Соответствие между механическими и электрическими величинами. Урок физики «Механические и электромагнитные колебания

При электромагнитных колебаниях в колебательной системе происходят периодические изменения физических величин, связанных с изменениями электрического и магнитного полей. Простейшей колебательной системой такого типа является колебательный контур , то есть цепь, содержащая индуктивность и емкость.

Благодаря явлению самоиндукции в такой цепи возникают колебания заряда на обкладках конденсатора, силы тока, напряженностей электрического поля конденсатора и магнитного поля катушки, энергии этих полей и т.д. При этом математическое описание колебаний оказывается полностью аналогичным рассмотренному выше описанию механических колебаний. Приведем таблицу физических величин, являющихся взаимными аналогами при сравнении двух типов колебаний.

Механические колебания пружинного маятника Электромагнитные колебания в колебательном контуре
m – масса маятника L – индуктивность катушки
k – жесткость пружины – величина, обратная емкости конденсатора.
r – коэффициент сопротивления среды R – активное сопротивление контура
x – координата маятника q – заряд конденсатора
u – скорость маятника i – cила тока в контуре
Е р – потенциальная энергия маятника W E – энергия электр. поля контура
Е к – кинетическая энергия маятника W H – энергия магнит. поля контура
F m – амплитуда внешней силы при вынужденных колебаниях E m – амплитуда вынуждающей ЭДС при вынужденных колебаниях

Таким образом, все математические соотношения, приведенные выше, можно перенести на электромагнитные колебания в контуре, заменив все величины на их аналоги. Например, сравним формулы для периодов собственных колебаний:

– маятник, – контур. (28)

Налицо их полная идентичность.

Волна – это процесс распространения колебаний в пространстве. В зависимости от физической природы процесса волны делятся на механические (упругие, звуковые, ударные, волны на поверхности жидкости и т. д.) и электромагнитные.

В зависимости от направления колебаний волны бывают продольные и поперечные. В продольной волне колебания происходят вдоль направления распространения волны, а в поперечной – перпендикулярно этому направлению.

Механические волны распространяются в некоторой среде (твердой, жидкой или газообразной). Электромагнитные волны могут распространяться и в пустоте.

Несмотря на разную природу волн, их математическое описание практически одинаково, подобно тому, как механические и электромагнитные колебания описываются уравнениями одинакового вида.

Механические волны

Приведем основные понятия и характеристики волн.

x – обобщенная координата – любая величина, совершающая колебания при распространении волны (например, смещение точки от положения равновесия).

l – длина волны – наименьшее расстояние между точками, колеблющимися с разностью фаз 2p (расстояние, на которое волна распространяется за один период колебаний):

где u – фазовая скорость волны, T – период колебаний.

Волновая поверхность – геометрическое место точек, колеблющихся в одинаковой фазе.

Фронт волны – геометрическое место точек, до которых дошли колебания к данному моменту времени (передняя волновая поверхность).

В зависимости от формы волновых поверхностей волны бывают плоские, сферические и т. п.

Уравнение плоской волны, распространяющейся вдоль оси x, имеет вид

x (х, t) = x m cos(wt – kx) , (30)

где – волновое число.

Уравнение плоской волны, распространяющейся в произвольном направлении:

где – волновой вектор, направленный по нормали к волновой поверхности.

Уравнением сферической волны будет

, (32)

из чего видно, что амплитуда сферической волны убывает по закону 1/r.

Фазовая скорость волны, т.е. скорость, с которой движутся волновые поверхности, зависит от свойств среды, в которой распространяется волна.

фазовая скорость упругой волны в газе, где g – коэффициент Пуассона, m – молярная масса газа, T – температура, R – универсальная газовая постоянная.

фазовая скорость продольной упругой волны в твердом теле, где E – модуль Юнга,

r – плотность вещества.

фазовая скорость поперечной упругой волны в твердом теле, где G – модуль сдвига.

Волна, распространяясь в пространстве, переносит энергию. Количество энергии, переносимой волной через некоторую поверхность в единицу времени, называется потоком энергии Ф. Для характеристики переноса энергии в разных точках пространства вводится векторная величина, называемая плотностью потока энергии . Она равна потоку энергии через единичную площадку, перпендикулярную направлению распространению волны, а по направлению совпадает с направлением фазовой скорости волны.

, (36)

где w – объемная плотность энергии волны в данной точке.

Вектор иначе называется вектором Умова.

Среднее по времени значение модуля вектора Умова называется интенсивностью волны I.

I = < j > . (37)

Электромагнитные волны

Электромагнитная волна – процесс распространения в пространстве электромагнитного поля. Как говорилось ранее, математическое описание электромагнитных волн аналогично описанию механических волн, таким образом, необходимые уравнения можно получить, заменив в формулах (30) – (33) x на или , где –напряженности электрического и магнитного полей. Например, уравнения плоской электромагнитной волны выглядят следующим образом:

. (38)

Волна, описываемая уравнениями (38), показана на рис. 5.

Как видно, векторы и образуют с вектором правовинтовую систему. Колебания этих векторов происходят в одинаковой фазе. В вакууме электромагнитная волна распространяется со скоростью света С = 3×10 8 м/с. В веществе фазовая скорость

где r – коэффициент отражения.

Волновая оптика

Волновая оптика рассматривает круг явлений, связанных с распространением света, которые можно объяснить, представляя свет как электромагнитную волну.

Основное понятие волновой оптики – световая волна . Под световой волной понимают электрическую составляющую электромагнитной волны, длина волны которой в вакууме l 0 лежит в пределах 400 – 700 нм. Такие волны воспринимает человеческий глаз. Уравнение плоской световой волны можно представить в виде

E = Acos(wt – kx + a 0) , (43)

где А – принятое обозначение амплитуды светового вектора Е, a 0 – начальная фаза (фаза при t = 0, x = 0).

В среде с показателем преломления n фазовая скорость световой волны равна u = c/n, а длина волны l = l 0 /n . (44)

Интенсивность световой волны, как следует из (41), определяется средним значением вектора Пойнтинга I = < S >, и можно показать, что

Дата 05.09.2016

Тема: «Механические и электромагнитные колебания. Аналогия между механическими и электромагнитными колебаниями.»

Цель:

    провести полную аналогию между механическими и электромагнитными колебаниями, выявив сходство и различие между ними

    научить обобщению, синтезу, анализу и сравнению теоретического материала

    воспитание отношения к физике, как к одному из фундаментальных компонентов естествознания.

ХОД УРОКА

Проблемная ситуация: Какое физическое явление мы будем наблюдать, если отклонить шарик от положения равновесия и опустить? (продемонстрировать)

Вопросы классу: Какое движение совершает тело? Сформулируйте определение колебательного процесса.

Колебательный процесс - это процесс, который повторяется через определённые промежутки времени.

1. Сравнительные характеристики колебаний

Фронтальная работа с классом по плану (проверка осуществляется через проектор).

    Определение

    Как можно получить? (с помощью чего и что для этого надо сделать)

    Можно ли увидеть колебания?

    Сравнение колебательных систем.

    Превращение энергии

    Причина затуханий свободных колебаний.

    Аналогичные величины

    Уравнение колебательного процесса.

    Виды колебаний.

    Применение

Учащиеся в ходе рассуждений приходят к полному ответу на поставленный вопрос и сравнивают его с ответом на экране.

кадр на экране

Механические колебания

Электромагнитные колебания

Сформулируйте определения механических и электромагнитных колебаний

это периодические изменения координаты, скорости и ускорения тела.

это периодические изменения заряда, силы тока и напряжения

Вопрос учащимся: Что общего в определениях механических и электромагнитных колебаний и чем они отличаются!

Общее: в обоих видах колебаний происходит периодическое изменение физических величин.

Отличие: В механических колебаниях - это координата, скорость и ускорение В электромагнитных - заряд, сила тока и напряжение.

Вопрос учащимся

кадр на экране

Механические колебания

Электромагнитные колебания

Как можно получить колебания?

С помощью колебательной системы (маятников)

С помощью колебательной системы (колебательного контура), состоящего из конденсатора и катушки.

а) пружинного;

б) математического

Вопрос учащимся: Что общего в способах получения и чем они отличаются?

Общее: и механические, и электромагнитные колебания можно получить с помощью колебательных систем

Отличие: различные колебательные системы - у механических - это маятники,
а у электромагнитных - колебательный контур.

Демонстрация учителя: показать нитяной, вертикальный пружинный маятники и колебательный контур.

кадр на экране

Механические колебания

Электромагнитные колебания

«Что необходимо сделать, чтобы в колебательной системе возникли колебания?»

Вывести маятник из положения равновесия: отклонить тело от положения равновесия и опустить

вывести контур из положения равновесия: зарядить конденса­ тор от источника постоянного напряжения (ключ в положении 1), а затем перевести ключ в положение 2.

Демонстрация учителя: Демонстрации механических и электромагнитных колебаний (можно использовать видеосюжеты)

Вопрос учащимся: « Что общего в показанных демонстрациях и их отличие?»

Общее: колебательная система выводилась из положения равновесия и получала запас энергии.

Отличие: маятники получали запас потенциальной энергии, а колебательная система - запас энергии электрического поля конденсатора.

Вопрос учащимся: Почему электромагнитные колебания нельзя наблюдать также как и механические (визуально)

Ответ: так как мы не можем увидеть, как происходит зарядка и перезарядка конденсатора, как течёт ток в контуре и в каком направлении, как меняется напряжение между пластинами конденсатора

2 Работа с таблицами

Сравнение колебательных систем

Работа учащихся с таблицей № 1 , в которой заполнена верхняя часть (состояние колебательного контура в различные моменты времени), с самопроверкой на экране.

Задание: заполнить среднюю часть таблицы (провести аналогию между состоянием колебательного контура и пружинного маятника в различные моменты времени)

Таблица № 1: Сравнение колебательных систем

После заполнения таблицы на экран проецируется заполненные 2 части таблицы и учащиеся сравнивают свою таблицу с той, что на экране.

Кадр на экране

Вопрос учащимся: посмотрите на эту таблицу и назовите аналогичные величины:

Ответ: заряд - смещение, сила тока - скорость.

Дома: заполнить нижнюю часть таблицы № 1 (провести аналогию между состоянием колебательного контура и математического маятника в различные моменты времени).

Превращение энергии в колебательном процессе

Индивидуальная работа учащихся с таблицей № 2 , в которой заполнена правая часть (превращение энергии в колебательном процессе пружинного маятника) с самопроверкой на экране.

Задание учащимся: заполнить левую часть таблицы, рассмотрев превращение энергии в колебательном контуре в различные моменты времени (можно использовать учебник или тетрадь).

на конденсаторе находится максимальный заряд – q m ,

смещение тела от положения равновесия максимально – x m ,


при замыкании цепи конденсатор начинает разряжаться через катушку; возникает ток и связанное с ним магнитное поле. Вследствие самоин дукции сила тока нарастает постепенно

тело приходит в движение, его скорость возрастает постепенно вследствие инертности тела

конденсатор разрядился, сила тока максимальна – I m ,

при прохождении положения равновесия скорость тела макси мальна – v m ,

вследствие самоиндукции сила тока уменьшается постепенно, в катушке возникает индукционный ток и конденсатор начинает перезаряжаться

тело, достигнув положение равновесия, продолжает движение по инерции с постепенно уменьшаю щейся скоростью

конденсатор перезарядился, знаки заряда на обкладках поменялись

пружина максимально растянута, тело сместилось в другую сторону

разрядка конденсатора возобнов ляется, ток течёт в другом направле нии, сила тока постепенно растёт

тело начинает движение в противо положном направлении, скорость постепенно растёт

конденсатор полностью разрядился, сила тока в цепи максимальна - I m

тело проходит положение равнове сия, его скорость максимальна - v m

вследствие самоиндукции ток продол жает течь в том же направлении, конденсатор начинает заряжаться

по инерции тело продолжает двигаться в том же направлении к крайнему положению

конденсатор снова заряжен, ток в цепи отсутствует, состояние контура аналогично первоначальному

смещение тела максимально. Его скорость равна 0 и состояние аналогично первоначальному


После индивидуальной работы с таблицей учащиеся анализируют свою работу, сравнивая свою таблицу с той, что на экране.

Вопрос классу: аналогию каких величин вы увидели в этой таблице?

Ответ: кинетическая энергия - энергия магнитного поля,

потенциальная энергия - энергия электрического поля

инерция - самоиндукция

смещение - заряд, скорость - сила тока.

Затухание колебаний:

Вопрос учащимся

кадр на экране

Механические колебания

электромагнитные колебания

Почему свободные колебания затухают?

колебания затухают под действием силы трения (сопротивления воздуха)

колебания затухают, так как контур обладает сопротивлением

Вопрос учащимся: аналогию каких величин вы здесь увидели?

Ответ: коэффициента трения и сопротивления

В результате заполнения таблиц учащиеся пришли к выводу, что существуют аналогичные величины.

Кадр на экране:

Аналогичные величины:

Дополнение учителя: аналогичными так же являются: масса - индуктивность, жёсткость - величина, обратная ёмкости.

Видеосюжеты: 1) возможные видеосюжеты свободных колебаний

Механические колебания

Электромагнитные колебания

шарик на нити, качели, ветка дерева, после того как с неё слетела птица, струна гитары

колебания в колебательном контуре


2) возможные видеосюжеты вынужденных колебаний:

игла швейной машины, качели, когда их раскачивают, ветка дерева на ветру, поршень в двигателе внутреннего c горания

работа электробытовых приборов, линии электропередач, радио, телевидение, телефонная связь, магнит, который вдвигают в катушку


кадр на экране

Механические колебания

Электромагнитные колебания

Сформулируйте Определения свободных и вынужденных колебаний.

Свободные - это колебания, которые происходят без воздействия внешней силы Вынужденные - это колебания, которые происходят под воздействием внешней перио дической силы.

Свободные - это колебания, которые происходят без воздействия переменной ЭДС Вынужденные - это колебания, которые происходят под воздействием переменной ЭДС

Вопрос учащимся: Что общего в этих определениях?

Ответ; свободные колебания происходят без воздействия внешней силы, а вынужденные - под воздействием внешней периодической силы.

Вопрос учащимся: Какие ещё виды колебаний вы знаете? Сформулируйте определение.

Ответ: Гармонические колебания - это колебания, которые происходят по закону синуса или косинуса.

Возможные применения колебаний:

    Колебание геомагнитного поля Земли под действием ультрафиолетовых лучей и солнечного ветра (видеосюжет)

    Влияние колебаний магнитного поля Земли на живые организмы, движение клеток крови (видеосюжет)

    Вредная вибрация (разрушение мостов при резонансе, разрушение самолётов при вибрации) - видеосюжет

    Полезная вибрация (полезный резонанс при уплотнении бетона, вибросортировка - видеосюжет

    Электрокардиограмма работы сердца

    Колебательные процессы в человеке (колебание барабанной перепонки, голосовых связок, работа сердца и лёгких, колебания клеток крови)

Дома: 1) заполнить таблицу № 3 (используя аналогию вывести формулы для колебательного процесса математического маятника и колебательного контура),

2) заполнить таблицу № 1 до конца (провести аналогию между состояниями колебательного контура и математического маятника в различные моменты времени.

Выводы по уроку: в ходе урока учащиеся провели сравнительный анализ на основе ранее изученного материала, тем самым систематизировали материал по теме: «Колебания»; рассмотрели применение на примерах из жизни.

Таблица №3. Уравнение колебательного процесса

Выразим h через х из подобия ∆АОЕ и ∆АВС


§ 29. Аналогия между механическими и электромагнитными колебаниями

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине (пружинный маятник). Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

При механических колебаниях периодически изменяются координата тела х и проекция его скорости v x , а при электромагнитных колебаниях изменяются заряд q конденсатора и сила тока i в цепи. Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых возникают механические и электромагнитные колебания.

Возвращение к положению равновесия тела на пружине вызывается силой упругости F x упр, пропорциональной смещению тела от положения равновесия. Коэффициентом пропорциональности является жесткость пружины k .

Разрядка конденсатора (появление тока) обусловлена напряжением и между пластинами конденсатора, которое пропорционально заряду q . Коэффициентом пропорциональности является величина обратная емкости, так как

Подобно тому как, вследствие инертности, тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю, электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу, когда это напряжение становится равным нулю. Индуктивность контура L выполняет ту же роль, что и масса тела m при механических колебаниях. Соответственно кинетическая энергия тела аналогична энергии магнитного поля тока

Зарядка конденсатора от батареи аналогична сообщению телу, прикрепленному к пружине, потенциальной энергии при смещении тела на расстояние х m от положения равновесия (рис. 4.5, а). Сравнивая это выражение с энергией конденсатора замечаем, что жесткость k пружины выполняет при механических колебаниях такую же роль, как величина обратная емкости, при электромагнитных колебаниях. При этом начальная координата х m соответствует заряду q m .

Возникновение в электрической цепи тока i соответствует появлению в механической колебательной системе скорости тела v х под действием силы упругости пружины (рис. 4.5, б).

Момент времени, когда конденсатор разрядится, а сила тока достигнет максимума, аналогичен тому моменту времени, когда тело будет проходить с максимальной скоростью (рис. 4.5, в) положение равновесия.

Далее конденсатор в ходе электромагнитных колебаний начнет перезаряжаться, а тело в ходе механических колебаний - смещаться влево от положения равновесия (рис. 4.5, г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю.

При механических колебаниях этому соответствует отклонение тела в крайнее левое положение, когда его скорость равна нулю (рис. 4.5, д). Соответствие между механическими и электрическими величинами при колебательных процессах можно свести в таблицу.

Электромагнитные и механические колебания имеют разную природу, но описываются одинаковыми уравнениями.

Вопросы к параграфу

1. В чем проявляется аналогия между электромагнитными колебаниями в контуре и колебаниями пружинного маятника?

2. За счет какого явления электрический ток в колебательном контуре не исчезает сразу, когда напряжение на конденсаторе становится равным нулю?

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ.

  1. Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания , так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания - незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

  1. КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R. Идеальный контур – если сопротивлением можно пренебречь, то есть, только конденсатор С и идеальная катушка L.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

  1. ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Аналогия механических и электромагнитных колебаний

Характеристики:

Механические колебания

Электромагнитные колебания

Величины, выражающие свойства самой системы (параметры системы):

m- масса (кг)

k- жесткость пружины (Н/м)

L- индуктивность (Гн)

1/C- величина, обратная емкости (1/Ф)

Величины, характеризующие состояние системы:

Кинетическая энергия (Дж)

Потенциальная энергия (Дж)

х - смещение (м)

Электрическая энергия(Дж )

Магнитная энергия (Дж)

q - заряд конденсатора (Кл)

Величины, выражающие изменение состояния системы:

v = x"(t) скорость-быстрота смещения (м/с)

i = q"(t) сила тока – быстрота изменения заряда (А)

Другие характеристики:

T=1/ν

T=2π/ω

ω=2πν

T- период колебаний время одного полного колебания(с)

ν- частота-число колебаний за единицу времени (Гц)

ω - циклическая частота число колебаний за 2π секунд(Гц)

φ=ωt – фаза колебаний- показывает, какую часть от амплитудного значения принимает в данный момент колеблющаяся величина, т.е. фаза определяет состояние колеблющейся системы в любой момент времени t.

где q" - вторая производная заряда по времени.

Величина является циклической частотой. Такими же уравнениями описываются колебания тока, напряжения и других электрических и магнитных величин.

Одним из решений уравнения (1) является гармоническая функция

Это интегральное уравнение гармонических колебаний.

Период колебаний в контуре (формула Томсона):

Величина φ = ώt + φ 0 , стоящая под знаком синуса или косинуса, является фазой колебания.

Ток в цепи равен производной заряда по времени, его можно выразить

Напряжение на пластинах конденсатора изменяется по закону:

Где I max =ωq мак – амплитуда силы тока (А),

U max =q max /C - амплитуда напряжения (В)

Задание: для каждого состояния колебательного контура записать значения заряда на конденсаторе, тока в катушке, напряженности электрического поля, индукции магнитного поля, электрической и магнитной энергии.


Цель:

  • Демонстрация нового метода решения задач
  • Развитие абстрактного мышления, умения анализировать сравнивать, обобщать
  • Воспитание чувства товарищества, взаимопомощи, толерантности.

Темы “ Электромагнитные колебания” и “Колебательный контур” – психологически трудные темы. Явления, происходящие в колебательном контуре, не могут быть описаны при помощи человеческих органов чувств. Возможна только визуализация при помощи осциллографа, но и этом случае мы получим графическую зависимость и не можем непосредственно наблюдать за процессом. Поэтому они остаются интуитивно и эмпирически неясны.

Прямая аналогия между механическими и электромагнитными колебаниями помогает упростить понимание процессов и провести анализ изменения параметров электрических цепей. Кроме того упростить решение задач со сложными механическими колебательными системами в вязких средах. При рассмотрении данной темы ещё раз подчеркивается общность, простота и немногочисленность законов, необходимых для описания физических явлений.

Данная тема дается после изучения следующих тем:

  • Механические колебания.
  • Колебательный контур.
  • Переменный ток.

Необходимый набор знаний и умений:

  • Определения: координата, скорость, ускорение, масса, жесткость, вязкость, сила, заряд, сила тока, скорость изменения силы тока со временем (применение этой величины), электрическая емкость, индуктивность, напряжение, сопротивление, ЭДС, гармонические колебания, свободные, вынужденные и затухающие колебания, статическое смещение, резонанс, период, частота.
  • Уравнения, описывающие гармонические колебания (с использованием производных), энергетические состояния колебательной системы.
  • Законы: Ньютона, Гука, Ома (для цепей переменного тока).
  • Умение решать задачи на определение параметров колебательной системы (математический и пружинный маятник, колебательный контур), её энергетических состояний, на определение эквивалентного сопротивления, емкости, равнодействующей силы, параметров переменного тока.

Предварительно в качестве домашнего задания учащимся предлагаются задачи, решение которых значительно упрощается при использовании нового метода и задачи приводящие к аналогии. Задание может быть групповым. Одна группа учащихся выполняет механическую часть работы, другая часть, связанную с электрическими колебаниями.

Домашнее задание.

1а . Груз массой m, прикрепленный к пружине жесткостью k, отвели от положения равновесия и отпустили. Определите максимальное смещение от положения равновесия, если максимальная скорость груза v max

1б . В колебательном контуре, состоящем из конденсатора емкостью С и катушки индуктивности L, максимальное значение силы тока I max . Определите максимальное значение заряда конденсатора.

2а . На пружине жесткостью k подвешен груз массой m. Пружина выводится из состояния равновесия смещением груза от положения равновесия на А. Определите максимальное x max и минимальное x min смещение груза от точки, в которой находился нижний конец нерастянутой пружины и v max максимальную скорость груза.

2б . Колебательный контур состоит из источника тока с ЭДС равной Е, конденсатора емкостью С и катушки, индуктивности L и ключа. До замыкания ключа конденсатор имел заряд q. Определите максимальный q max и q min минимальный заряд конденсатора и максимальный ток в контуре I max.

При работе на уроках и дома используется оценочный лист

Вид деятельности

Самооценка

Взаимооценка

Физический диктант
Сравнительная таблица
Решение задач
Домашняя работа
Решение задач
Подготовка к зачету

Ход урока №1.

Аналогия между механическими и электрическими колебаниями

Введение в тему

1. Актуализация ранее полученных знаний.

Физический диктант с взаимопроверкой.

Текст диктанта

2. Проверка (работа в диадах, или самооценка)

3. Анализ определений, формул, законов. Поиск аналогичных величин.

Явная аналогия прослеживается между такими величинами как скорость и сила тока. . Далее прослеживаем аналогию между зарядом и координатой, ускорением и скоростью изменения силы тока с течением времени. Сила и ЭДС характеризуют внешнее воздействие на систему. По второму закону Ньютона F=ma, по закону Фарадея Е=-L. Следовательно, делаем вывод, что масса и индуктивность аналогичные величины. Необходимо обратить внимание на то, что эти величины сходны и по своему физическому смыслу. Т.е. данную аналогию можно получить и в обратном порядке, что подтверждает её глубокий физический смысл и правильность наших выводов. Далее сравниваем закон Гука F = -kx и определение емкости конденсатора U=. Получаем аналогию между жесткостью (величиной характеризующей упругие свойства тела) и величиной обратной емкости конденсатора (в результате можно говорить о том, что емкость конденсатора характеризует упругие свойства контура). В результате на основе формул потенциальной и кинетической энергии пружинного маятника, и , получаем формулы и . Так как это электрическая и магнитная энергия колебательного контура, то данный вывод подтверждает правильность полученной аналогии. На основании проведенного анализа составляем таблицу.

Пружинный маятник

Колебательный контур

4. Демонстрация решения задач № 1а и № 1б на доске. Подтверждение аналогии.

1а. Груз массой m, прикрепленный к пружине жесткостью k, отвели от положения равновесия и отпустили. Определите максимальное смещение от положения равновесия, если максимальная скорость груза v max

1б. В колебательном контуре, состоящем из конденсатора емкостью С и катушки индуктивности L, максимальное значение силы тока I max . Определите максимальное значение заряда конденсатора.

по закону сохранения энергии

cследовательно

Проверка размерности:

по закону сохранения энергии

Следовательно

Проверка размерности:

Ответ:

Во время выполнения решения задач на доске, учащиеся разделяются на две группы: “Механики” и “Электрики” и при помощи таблицы составляют текст аналогичный тексту задач 1а и 1б . В итоге замечаем, что текст и решение задач подтверждают сделанные нами выводы.

5. Одновременное выполнение на доске решения задач № 2а и по аналогии № 2б . При решении задачи дома должны были возникнуть трудности, так как аналогичные задачи не решались на уроках и процесс, описанный в условии неясен. Решение задачи проблем возникнуть не должно. Параллельное решение задач на доске при активной помощи класса должно привести к выводу о существовании нового метода решения задач через аналогии между электрическими и механическими колебаниями.

Решение:

Определим статическое смещение груза. Так как груз находится в состоянии покоя

Следовательно

Как видно из рисунка,

x max =x ст +А=(mg/k)+A,

x min =x ст -A=(mg/k)-A.

Определим максимальную скорость груза. Смещение от положения равновесия незначительно, следовательно колебания можно считать гармоническими. Примем, что в момент начала отсчета смещение было максимально, тогда

x=Acos t.

Для пружинного маятника =.

=x"=Asin t,

при sin t=1 = max .