Зависимость между величинами в виде формул. Представление зависимостей между величинами

МОДЕЛИРОВАНИЕ ЗАВИСИМОСТЕЙ МЕЖДУ ВЕЛИЧИНАМИ

ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ


  • Величина
  • Характеристики величины: имя, тип, значение
  • Функциональные и иные виды зависимостей
  • Математические модели
  • Динамические модели

Ключевые понятия


Применение математического моделирования

Применение математического моделирования постоянно требует учета зависимостей одних величин от других.

Примеры зависимостей:

  • время падения тела на землю зависит от его первоначальной высоты;
  • давление газа в баллоне зависит от его температуры;
  • уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.

Реализация математической модели требует владения приемами представления зависимостей между величинами.


Методы представления зависимостей

Величина – количественная характеристика исследуемого объекта

Характеристики величины

отражает смысл величины

определяет возможные значения величины

Значение

константа

переменная

Основные типы величин:

Пример константы – число Пифагора

Имя величины может быть

смысловым

смысловым

числовой

«давление газа»

В описании процесса падения тела переменными величинами являются высота H и время падения t

символьный

символическим

логический


Виды зависимостей

Функциональной зависимостью называется связь между двумя величинами, при которой изменение одной из них вызывает изменение другой.

Пример 1: t (c) – время падения; H (m) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой.

Пример 2: P (н/м 2) – давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °C – температура газа. Давление при нуле градусов P 0 будем считать константой для данного газа.

определенной .


Виды зависимостей

Иная зависимость носит более сложный характер, одна и та же величина может принять разные значения, поскольку на нее могут оказывать влияния и другие показатели.

Пример 3: Загрязненность воздуха характеризуется концентрацией примесей – С (мг/м 3). Единица измерения – массы примесей, содержится в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будет характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города P (бол./тыс.)

Зависимость между величинами является полностью определенной .


Математические модели

Математические модели - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Математические модели отражают физические законы и представляются в виде формул:

Линейная зависимость

Корневая зависимость (время пропорционально квадратному корню высоты)

В сложных задачах математические модели представляют в виде уравнений или систем уравнений.


Табличные и графические модели

Экспериментальным путем проверим закон свободного падения тела

Эксперимент: стальной шарик сброшен с 6-метровой, 9-метровой высоты и т.д. (через 3 метра), замеряя высоту начального положения шарика и время падения

Результат эксперимента представлен в таблице и графике

Н , м

t , c

Табличное и графическое представление зависимости времени падения тела от высоты


Динамические модели

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели .

В физике это движение тел, в биологии – развитие организмов или популяций животных,

в химии – протекание химических реакций.


Самое основное

  • Величина – количественная характеристика исследуемого объекта.
  • Характеристики величины:

Имя – отражает смысл величины

Тип – определяет возможные значения величин

Значение: постоянная величина (константа) или переменная

  • Имя – отражает смысл величины Тип – определяет возможные значения величин Значение: постоянная величина (константа) или переменная
  • Функциональной зависимостью называется связь между двумя величинами, при которой изменение одной из них вызывает изменение другой.
  • Существует три способа моделирования величин: функциональный (формула), табличный и графический
  • Формула более универсальна; имея формулу, можно легко создать таблицу и построить график.
  • Описание развития систем во времени – динамическая модель.

Вопросы и задания

  • Какие вам известны формы представления зависимостей между величинами?
  • Что такое математическая модель?
  • Может ли математическая модель включать в себя только константы?
  • Приведите пример известной вам функциональной зависимости (формулы) между характеристиками какого-то объекта или процесса.
  • Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.
  • Представьте математическую модель зависимости давления газа от температуры в виде табличной и графической модели, если известно, что при температуре 27 °С давление газа в закрытом сосуде было 75 кПа.

  • Информатика и ИКТ. Базовый уровень: учебник для 10-11 классов / И.Г. Семакин, Е.К. Хеннер. – 7-е изд. – М. : Бином. Лаборатория знаний, 2011. – 246. : ил.

Иллюстрации:

Источники

  • http://1.bp.blogspot.com/-u7m70qcqIdw/Ukh9R4Ga-9I/AAAAAAAAEkk/wIqkfCqOgGo/s1600/%25D0%2593%25D0%25B0%25D0%25BB%25D0%25B8%25D0%25BB%25D0%25B5%25D0%25BE.gif
  • http://ehsdailyadvisor.blr.com/wpcontent/uploads/2015/11/EHSDA_110615.jpg
  • http://himki.blizhe.ru/userfiles/Image/MIL-GRAFIK/dop-photo/PRIMESI.JPG
  • http://f.10-bal.ru/pars_docs/refs/12/11350/11350_html_mbb50c21.jpg

Тема: «Моделирование зависимостей между величинами»

Цели урока:

1. Познакомиться с понятиями:

«величины»,

«математическая модель»,

«табличная модель»,

«графическая модель»

Развивающие:

Создать условия для развития умения выделять главное, сравнивать, анализировать, обобщать.

Воспитательные:

Воспитывать внимательность, стремление довести дело до намеченного результата;

Установление взаимных контактов и обмен опытом между учащимися и преподавателем.

Оборудование: компьютер учителя с мультимедийным проектором.

План урока

Организационный момент (2 мин) Постановка целей урока. Объяснение нового материала. (17 мин) Закрепление нового материала (5 мин) Решение заданий из демоверсии ЕГЭ 2010г (15 мин) Подведение итогов (3 мин) Задание на дом (3 мин)

Ход урока

Сообщить учащимся тему урока. (слайд 1) Постановка цели урока

(слайд 2)

Цели урока:

1. Познакомиться с понятиями:

«величины»,

« зависимости между величинами»,

«математическая модель»,

«табличная модель»,

«графическая модель»

Рассмотреть на примерах зависимости между величинами.

2. Совершенствовать навыки решения заданий из КИМов ЕГЭ.

Объяснение нового материала. (17 мин)

(слайд 3)

Применение математического моделирования постоянно требует учета зависимостей одних величин от других.

1. Время падения тела на землю зависит от первоначальной высоты;

2. Давление газа в баллоне зависит от его температуры;

3. Частота заболеваний жителей бронхиальной астмой зависит от качества городского воздуха

(слайд 4)

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. Со всякой величиной связаны три основных свойства: имя, значения, тип.

Имя величины может быть полным (давление газа), а может быть символическим (Р). Для определенных величин используются стандартные имена: время – T, скорость – V, сила – F…

(слайд 5)

Если значение величины не меняется, то она называется постоянной величиной или константой

(π =3,14159…).

Величина, меняющая свое значение, называется переменной.

(слайд 6)

Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Так как мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.

(Слайд 7)

Вернемся к примерам и обозначим переменные величины, зависимости между которыми нас интересуют.

В примере 1:

Т (сек) – время падения; Н (м) – высота падения. Ускорения свободного падения g (м/сек2) – константа.

В примере 2: Р(н/м2) – давление газа; C - температура газа.

В примере 3:

Загрязненность воздуха характеризуется концентрацией примесей С(мг/куб. м). Уровень заболеваемости характеризуется числом хронических больных астмой на 1000 жителей данного города – Р(бол/тыс.)

(Слайд 8)

Рассмотрим Методы представления зависимостей

Математическая модель Табличная модель Графическая модель

(Слайд 9)

Математическая модель

Это совокупность количественных характеристик некоторого объекта(процесса) и связей между ними, представленных на языке математики.

Для первого примера математическая модель представляется в виде формулы:

455 " style="width:341.25pt">

(Слайд 11)

Графическая модель

и нарисуем график

(Слайд 12)

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели.

В физике динамические информационные модели описывают движение тел; в биологии – развитие организмов и популяций животных; в химии – протекание химических реакций и т. д

(слайд 13)

Решение задачи: (1 ученик у доски, остальные в тетрадях)

Построить математическую, табличную и графическую модели задачи:

Тело движется по закону x (t)=5 t2+2 t-5,

где x – перемещение в метрах, t – время в секундах. Найти скорость тела в момент времени t=2.

Построить таблицу, отражающую зависимость скорости тела от времени движения тела с интервалом в 3 секунды.

Закрепление изученного материала.

Ответьте на Вопросы:

1. Какие вам известны формы представления зависимостей между величинами? (ответ 1 ученика )

2. Обоснуйте преимущества и недостатки каждой из трёх форм представления

зависимостей. (ответ 1 ученика )

Решение заданий из демоверсии ЕГЭ 2010г (15 мин)

Повторение 10-ой, 2-ой, 8-ой и 16-ой систем счисления.

Решение задания из демоверсии ЕГЭ (1 )

1. Как представлено число 26310 в восьмеричной системе счисления?

Решение:

Как записывается число 5678 в двоичной системе счисления?

(1 ученик у доски, остальные в тетрадях )

Решение:

Как записывается число А8716 в восьмеричной системе счисления?

(1 ученик у доски, остальные в тетрадях )

Решение:

Задание А1 из демоверсии 2010г. (1 ученик у доски, остальные в тетрадях )

Дано: а=9D16, b=2378 . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству

Решение:

Подведение итогов (3 мин) Задание на дом (3 мин) §36, вопросы. Пример.

Дано: а= 3328, b= D416. Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству a

Планируемые результаты обучения математике в 5-6 классах

Арифметика

Понимать особенности десятичной системы счисления;

Использовать понятия, связанные с делимостью натуральных чисел;

Выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

Сравнивать и упорядочивать рациональные числа;

Выполнять вычисления с рациональными числами, соче­тая устные и письменные приёмы вычислений, применять калькулятор;

Использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выпол­нять несложные практические расчёты;

Анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Познакомиться с позиционными системами счисления с основаниями, отличными от 10;

Углубить и развить представления о натуральных числах и свойствах делимости;

Научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычис­ления, выбирая подходящий для ситуации способ.

По окончании изучения курса учащийся научится:

· выполнять операции с числовыми выражениями;

· выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);

· решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

· развить представления о буквенных выражениях и их преобразованиях;

· овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

Распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;



Строить углы, определять их градусную меру;

Распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

Определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

Вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

Научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

Углубить и развить представления о пространственных геометрических фигурах;

Научиться применять понятие развёртки для выполнения практических расчётов.

По окончании изучения курса учащийся научится:

Использовать простейшие способы представления и анализа статистических данных;

Решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

Приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

Научиться некоторым специальным приёмам решения комбинаторных задач.

Арифметика

Натуральные числа

Ряд натуральных чисел. Десятичная запись натураль­ных чисел. Округление натуральных чисел.

Координатный луч.

Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители. „

Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновен­ной дроби.

Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости. Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число 0.

Противоположные числа. Модуль числа.

Целые числа. Рациональные числа. Сравнение рацио­нальных чисел. Арифметические действия с рациональ­ными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы длины, площади, объёма, массы, времени, скорости.

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры. Измерения геометрических величин

Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

Угол. Виды углов. Градусная мера угла. Измерение и по­строение углов с помощью транспортира.

Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число.

Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры развёрток многогранников, цилиндра, конуса. Понятие и свойства объёма. Объём прямоугольного параллелепипеда и куба.

Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

Осевая и центральная симметрии.

Информатика и ИКТ 10-11 класс Семакин, Информатика 10-11 класс Семакин, Моделирование зависимостей между величинами, Величины и зависимости между ними, Различные методы представления зависимостей, Математические модели, Табличные и графические модели

Величины и зависимости между ними
Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:
1) время падения тела на землю зависит от его первоначальной высоты;
2) давление газа в баллоне зависит от его температуры;
3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.
Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Рассмотрим различные методы представления зависимостей.
Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.
С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связаны три основных свойства: имя, значение, тип.
Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора π = 3,14259... . Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.
А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.
1) t (с) — время падения; Н (м) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой.
2) Р (н/м 2) — давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °С — температура газа. Давление при нуле градусов Ро будем считать константой для данного газа.
3) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) — С (мг/м 3). Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города — Р (бол./тыс.).
Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разным, поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.
Математические модели
Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.
Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню высоты), вторую — линейной.
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.
В еще более сложных задачах (пример 3 — одна из них) зависимости тоже можно представить в математической форме, но не функциональной, а иной.
Табличные и графические модели
Рассмотрим примеры двух других, не формульных, способов представления зависимостей между величинами: табличного и графического. Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?)
В этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 6.1. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично.
Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежат в основе современной техники.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В примере 1 приведена именно такая модель. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т. д.
Система основных понятий

Моделирование зависимостей между величинами

Величина -

количественная характеристика исследуемого объекта

Характеристики величины

Значение

отражает смысл величины

определяет возможные значения величины

константа

Виды зависимостей:

Функциональные

Способы отображения зависимостей

Математическая

Табличная модель

Графическая

Описание развития систем во времени - динамическая модель