнечным ветром

Солнечный ветер порождает на планетах Солнечной системы , обладающих магнитным полем , такие явления, как магнитосфера , полярные сияния и радиационные пояса планет.

В культуре

«Солнечный ветер» - рассказ известного писателя-фантаста Артура Кларка , написанный в 1963 году .

Примечания

  1. Kristian Birkeland, «Are the Solar Corpuscular Rays that penetrate the Earth’s Atmosphere Negative or Positive Rays?» in Videnskapsselskapets Skrifter , I Mat - Naturv. Klasse No.1, Christiania, 1916.
  2. Philosophical Magazine , Series 6, Vol. 38, No. 228, December, 1919, 674 (on the Solar Wind)
  3. Ludwig Biermann (1951). «Kometenschweife und solare Korpuskularstrahlung». Zeitschrift für Astrophysik 29 : 274.
  4. Всехсвятский С.К., Никольский Г.М., Пономарев Е.А., Чередниченко В.И. (1955). «К вопросу о корпускулярном излучении Солнца». Астрономический журнал 32 : 165.
  5. Christopher T. Russell . Institute of Geophysics and Planetary Physics University of California, Los Angeles . Архивировано из первоисточника 22 августа 2011. Проверено 7 февраля 2007.
  6. Roach, John . Astrophysicist Recognized for Discovery of Solar Wind , National Geographic News (August 27, 2003). Проверено 13 июня 2006.
  7. Eugene Parker (1958). «Dynamics of the Interplanetary Gas and Magnetic Fields ». The Astrophysical Journal 128 : 664.
  8. Luna 1 . NASA National Space Science Data Center. Архивировано из первоисточника 22 августа 2011. Проверено 4 августа 2007.
  9. (рус.) 40th Anniversary of the Space Era in the Nuclear Physics Scientific Research Institute of the Moscow State University , contains the graph showing particle detection by Луна-1 at various altitudes.
  10. M. Neugebauer and C. W. Snyder (1962). «Solar Plasma Experiment». Science 138 : 1095–1097.
  11. G. W. Pneuman and R. A. Kopp (1971). «Gas-magnetic field interactions in the solar corona». Solar Physics 18 : 258.
  12. Ермолаев Ю. И., Николаева Н. С., Лодкина И. Г., Ермолаев М. Ю. Относительная частота появления и геоэффективность крупномасштабных типов солнечного ветра // Космические исследования . - 2010. - Т. 48. - № 1. - С. 3–32.
  13. Cosmic Rays Hit Space Age High . НАСА (28 сентября 2009). Архивировано из первоисточника 22 августа 2011. Проверено 30 сентября 2009. (англ.)

Литература

  • Паркер Е. Н. Динамические процессы в межпланетной среде / Пер. с англ. М.: Мир, 1965
  • Пудовкин М. И. Солнечный ветер// Соросовский образовательный журнал, 1996, No 12, с. 87-94.
  • Хундхаузен А. Расширение короны и солнечный ветер / Пер. с англ. М.: Мир, 1976
  • Физическая энциклопедия, т.4 - М.:Большая Российская Энциклопедия стр.586 , стр.587 и стр.588
  • Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986
  • Гелиосфера (Под ред. И.С. Веселовского, Ю.И. Ермолаева) в монографии Плазменная гелиогеофизика / Под ред. Л. М. Зеленого, И. С. Веселовского. В 2-х т. М.: Физ-матлит, 2008. Т. 1. 672 с.; Т. 2. 560 с.

См. также

Ссылки

Солнечный ветер

Такое признание дорогого стоит, ибо возрождает к жизни полузабытую солнечно-плазмоидную гипотезу возникновения и развития жизни на Земле, выдвинутую ульяновским ученым Б. А. Соломиным почти 30 лет назад.

Солнечно-плазмоидная гипотеза утверждает, что высокоорганизованные солнечные и земные плазмоиды сыграли и до сих пор играют ключевую роль в зарождении и развитии жизни и разума на Земле. Эта гипотеза настолько интересна, особенно в свете получения экспериментальных материалов новосибирскими учеными, что с ней стоит познакомиться подробнее.

Прежде всего что такое плазмоид? Плазмоид – это плазменная система, структурированная собственным магнитным полем. В свою очередь, плазма – это горячий ионизированный газ. Простейшим примером плазмы является огонь. Плазма обладает способностью динамически взаимодействовать с магнитным полем, удерживать поле в себе. А поле, в свою очередь, упорядочивает хаотическое движение заряженных частичек плазмы. При определенных условиях образуется устойчивая, но динамичная система, состоящая из плазмы и магнитного поля.

Источником плазмоидов в Солнечной системе является Солнце. Вокруг Солнца, как и вокруг Земли, существует своя атмосфера. Внешняя часть солнечной атмосферы, состоящая из горячей ионизированной водородной плазмы, называется солнечной короной. И если на поверхности Солнца температура составляет примерно 10 000 К, то за счет потока энергии, идущего из его недр, температура короны достигает уже 1,5–2 млн К. Поскольку плотность короны мала, такой нагрев не уравновешивается потерей энергии за счет излучения.

В 1957 году профессор Чикагского университета Е. Паркер опубликовал свое предположение о том, что солнечная корона не находится в гидростатическом равновесии, а непрерывно расширяется. В этом случае значительная часть излучения Солнца представляет собой более или менее непрерывное истечение плазмы, так называемый солнечный ветер , который и уносит избыточную энергию. То есть солнечный ветер является продолжением солнечной короны.

Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3». Позднее выяснилось, что солнечный ветер уносит с поверхности нашего светила помимо энергии и информации еще примерно миллион тонн вещества в секунду. Оно содержит главным образом протоны, электроны, немного ядер гелия, ионов кислорода, кремния, серы, никеля, хрома и железа.

В 2001 году американцы вывели на орбиту космический аппарат «Джинизис», созданный для изучения солнечного ветра. Пролетев более полутора миллиона километров, аппарат приблизился к так называемой точке Лагранжа, где гравитационное воздействие Земли уравновешивается гравитационными силами Солнца, и развернул там свои ловушки частиц солнечного ветра. В 2004 году капсула с собранными частицами рухнула на землю вопреки запланированной мягкой посадке. Частицы удалось «отмыть» и сфотографировать.

К настоящему времени наблюдения, выполненные со спутников Земли и других космических аппаратов, показывают, что межпланетное пространство заполнено активной средой – потоком солнечного ветра, который зарождается в верхних слоях солнечной атмосферы.

Когда на Солнце происходят вспышки, от него через солнечные пятна (корональные дыры) – области в атмосфере Солнца с открытым в межпланетное пространство магнитным полем во все стороны разлетаются потоки плазмы и магнитно-плазменные образования – плазмоиды. Этот поток движется от Солнца со значительным ускорением, и если у основания короны радиальная скорость частиц составляет несколько сотен м/с, то вблизи Земли она достигает 400–500 км/с.

Достигая Земли, солнечный ветер вызывает изменения в ее ионосфере, магнитные бури, что существенным образом сказывается на биологических, геологических, психических и даже исторических процессах. Об этом еще в начале XX века писал великий русский ученый А. Л. Чижевский, который с 1918 года в Калуге в течение трех лет проводил эксперименты в области аэроионизации и пришел к выводу: отрицательно заряженные ионы плазмы благотворно влияют на живые организмы, а положительно заряженные действуют противоположно. В те далекие времена до открытия и начала изучения солнечного ветра и магнитосферы Земли оставалось 40 лет!

Плазмоиды присутствуют в биосфере Земли, в том числе и в плотных слоях атмосферы и вблизи ее поверхности. В своей книге «Биосфера» В. И. Вернадский впервые описал механизм поверхностной оболочки, тонко согласованный во всех своих проявлениях. Без биосферы не было бы земного шара, ибо, по мнению Вернадского, Земля «лепится» Космосом при помощи биосферы. «Лепится» благодаря использованию информации, энергии и вещества. «По существу, биосфера может быть рассматриваема как область земной коры, занятая трансформаторами (курсив наш. – Авт .), переводящими космические излучения в действенную земную энергию – электрическую, химическую, тепловую, механическую и т. д.» (9). Именно биосфера, или «геологообразующая сила планеты», как назвал ее Вернадский, начала изменять структуру круговорота вещества в природе и «создавать новые формы и организации косной и живой материи». Вполне вероятно, что, говоря о трансформаторах, Вернадский говорил о плазмоидах, о которых в то время вообще ничего не знали.

Солнечно-плазмоидная гипотеза позволяет объяснить роль плазмоидов в зарождении жизни и разума на Земле. На ранних этапах эволюции плазмоиды могли стать своего рода активными «центрами кристаллизации» для более плотных и холодных молекулярных структур ранней Земли. «Одеваясь» в относительно холодные и плотные молекулярные одежды, становясь своеобразными внутренними «энергетическими коконами» возникающих биохимических систем, они одновременно являлись управляющими центрами сложной системы, направляя эволюционные процессы в сторону образования живых организмов (10). К подобному выводу пришли также ученые МНИИКА, которые сумели в экспериментальных условиях добиться материализации неравномерных эфирных потоков.

Аура, которую чувствительные физические приборы фиксируют вокруг биологических объектов, представляет собой, по-видимому, внешнюю часть плазмоидного «энергетического кокона» живого существа. Можно предположить, что энергетические каналы и биологически активные точки восточной медицины – это внутренние структуры «энергетического кокона».

Источником плазмоидной жизни для Земли является Солнце, и потоки солнечного ветра несут нам это жизненное начало.

А что является источником плазмоидной жизни для Солнца? Чтобы ответить на этот вопрос, необходимо предположить, что жизнь на любом уровне не возникает «сама по себе», а привносится из более глобальной, высокоорганизованной, разреженной и энергетичной системы. Как для Земли Солнце является «материнской системой», так и для светила должна существовать подобная «материнская система» (11).

По мнению ульяновского ученого Б. А. Соломина, «материнской системой» для Солнца могли служить межзвездная плазма, горячие водородные облака, туманности, содержащие магнитные поля, а также релятивистские (то есть двигающиеся со скоростью, близкой к скорости света) электроны. Большое количество разреженной и очень горячей (миллионы градусов) плазмы и релятивистских электронов, структурированных магнитными полями, заполняют галактическую корону – сферу, в которую заключен плоский звездный диск нашей Галактики. Глобальные галактические плазмоидные и релятивистско-электронные облака, уровень организации которых несоизмерим с солнечным, порождают плазмоидную жизнь на Солнце и других звездах. Таким образом, носителем плазмоидной жизни для Солнца служит галактические ветер.

А что является «материнской системой» для галактик? В образовании глобальной структуры Вселенной большую роль ученые уделяют сверхлегким элементарным частицам – нейтрино, буквально пронизывающим пространство во всех направлениях со скоростями, близкими к скорости света. Именно нейтринные неоднородности, сгустки, облака могли послужить теми «каркасами», или «центрами кристаллизации», вокруг которых в ранней Вселенной образовались галактики и их скопления. Нейтринные облака – это еще более тонкий и энергетичный уровень материи, чем описанные выше звездные и галактические «материнские системы» космической жизни. Они вполне могли быть конструкторами эволюции для последних.

Поднимемся, наконец, на самый высокий уровень рассмотрения – на уровень нашей Вселенной в целом, возникшей около 20 миллиардов лет назад. Изучая ее глобальную структуру, ученые установили, что галактики и их скопления располагаются в пространстве не хаотично и не равномерно, а вполне определенным образом. Они концентрируются вдоль стенок огромных пространственных «сот», внутри которых содержатся, как считалось до недавнего прошлого, гигантские «пустоты» – войды. Однако сегодня уже известно, что «пустот» во Вселенной не существует. Можно предположить, что все заполняет «специальная субстанция», носителем которой являются первичные торсионные поля. Эта «специальная субстанция», представляющая основу всех жизненных функций, вполне может являться для нашей Вселенной тем Мировым Архитектором, Космическим сознанием, Высшим разумом, который придает смысл ее существованию и направление эволюции.

Если это так, то уже в момент своего рождения наша Вселенная была живой и разумной. Жизнь и разум не возникают самостоятельно в каких-либо холодных молекулярных океанах на планетах, они изначально присущи космосу. Космос насыщен различными формами жизни, порой разительно отличающимися от привычных нам белково-нуклеиновых систем и несопоставимыми с ними по своей сложности и степени разумности, пространственно-временным масштабам, по энергии и массе.

Именно разреженная и горячая материя направляет эволюцию материи более плотной и холодной. Таков, по-видимому, фундаментальный закон природы. Космическая жизнь иерархически нисходит от таинственной материи войдов к нейтринным облакам, межгалактической среде, а от них – к ядрам галактик и галактическим коронам в виде релятивистско-электронных и плазменно-магнитных структур, затем – в межзвездное пространство, к звездам и, наконец, к планетам. Космическая разумная жизнь творит по своему образу и подобию все локальные формы жизни и управляет их эволюцией (10).

Наряду с общеизвестными условиями (температура, давление, химический состав и др.) для возникновения жизни требуется наличие у планеты выраженного магнитного поля, не только защищающего живые молекулы от смертоносной радиации, но и создающего вокруг нее концентрацию солнечно-галактической плазмоидной жизни в виде радиационных поясов. Из всех планет Солнечной системы (кроме Земли) только у Юпитера имеются сильное магнитное поле и большие радиационные пояса. Поэтому есть некоторая определенность наличия на Юпитере молекулярной разумной жизни, хотя, возможно, и небелковой природы.

С высокой степенью вероятности можно предположить, что все процессы на молодой Земле протекали не хаотично и не самостоятельно, а направлялись высокоорганизованными плазмоидными конструкторами эволюции. В существующей сегодня гипотезе возникновения жизни на Земле также признается необходимость наличия неких плазменных факторов, а именно мощных грозовых разрядов в атмосфере ранней Земли.

Не только рождение, но и дальнейшая эволюция белково-нуклеиновых систем протекала в тесном взаимодействии с плазмоидной жизнью при направляющей роли последней. Взаимодействие это становилось с течением времени все более тонким, поднималось на уровень психики, души, а затем и духа усложняющихся живых организмов. Дух и душа живых и разумных существ – это очень тонкая плазменная материя солнечного и земного происхождения.

Установлено, что плазмоиды, обитающие в радиационных поясах Земли (преимущественно солнечного и галактического происхождения), могут спускаться вдоль линий земного магнитного поля в низшие слои атмосферы, особенно в тех точках, где эти линии наиболее интенсивно пересекают поверхность Земли, а именно в районах магнитных полюсов (северного и южного).

Вообще, плазмоиды чрезвычайно широко распространены на Земле. Они могут обладать высокой степенью организации, проявлять некоторые признаки жизни и разумности. Советские и американские экспедиции в район южного магнитного полюса в середине XX века сталкивались с необычными светящимися объектами, плавающими в воздухе и ведущими себя очень агрессивно по отношению к членам экспедиции. Они были названы плазмозаврами Антарктиды.

С начала 1990-х годов регистрация плазмоидов не только на Земле, но и в ближайшем космосе возросла в разы. Это шары, полосы, круги, цилиндры, мало оформившиеся светящиеся пятна, шаровые молнии и т. д. Ученые сумели разделить все объекты на две большие группы. Это прежде всего объекты, которые имеют отчетливые признаки известных физических процессов, но в них эти признаки представлены в совершенно необычном сочетании. Другая группа объектов, наоборот, не имеет аналогий с известными физическими явлениями, и поэтому их свойства вообще необъяснимы на основе существующей физики.

Стоит отметить существование плазмоидов земного происхождения, рождающихся в зонах разломов, где идут активные геологические процессы. Интересен в этом отношении Новосибирск, стоящий на активных разломах и имеющий в связи с эти особую электромагнитную структуру над городом. Все свечения и вспышки, регистрируемые над городом, тяготеют к этим разломам и объясняются вертикальным энергетическим неравновесием и активностью пространства.

Наибольшее количество светящихся объектов наблюдается в центральном районе города, расположенном на участке, где совпадают сгущения технических энергоисточников и разломов гранитного массива.

Например, в марте 1993 года у общежития Новосибирского государственного педагогического университета наблюдался дискообразный объект порядка 18 метров в диаметре и 4,5 метра толщиной. Гурьба школьников гонялась за этим объектом, медленно дрейфовавшим над землей на протяжении 2,5 километра. Школьники пытались кидать в него камни, но те отклонялись, не долетая до объекта. Тогда дети стали подбегать под объект и развлекаться тем, что с них сбрасывались шапки, поскольку волосы становились дыбом от электрического напряжения. Наконец этот объект вылетел на линию высоковольтной передачи, никуда не отклоняясь, пролетел вдоль нее, набрал скорость, светимость, превратился в яркий шар и ушел вверх (12).

Следует особо отметить появление светящихся объектов в экспериментах, проводимых новосибирскими учеными в зеркалах Козырева. Благодаря созданию лево-правовращающихся торсионных потоков за счет вращающихся световых течений в обмотках лазерной нити и конусах ученые сумели в зеркале Козырева смоделировать информационное пространство планеты с появившимися в нем плазмоидами. Удалось исследовать влияние появившихся светящихся объектов на клетки, а затем и на самого человека, в результате чего укрепилась уверенность в правоте солнечно-плазмоидной гипотезы. Появилось убеждение, что не только рождение, но и дальнейшая эволюция белково-нуклеиновых систем протекала и протекает в тесном взаимодействии с плазмоидной жизнью при направляющей роли высокоорганизованных плазмоидов.

Данный текст является ознакомительным фрагментом.

Можно использовать не только как движитель космических парусников, но и как источник энергии. Наиболее известное применение солнечного ветра в этом качестве было впервые предложено Фрименом Дайсоном (Freeman Dyson), предположившим, что высокоразвитой цивилизации по силам создание сферы вокруг звезды, которая бы собирала всю испускаемую ею энергию. Исходя из этого так же был предложен очередной метод поиска внеземных цивилизаций.

Между тем, коллективом исследователей Вашингтонского университета (Washington State University) под руководством Брукса Харропа (Brooks Harrop) была предложена более практичная концепция использования энергии солнечного ветра - спутники Дайсона-Харропа. Они представляют собой довольно простые электростанции, собирающие электроны из солнечного ветра. На длинный металлический стержень, направленный на Солнце, подается напряжение для генерации магнитного поля, которое будет притягивать электроны. На другом конце располагается приемник-ловушка электронов, состоящая из паруса и приемника.

По расчетам Харропа, спутник с 300-метровым стержнем, толщиной 1 см и 10-метровой ловушкой, на орбите Земли сможет «собирать» до 1,7 МВт. Этого достаточно для обеспечения энергией примерно 1000 частных домов. Тот же спутник, но уже с километровым стержнем и парусом в 8400 километров сможет «собирать» уже 1 миллиард миллиардов гигаватт энергии (10 27 Вт). Остается только передать эту энергию на Землю, чтобы отказаться от всех остальных ее видов.

Команда Харропа предлагает передавать энергию с помощью лазерного луча. Однако, если конструкция самого спутника довольно проста и вполне реализуема на современном уровне технологий, то создание лазерного «кабеля» пока технически невозможно. Дело в том, что для эффективного сбора солнечного ветра спутник Дайсона-Харропа должен лежать вне плоскости эклиптики, а значит находится в миллионах километров от Земли. На таком расстоянии луч лазера будет давать пятно, диаметром в тысячи километров. Адекватная же фокусирующая система потребует объектив от 10 до 100 метров в диаметре. Кроме этого, нельзя исключать многие опасности от возможных сбоев системы. С другой стороны, энергия требуется и в самом космосе, и небольшие спутники Дайсона-Харропа вполне могут стать ее основным источником, заменив солнечные батареи и ядерные реакторы.

Атмосфера Солнца на 90% состоит из водорода. Самая удаленная от поверхности ее часть называется короной Солнца, она отчетливо видна при полных солнечных затмениях. Температура короны достигает 1,5-2 млн. К, и газ короны полностью ионизирован. При такой температуре плазмы тепловая скорость протонов порядка 100 км/с, а электронов - несколько тысяч километров в секунду. Для преодоления солнечного притяжения достаточна начальная скорость 618 км/с, вторая космическая скорость Солнца. Поэтому постоянно происходит утечка плазмы из солнечной короны в космос. Этот поток протонов и электронов и называется солнечным ветром.

Преодолев притяжение Солнца, частицы солнечного ветра летят по прямым траекториям. Скорость каждой частицы с удалением почти не меняется, но бывает она разной. Эта скорость зависит главным образом от состояния солнечной поверхности, от «погоды» на Солнце. В среднем она равна v ≈ 470 км/с. Расстояние до Земли солнечный ветер проходит за 3-4 суток. При этом плотность частиц в нем убывает обратно пропорционально квадрату расстояния до Солнца. На расстоянии, равном радиусу земной орбиты, в 1 см 3 в среднем находится 4 протона и 4 электрона.

Солнечный ветер уменьшает массу нашей звезды - Солнца - на 10 9 кг в секунду. Хотя это число по земным масштабам и кажется большим, реально оно мало: убыль солнечной массы может быть замечена только за времена, в тысячи раз превышающие современный возраст Солнца, который равен приблизительно 5 млрд. лет.

Интересно и непривычно взаимодействие солнечного ветра с магнитным полем. Известно, что заряженные частицы обычно движутся в магнитном поле Н по окружности или по винтовым линиям. Это верно, однако, только когда магнитное поле достаточно сильное. Точнее говоря, для движения заряженных частиц по окружности нужно, чтобы плотность энергии магнитного поля H 2 /8π была больше, чем плотность кинетической энергии движущейся плазмы ρv 2 /2. В солнечном ветре ситуация обратная: магнитное поле слабое. Поэтому заряженные частицы движутся по прямым, а магнитное поле при этом не постоянно, оно перемещается вместе с потоком частиц, как бы уносится этим потоком на периферию Солнечной системы. Направление магнитного поля во всем межпланетном пространстве остается таким, каким оно было на поверхности Солнца в момент выхода плазмы солнечного ветра.

Магнитное поле при обходе вдоль экватора Солнца, как правило, меняет свое направление 4 раза. Солнце вращается: точки на экваторе совершают оборот за Т = 27 суток. Поэтому межпланетное магнитное поле направлено по спиралям (см. рис.), а вся картина этого рисунка вращается вслед за вращением солнечной поверхности. Угол поворота Солнца меняется, как φ = 2π/Т. Расстояние от Солнца увеличивается со скоростью солнечного ветра: г = vt. Отсюда уравнение спиралей на рис. имеет вид: φ = 2πr/vT. На расстоянии земной орбиты (r = 1,5 10 11 м) угол наклона магнитного поля к радиусу-вектору составляет, как легко проверить, 50°. В среднем такой угол и измеряется космическими кораблями, но не совсем близко от Земли. Вблизи же планет магнитное поле устроено иначе (см. Магнитосфера).

В 1957 профессор Чикагского университета Е.Паркер теоретически предсказал явление, которое и получило наименование «солнечный ветер». Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3» группой К.И.Грингауза. Что же представляет собой это явление?

Солнечный ветер – это поток полностью ионизованного водородного газа, называемого обычно полностью ионизованной водородной плазмой в силу примерно одинаковой плотности электронов и протонов (условие квазинейтральности), который с ускорением движется от Солнца. В районе орбиты Земли (на одной астрономической единице или, на 1 АЕ от Солнца) его скорость достигает среднего значения V E » 400–500 км/сек при температуре протонов T E » 100 000К и несколько большей температуре электронов (индекс «Е» здесь и в дальнейшем относится к орбите Земли). При таких температурах скорость на 1 АЕ существенно превосходит скорость звука, т.е. поток солнечного ветра в районе орбиты Земли является сверхзвуковым (или гиперзвуковым). Измеренная концентрация протонов (или электронов) достаточно мала и составляет величину n E » 10–20 частиц в кубическом сантиметре. Кроме протонов и электронов, в межпланетном космическом пространстве были обнаружены альфа-частицы (порядка нескольких процентов от концентрации протонов), небольшое количество более тяжелых частиц, а также межпланетное магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1g = 10 –5 гаусс).

Крах представления о статической солнечной короне.

В течение достаточно длительного времени считалось, что все атмосферы звезд находятся в состоянии гидростатического равновесия, т.е. в состоянии, когда сила гравитационного притяжения данной звезды уравновешивается силой, связанной с градиентом давления (изменением давления в атмосфере звезды на расстоянии r от центра звезды. Математически это равновесие выражается в виде обыкновенного дифференциального уравнения,

где G – гравитационная постоянная, M * – масса звезды, p и r – давление и массовая плотность на некотором расстоянии r от звезды. Выражая массовую плотность из уравнения состояния для идеального газа

р = rRT

через давление и температуру и интегрируя полученное уравнение, получаем так называемую барометрическую формулу (R – газовая постоянная), которая в частном случае постоянной температуры Т имеет вид

где p 0 – представляет собой давление у основания атмосферы звезды (при r = r 0). Поскольку до работы Паркера считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось аналогичными формулами. Учитывая необычное и не до конца еще понятое явление резкого возрастания температуры примерно от 10 000 К на поверхности Солнца до 1 000 000 К в солнечной короне, С.Чепмен развил теорию статической солнечной короны, которая должна была плавно переходить в локальную межзвездную среду, окружающую Солнечную систему. Отсюда следовало, что, согласно представлениям С.Чепмена, Земля, совершающая свои обороты вокруг Солнца, погружена в статическую солнечную корону. Эта точка зрения в течение длительного времени разделялась астрофизиками.

Удар по этим уже установившимся представлениям был нанесен Паркером. Он обратил внимание на то, что давление на бесконечности (при r ® Ґ), которое получается из барометрической формулы, по величине почти в 10 раз превосходит давление, которое было принято в то время для локальной межзвездной среды. Чтобы устранить это расхождение Е.Паркер предположил, что солнечная корона не может находиться в гидростатическом равновесии, а должна непрерывно расширяться в окружающую Солнце межпланетную среду, т.е. радиальная скорость V солнечной короны не равна нулю. При этом вместо уравнения гидростатического равновесия он предложил использовать гидродинамическое уравнение движения вида, где М Е – масса Солнца.

При заданном распределении температуры Т , как функции расстояния от Солнца, решение этого уравнения с использованием барометрической формулы для давления и уравнение сохранения массы в виде

можно трактовать как солнечный ветер и именно при помощи этого решения с переходом от дозвукового течения (при r r *) к сверхзвуковому (при r > r *) можно согласовать давление р с давлением в локальной межзвездной среде, а, следовательно, именно это решение, названное солнечным ветром, осуществляется в природе.

Первые прямые измерения параметров межпланетной плазмы, которые проводились на первых космических аппаратах, выходивших в межпланетное космическое пространство, подтвердили правильность идеи Паркера о наличии сверхзвукового солнечного ветра, причем оказалось, что уже в районе орбиты Земли скорость солнечного ветра намного превосходит скорость звука. С тех пор нет сомнения, что представление Чепмена о гидростатическом равновесии солнечной атмосферы ошибочно, а солнечная корона непрерывно расширяется со сверхзвуковой скоростью в межпланетное космическое пространство. Несколько позже астрономические наблюдения показали, что и многие другие звезды обладают «звездными ветрами», аналогичными солнечному ветру.

Несмотря на то, что солнечный ветер предсказан теоретически на основе сферически-симметричной гидродинамической модели, само явление оказалось значительно сложнее.

Какова реальная картина движения солнечного ветра? В течение длительного времени солнечный ветер считался сферически-симметричным, т.е. независимым от солнечных широты и долготы. Поскольку космические аппараты до 1990, когда был запущен космический аппарат «Улисс» (Ulysses), в основном, летали в плоскости эклиптики, то измерения на таких космических аппаратах давали распределения параметров солнечного ветра только в этой плоскости. Расчеты, проводимые по наблюдениям отклонения хвостов комет, указывали на приблизительную независимость параметров солнечного ветра от солнечной широты, однако, этот вывод на основании кометных наблюдений не был достаточно надежен из-за сложностей интерпретации этих наблюдений. Хотя долготная зависимость параметров солнечного ветра измерялась приборами, установленными на космических аппаратах, тем не менее, она была либо незначительной и связывалась с межпланетным магнитным полем солнечного происхождения, либо с кратковременными нестационарными процессами на Солнце (главным образом, с солнечными вспышками).

Измерения параметров плазмы и магнитного поля в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят, таким образом, от солнечной долготы. Качественно четырехсекторная структура показана на рис. 1.

При этом наземные телескопы обнаруживают общее магнитное поле на поверхности Солнца. Его средняя величина оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например, в солнечных пятнах магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то солнечные магнитные поля так или иначе взаимодействуют с солнечным ветром вследствие появления пондеромоторной силы j ґ B . Эта сила мала в радиальном направлении, т.е. она практически не влияет на распределение радиальной компоненты солнечного ветра, однако ее проекция на перпендикулярное к радиальному направление приводит к появлению у солнечного ветра тангенциальной компоненты скорости. Хотя эта компонента почти на два порядка меньше радиальной, она играет существенную роль в выносе из Солнца момента количества движения. Астрофизики предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и у других звезд, у которых обнаружен звездный ветер. В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче ими вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы в присутствии магнитного поля открывает возможность пересмотра этой гипотезы.

Измерения среднего магнитного поля не только в районе орбиты Земли, но и на больших гелиоцентрических расстояниях (например, на космических аппаратах «Вояджер 1 и 2» и «Пионер 10 и 11») показали, что в плоскости эклиптики, почти совпадающей с плоскостью солнечного экватора, его величина и направление хорошо описывается формулами

полученными Паркером. В этих формулах, описывающих так называемую паркеровскую спираль Архимеда, величины B r , B j – радиальная и азимутальная компоненты вектора магнитной индукции соответственно, W – угловая скорость вращения Солнца, V – радиальная компонента солнечного ветра, индекс «0» относится к точке солнечной короны, в которой величина магнитного поля известна.

Запуск Европейским космическим агентством в октябре 1990 космического аппарата «Улисс», траектория которого была рассчитана таким образом, что в настоящее время он вращается вокруг Солнца в плоскости, перпендикулярной плоскости эклиптики, полностью изменил представления о том, что солнечный ветер сферически симметричен. На рис. 2 представлены измеренные на аппарате «Улисс» распределения радиальной скорости и плотности протонов солнечного ветра как функции солнечной широты.

Из этого рисунка видна сильная широтная зависимость параметров солнечного ветра. Оказалось, что скорость солнечного ветра возрастает, а плотность протонов уменьшается с гелиографической широтой. И если в плоскости эклиптики радиальная скорость в среднем ~ 450 км/cек, а плотность протонов ~15 см –3 , то, например, на 75° солнечной широты эти величины ~700км/сек и ~5 см –3 соответственно. Зависимость параметров солнечного ветра от широты менее выражена в периоды минимума солнечной активности.

Нестационарные процессы в солнечном ветре.

Модель, предложенная Паркером, предполагает сферическую симметрию солнечного ветра и независимость его параметров от времени (стационарность рассматриваемого явления). Однако процессы, происходящие на Солнце, вообще говоря, не являются стационарными, а следовательно, и солнечный ветер не является стационарным. Характерные времена изменения параметров имеют самые различные масштабы. В частности, имеют место изменения параметров солнечного ветра, связанные с 11-летним циклом солнечной активности. На рис. 3 показано измеренное при помощи космических аппаратов IMP-8 и Voyager-2 среднее (за 300 дней) динамическое давление солнечного ветра (r V 2) в районе орбиты Земли (на 1 АЕ) в течение одного 11-летнего солнечного цикла солнечной активности (верхняя часть рисунка). На нижней части рис. 3 изображено изменение числа солнечных пятен за время с 1978 по 1991 (максимальное число соответствует максимуму солнечной активности). Видно, что параметры солнечного ветра существенно меняются за характерное время порядка 11-лет. При этом измерения на космическом аппарате «Улисс» показали, что такие изменения происходят не только в плоскости эклиптики, но и на других гелиографических широтах (на полюсах динамическое давление солнечного ветра несколько выше, чем на экваторе).

Изменения параметров солнечного ветра могут происходить и на гораздо меньших временных масштабах. Так, например, вспышки на Солнце и разные скорости истечения плазмы из разных областей солнечной короны приводят к тому, что в межпланетном пространстве образуются межпланетные ударные волны, которые характеризуются резким скачком скорости, плотности, давления, температуры. Качественно механизм их образования показан на рис. 4. Когда быстрый поток какого-либо газа (например, солнечной плазмы) догоняет более медленный, то в месте их соприкосновения возникает произвольный разрыв параметров газа, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности, на две ударные волны (на них законы сохранения массы импульса и энергии приводят к так называемым соотношениям Гюгонио) и тангенциальный разрыв (те же законы сохранения приводят к тому, что на нем давление и нормальная компонента скорости должны быть непрерывны). На рис. 4 этот процесс показан в упрощенной форме сферически симметричной вспышки. Здесь надо отметить, что такие структуры, состоящие из впереди идущей ударной волны (forward shock), тангенциального разрыва и второй ударной волны (reverse shock) движутся от Солнца таким образом, что forward shock движется со скоростью, большей скорости солнечного ветра, reverse shock движется от Солнца со скоростью несколько меньшей скорости солнечного ветра, а скорость тангенциального разрыва равна скорости солнечного ветра. Такие структуры регулярно регистрируются приборами, установленными на космических аппаратах.

Об изменении параметров солнечного ветра с расстоянием от солнца.

Изменение скорости солнечного ветра с расстоянием от Солнца определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления (градиентом давления). Поскольку сила гравитации убывает как квадрат расстояния от Солнца, то на больших гелиоцентрических расстояниях ее влияние несущественно. Расчеты показывают, что уже на орбите Земли ее влиянием, также как и влиянием градиента давления, можно пренебречь. Следовательно, скорость солнечного ветра можно считать почти постоянной. При этом она существенно превосходит скорость звука (течение гиперзвуковое). Тогда из приведенного выше гидродинамического уравнения для солнечной короны следует, что плотность r убывает как 1/r 2 . Американские космические аппараты «Вояджер 1 и 2», «Пионер 10 и 11», запущенные в середине 1970-ых и сейчас находящиеся на расстояниях от Солнца в несколько десятков астрономических единиц, подтвердили эти представления о параметрах солнечного ветра. Они подтвердили также и предсказанную теоретически паркеровскую спираль Архимеда для межпланетного магнитного поля. Однако температура не следует адиабатическому закону охлаждения при расширении солнечной короны. На очень больших расстояниях от Солнца солнечный ветер имеет даже тенденцию к разогреву. Такой разогрев может быть обусловлен двумя причинами: диссипацией энергии, связанной с плазменной турбулентностью, и влиянием нейтральных атомов водорода, проникающих в солнечный ветер из межзвездной среды, окружающей солнечную систему. Вторая причина приводит и к некоторому торможению солнечного ветра на больших гелиоцентрических расстояниях, обнаруженная на вышеупомянутых космических аппаратах.

Заключение.

Таким образом, солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности Земли, поскольку эти процессы в той или иной степени оказывают влияние на нашу жизнь. В частности, высокоскоростные потоки солнечного ветра, обтекая магнитосферу Земли, влияют на ее строение, а нестационарные процессы на Солнце (например, вспышки) могут приводить к магнитным бурям, нарушающим радиосвязь и влияющим на самочувствие метеочувствительных людей. Поскольку солнечный ветер зарождается в солнечной короне, то его свойства в районе орбиты Земли являются хорошим индикатором для изучения важных для практической деятельности человека солнечно-земных связей. Однако это уже другая область научных исследований, которой мы не будем касаться в настоящей статье.

Владимир Баранов