Что является причиной вызывающей процесс теплопроводности. Способы теплопередачи (теплообмена)

Любое материальное тело обладает такой характеристикой как теплота, которая может увеличиваться и уменьшаться. Теплота не является материальной субстанцией: как часть внутренней энергии вещества она возникает вследствие движения и взаимодействия молекул. Поскольку теплота различных веществ может отличаться, происходит процесс передачи тепла от более нагретой субстанции к веществу с меньшим количеством теплоты. Этот процесс носит название теплопередача. Основные и механизмы их действия мы рассмотрим в этой статье.

Определение теплопередачи

Теплообмен, или процесс переноса температуры, может происходить как внутри материи, так и от одного вещества к другому. При этом интенсивность теплообмена во многом зависит от физических свойств материи, температуры веществ (если в теплообмене участвуют несколько субстанций) и законов физики. Теплопередача - это процесс, который всегда протекает в одностороннем порядке. Главный принцип теплообмена заключается в том, что наиболее нагретое тело всегда отдаёт тепло объекту с меньшей температурой. Например, при глажке одежды горячий утюг отдаёт тепло брюкам, а не наоборот. Теплопередача - явление, зависимое от временного показателя, характеризующее необратимое распространение тепла в пространстве.

Механизмы теплопередачи

Механизмы теплового взаимодействия веществ могут приобретать разные формы. Известны три вида теплообмена в природе:

  1. Теплопроводность - механизм межмолекулярной передачи тепла из одного участка тела в другой или в иной объект. Свойство основывается на неоднородности температуры в рассматриваемых субстанциях.
  2. Конвекция - теплообмен между текучими средами (жидкая, воздушная).
  3. Лучевое воздействие - передача тепла от нагретых и нагреваемых за счёт своей энергии тел (источников) в виде электромагнитных волн с постоянным спектром.

Рассмотрим перечисленные виды теплообмена более подробно.

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Конвекционные виды теплообмена

Конвекция, свойственная в основном для газов и жидкостей, имеет два компонента: межмолекулярную теплопроводность и движение (распространение) среды. Механизм действия конвекции происходит следующим образом: при повышении температуры текучей субстанции её молекулы начинают более активное движение и при отсутствии пространственных ограничений объём вещества увеличивается. Следствием данного процесса будет уменьшение плотности субстанции и её движение вверх. Яркий пример конвекции - это движение нагретого радиатором воздуха от батареи к потолку.

Различают свободные и вынужденные конвективные виды теплообмена. Теплопередача и движение массы при свободном типе происходит за счёт неоднородности субстанции, то есть горячая жидкость поднимается над холодной естественным образом без оказания влияния внешних сил (например, обогрев комнаты посредством центрального отопления). При вынужденной конвекции движение массы происходит под действием внешних сил, например, помешивание чая ложкой.

Лучистый теплообмен

Лучистая или радиационная теплопередача может происходить без контакта с другим объектом или субстанцией, поэтому возможна даже в Радиационный теплообмен присущ всем телам в большей или меньшей степени и проявляется в виде электромагнитных волн с непрерывным спектром. Яркий тому пример - солнечные лучи. Механизм действия выглядит следующим образом: тело непрерывно излучает определённое количество теплоты в окружающее его пространство. Когда эта энергия попадает на другой объект или субстанцию, часть её поглощается, вторая часть проходит насквозь, а третья отражается в окружающую среду. Любой объект может как излучать тепло, так и поглощать, при этом тёмные вещества способны поглощать больше тепла, чем светлые.

Комбинированные механизмы теплопередачи

В природе виды процессов теплообмена редко встречаются по отдельности. Гораздо чаще их можно наблюдать в совокупности. В термодинамике эти сочетания даже имеют названия, скажем, теплопроводность + конвекция - это конвективный теплообмен, а теплопроводность + тепловое излучение называют радиационно-кондуктивной теплопередачей. Кроме этого, выделяют такие комбинированные виды теплообмена, как:

  • Теплоотдача - движение тепловой энергии между газом или жидкостью и твёрдым веществом.
  • Теплопередача - передача t от одной материи к другой через механическое препятствие.
  • Конвективно-лучистый теплообмен образуется при совмещении конвекции и теплового излучения.

Виды теплообмена в природе (примеры)

Теплообмен в природе играет огромную роль и не ограничивается нагреванием земного шара солнечными лучами. Обширные конвекционные потоки, такие как передвижение воздушных масс, во многом определяют погоду на всей нашей планете.

Теплопроводность ядра Земли приводит к появлению гейзеров и извержению вулканических пород. Это лишь малая часть в глобальных масштабах. В совокупности они образуют виды конвективного теплообмена и радиационно-кондуктивные типы теплопередачи необходимые для поддержания жизни на нашей планете.

Использование теплообмена в антропологической деятельности

Тепло - это важная составляющая почти всех производственных процессов. Сложно сказать, какой вид теплообмена человеком используется больше всего в народном хозяйстве. Наверное, все три одновременно. Благодаря процессам теплопередачи происходит выплавка металлов, производство огромного количества товаров, начиная с предметов повседневного использования и заканчивая космическими судами.

Крайне важное значение для цивилизации имеют тепловые агрегаты, способные преобразовывать тепловую энергию в полезную силу. Среди них можно назвать бензиновые, дизельные, компрессорные, турбинные установки. Для своей работы они используют различные виды теплообмена.

Основы теории теплообмена.

Теплопередача – наука, занимающаяся изучением теплообмена между телами и распределением температуры в телах.

Основные формы передачи теплоты:

1. Теплопроводность.

2. Конвективный теплообмен.

3. Лучистый теплообмен.

Теплопроводность представляет собой процесс передачи теплоты путем непосредственного соприкосновения тел или отдельных частей тела, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим.

В чистом виде теплопроводность наблюдается в твердых телах, а также в неподвижных газах и жидкостях в том случае, когда в них отсутствует конвекция.

Тепловой поток , .

Закон Фурье: тепловой поток пропорционален градиенту температуры и площади, то есть .

Плотность теплового потока , .

Коэффициент теплопроводности - количество теплоты, которое проходит в единицу времени через единицу поверхности через единичную толщину стенки при перепаде температуры в один градус, .

Конвективный теплообмен – процесс передачи теплоты, который осуществляется в пространстве (в объёме), за счёт движения макро частиц.

В этом процессе идёт совместное действие конвекции (движения) и передачи теплоты за счёт теплопроводности.

Уравнение Ньютона: , где - толщина приграничного слоя, в котором теплопередача происходит за счёт теплопроводности; - коэффициент конвективного теплообмена, .

Лучистый теплообмен – передача теплоты осуществляется в пространстве за счёт энергии электромагнитных волн.

Закон Стефана-Больцмана: , где - интенсивность излучения абсолютно чёрного тела.

Уравнение Ньютона-Рихмана: , где - коэффициент лучистого теплообмена.

Теплопроводность.

Температурное поле – совокупность значений температур в отдельных точках тела в зависимости от времени и пространственных координат.

Математическая запись нестационарного трёхмерного температурного поля: . Математическая запись стационарного трёхмерного поля: . Это поле называется стационарным, так как .

Изотермическая поверхность – геометрическое место точек имеющих одинаковую температуру.

Изотерма – пересечение изотермической поверхности с перпендикулярной плоскостью.

Изотермическая поверхность либо замыкается внутри тела, либо обрывается на его границе.

Температурный градиент есть вектор направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный пределу отношения изменения температуры к расстоянию между изотермами по нормали ( 0 С/м )

Закон Фурье:

Тепловой поток: , .

Плотность теплового потока: , , .


Задачи теории теплопроводности:

1. Найти нестационарное трёхмерной температурное поле, .

2. Найти тепловой поток и плотность теплового потока, , .

Вопрос №32

Дифференциальное уравнение теплопроводности.

Условности:

1. Теплофизические свойства системы: , , .

2. Микрочастицы тела неподвижны.

3. Внутренние источники теплоты распределены в теле равномерно.

Где – коэффициент температуропроводности, характеризующий скорость изменения температуры в любой точке тела, ;

– теплоемкость тела; – плотность тела; – объемная плотность тепловыделения, вm/м 3 ; – температура; – оператор Лапласа.

(для полярных координат , , ), .

Условия однозначности – математическое описание частных особенностей рассматриваемого процесса.

Решая уравнение , получим общее решение, которое в совокупности с условиями однозначности даст нам частные решения.

Условные однозначности:

1. Геометрические условия:

a. Форма тела:

i. Плоское тело.

ii. Цилиндрическое тело.

iii. Сферическое тело.

b. Ограниченное тело.

c. Неограниченное тело.

2. Физические условия:

a. Характер изменения физических параметров:

i. Характер изменения .

ii. Характер изменения .

iii. Характер изменения .

iv. Характер изменения .

3. Начальные условия (временные):

4. Граничные условия:

a. Граничные условия первого рода – закон изменения температуры на границе тела:

b. Граничные условия второго тела – закон изменения температурного потока в стенке тела:

c. Граничные условия третьего рода:

i. Закон изменения температуры окружающей среды.

ii. Закон, по которому идёт теплообмен тела с окружающей средой, .

d. Граничные условия четвёртого рода, .

Вопрос №33

1. Плоская стенка.

Дано: , , .

Найти: , , .

Решение:

Общее решение: .

Граничные условия: .

Термическое сопротивление плоской стенки - .

Отношение называется тепловой проводимостью стенки.

Вопрос №34

Рассмотрим передачу тепла теплопроводностью через плоскую трехслойную стенку (рис. 2б) при условиях: толщина слоев стенки , , ;

коэффициенты теплопроводности материалов соответственно , , ; контакт между стенками идеальный и температура на границе смежных слоев одинакова. Перенос тепла происходит в стационарных условиях – плотность теплового потока по всем слоям стенки имеет одно и то же значение (q=idem ). В этих условиях:

Выделим из этого ряда равенств разности температур (падение температуры по слоям стенки)

Складывая левые и правые части уравнений разности температур, получаем слева изменение температуры в стенке , справа – произведение плотности теплового потока q и общего термического сопротивления

Таким образом, для плотности теплового потока при переносе тепла теплопроводностью через плоскую трехслойную стенку получим следующее выражение:

В общем случае для стенки, состоящей из n – слоев , это выражение запишется так:

где R – общее термическое сопротивление многослойной стенки.

Вопрос №35

Количество теплоты, отдаваемое жидкостью твердой стенке или воспринимаемое жидкостью от стенки, определяется уравнением Ньютона–Рихмана

а плотность теплового потока следующим образом

где α – коэффициент, характеризующий условия теплообмена между жидкостью и поверхностью твердого тела, называемый коэффициентом теплоотдачи , Вт/(м 2 ·°C) ; – температурный напор, 0 С .

В соответствии с формулой (61) по своему физическому смыслу коэффициент теплоотдачи есть плотность теплового потока (q) на поверхности тела, отнесенная к разности температур поверхности тела и окружающей среды. Коэффициент теплоотдачи численно равен плотности теплового потока при температурном напоре, равном единице.

Коэффициент теплоотдачи зависит от многих факторов. В наиболее общем случае является функцией формы и размера тела, режима движения жидкости, физических свойств жидкости, положения в пространстве и состояние поверхности теплообмена и других величин. Процесс теплоотдачи в зависимости от природы движения жидкости протекает различно.

Вопрос №36

Лучистый теплообмен.

Твёрдые тела излучают и поглощают энергию во всём диапазоне длин волн поверхностным слоем. Интенсивность излучения зависит только от температуры. Жидкости ведут себя аналогичным образом. Газы излучают и поглощают энергию в ограниченном диапазоне длин волн всем объёмом. Интенсивность излучения газов зависит от температуры, толщины слоя и парциального давления компонентов.

Лучистая энергия - энергия, излучаемая телом во всём диапазоне длин волн, .

Интенсивность излучения – количество энергии, излучаемой с единицы поверхности, .

Лучистую энергию можно найти по формуле: .

Закон сохранения энергии: .

Где - коэффициент отражения, - коэффициент поглощения, - коэффициент прозрачности.

Если , то есть ,то тело называется абсолютно белым.

Если , то есть , то тело называется абсолютно чёрным.

Плотность интегрального излучения, отнесенная к рассматриваемому диапазону длин волн, называется спектральной интенсивностью излучения (Вт/м 3):

Угловая интенсивность: .

Спектральная угловая интенсивность: .

Закон Планка устанавливает зависимость интенсивности излучения абсолютно черного тела E 0λ от длины волны λ и температуры Т

Закон Стефана-Больцмана: .

Степень черноты: .

3акон Кирхгофа формулируется так: отношение плотности полусферического интегрального излучения к поглощательной способности одинаково для всех тел имеющих одинаковую температуру и равно плотности интегрального полусферического излучения абсолютно черного тела при той же температуре : , где - коэффициент поглощения.

Количество теплоты, которое останется у одного из двух тел: .

Закон смещения Вина гласит – длина волны, которой соответствует максимальное значение интенсивности излучения (E 0λ =max) , обратно пропорциональна абсолютной температуре рис.11

Вопрос №37

Теплообмен излучением между твердыми телами.

На основании законов излучения получено расчетное уравнение лучистого теплообмена между телом 1 произвольной формы и поверхностью другого, большего и охватывающего его тела 2 (рис. 14)

где Q 1,2 – тепловой поток, передаваемый излучением телом 1 телу 2, Вт;

ε 1,2 – приведенная степень черноты тел 1 и 2, определяемая из выражения

F 1 и F 2 – площади поверхностей тел 1 и 2, м 2 ; Т 1 и Т 2 - абсолютная температура поверхностей тел 1 и 2, К.

Такой случай еще называют теплообменом излучением между телом и его оболочкой; внутреннее тело всегда тело 1.

Частный случай рассмотренного теплообмена - теплообмен между двумя параллельными неограниченными стенками (рис. 15). Когда F 1 = F 2 = F , применяют расчетное уравнение теплообмена излучением, а приведенная степень черноты определяется из выражения

Уравнение (2.57)можно использовать для расчета лучистого теплообмена между двумя телами любой формы и произвольного их расположения, только в каждом частном случае для определения приведенных степени черноты и поверхности (для ε 1,2 и F 1,2 ) имеются свои расчетные выражения.

Вопрос №38

Теплопередача чрез плоскую однослойную и многослойную

плоскую стенку

Уравнение теплопроводности: .

Граничные условия первого рода: .

Граничные условия третьего рода: , .

В этом ряду равенств первое уравнение определяет количество теплоты, передаваемой конвекцией (и излучением) от горячего теплоносителя к стенке; второе уравнение – то же количество теплоты, передаваемой теплопроводностью через стенку; третье уравнение – передачу того же самого количества теплоты, передаваемого конвекцией (и излучением) от стенки к холодному теплоносителю.

Выделим из этого ряда равенств разности температур

Складывая левые и правые части уравнений характеризующих разности температур и учитывая, что получим выражение для итоговой разности температур

где –термическое сопротивление плоской стенки (м 2 0 С\Bm )

Отсюда, следует выражение для плотности теплового потока и теплового потока (уравнение теплопередачи плоской стенки)

где q – плотность теплового потока (Вт/м 2) ;

Q – тепловой поток (Вт) ;

k=1/R – коэффициентом теплопередачи плоской стенки (Вт/м 2 ºС)

где -термическое сопротивление теплопередачи плоской стенки (м 2 ºС/Вт);

; - термические сопротивления теплоотдачи со стороны горячего теплоносителя, теплопроводности плоской стенки и термические сопротивления теплоотдачи со стороны холодного теплоносителясоответственно.

Температура внутренней и наружной поверхности стенки определяется из следующих соображений:

отсюда имеем

В случае многослойной стенки

Вопрос № 39

Теплопередача – передача теплоты от одного носителя к другому через разделяющую их твёрдую поверхность.

Стационарный процесс – процесс, при котором температуры сред не меняются, то есть .

Нестационарный процесс – процесс, при котором температуры сред меняются, то есть .

Для криволинейных стенок коэффициент теплопередачи принято определять по тому же уравнению, что и для плоской стенки В этом случае для криволинейных стенок расчетная поверхность теплопередачи определяется из выражения

Водяной эквивалент поверхности теплопередачи .

Для цилиндрических стенок: .

Линейный коэффициент теплопередачи: .

Коэффициент теплопередачи для внутренней стенки: .

Коэффициент теплопередачи для внешней стенки: .

Вопрос №40-41

Классификация теплообменных аппаратов.

1. По типу действия:

a. Аппараты поверхностного типа – аппараты, в которых передача теплоты идёт при наличии твёрдой поверхности.

i. Регенеративные аппараты – аппараты поверхностного типа, в которых твёрдая поверхность попеременно омывается горячим и холодным теплоносителями. Эти аппараты используются в случаях, когда теплоносители обладают высокими температурами, или когда теплоносители не являются чистыми.

ii. Рекуперативные аппараты – аппараты поверхностного типа, в которых твёрдая поверхность омывается непрерывно горячим и тёплым теплоносителями через разделяющиеся поверхности.

1. Кожухо-трубные теплообменные аппараты.

2. Аппараты типа «труба в трубе»:

a. Однопоточные аппараты типа «труба в трубе».

b. Многопоточные аппараты типа «труба в трубе».

b. Аппараты смесительного типа – аппараты, в которых идёт непосредственное перемешивание горячих и холодных теплоносителей.

Схема аппарата типа «труба в трубе»:

Аппараты такого типа имеют простую конструкцию и высокие скорости потока, однако, для получения больших мощностей аппарата требуется установка большого количества элементов конструкции и сам аппарат будет занимать много места.

Схема аппарата кожухо-трубчатого типа:

В таких аппаратах возможно создание прямоточных, противоточных, перекрёстноточных, U-образных симметричных и других потоков.

Тепловой баланс теплообменного аппарата: , где - коэффициент эффективности теплового аппарата, .

1. (гидравлическое сопротивление мало), тогда , , , при .

2. Конденсатор.

3. Испаритель.

Мощность теплового аппарата (уравнение Гросгофа) : , где - средняя разность температур.

Для прямотока: , .

Для противотока: , .

Где и - водяные эквиваленты поверхности теплообмена.

Для любой схемы может быть определено в соответствие с двумя методиками:

1. Классическая методика: , где - коэффициент, зависящий от типа и свойств теплого аппарата, определяется по графикам функций и .

2. Метод Белоконя. Индекс противоточности:

Для прямотока .

Для противотока .

Для U-образной симметричной схемы .

Для любой схемы средняя разность температур: .

Вопрос №42

Различают два типа расчётов тепловых аппаратов:

1. Расчёт первого рода (конструктивный). Известно: , , , , , , , . Задача: Выбор или конструирование теплообменного аппарата ( , ). , и - температура конденсации.

1. Парокомпрессионные холодильные машины, в которых рабочим телом является пар, а рабочий процесс протекает в компрессоре.

2. Воздушные холодильные машины, в которых рабочим телом является воздух.

3. Абсорбционные холодильные машины, в которых идёт поглощение паров водными растворами.

4. Пароструйные холодильные машины, имеющие инжекторы в качестве исполнительного механизма.

Рабочий процесс парокомпрессионной холодильной установки:

1-2 – адиабатическое сжатие; 4-5 – процесс дросселирования.

Схема парокомпрессионной холодильной установки:

Такие установки работают в следующем интервале температур: .

8. Пароструйные холодильные машины, имеющие инжекторы в качестве исполнительного механизма.

ТЕПЛООБМЕН

ТЕПЛООБМЕН (передача тепловой энергии), процесс переноса теплоты от одного объекта к другому. Перенос происходит в течение времени, когда два или более тела при разных температурах находятся в термоконтакте. Различают три вида теплообмена: ТЕПЛОПРОВОДНОСТЬ, КОНВЕКЦИЯ и ИЗЛУЧЕНИЕ. При теплопроводности перенос тепла происходит от молекулы к молекуле внутри тела, как например у железного прута, вставленного в огонь. При конвекции тепло переносится циркуляцией жидкости или газа, как при кипении. При излучении тепло передается в виде электромагнитных волн, как солнечный свет. Теплообменные процессы являются неотъемлемой частью многих производственных процессов, когда тепловая энергия от одного источника передается другому без их объединения. Наиболее простой пример теплообмена - использование теплопередачи, когда система труб с развитой внешней поверхностью и протекающей внутри горячей жидкостью погружена в контейнер, через который течет другая, холодная жидкость, и в результате теплообмена тепло передается от горячей жидкости к холодной.

Три типа передачи тепла можно увидеть при нагревании кастрюли: (А)теплопроводность через металлические стенки кастрюли (1), конвекционное движение жидкости (2)и излучение от источника нагрева, передающееся кастрюле (3). В теории, хорошо изолированный проводник тепла, один конец которого помещен в лед, а другой - в кипящую воду, изменяет температуру на своем протяжении (В) линеарно, как прямая линия на графике. Характеристика изменения температуры плохо изолированного проводника показана изогнутой пунктирной линией. Термос(С)содержит вакуум (4) между стенками для предотвращения теплопроводности и конвекции,и посеребренные стенки чтобы избежать потерь тепла через излучение.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ТЕПЛООБМЕН" в других словарях:

    Теплообмен … Орфографический словарь-справочник

    Самопроизвольный необратимый процесс переноса теплоты, обусловленный градиентом темп ры. В общем случае перенос теплоты может также вызываться неоднородностью полей др. физ. величин, напр. градиентом концентраций (см. ДЮФУРА ЭФФЕКТ). Различают… … Физическая энциклопедия

    ТЕПЛООБМЕН, наряду с работой в термодинамике один из видов обмена энергией термодинамической системы (физического тела) с окружающими телами, происходящий с помощью процессов теплопроводности, конвекции или излучения и не сопровождающийся… … Современная энциклопедия

    Самопроизвольный необратимый процесс переноса теплоты от более нагретых тел (или участков тел) к менее нагретым (в общем случае перенос теплоты может вызываться также неоднородностью полей др. физических величин, напр., разностью концентраций т.… … Большой Энциклопедический словарь

    Теплопередатчик, теплоотдача, теплопередача Словарь русских синонимов. теплообмен сущ., кол во синонимов: 4 обмен (55) … Словарь синонимов

    ТЕПЛООБМЕН - самопроизвольный необратимый процесс распространения тепловой энергии от более нагретых тел или участков тела к менее нагретым без совершения работы. Существуют следующие в и д ы Т.: (см.), теплопроводность (см.) и теплообмен с помощью излучения… … Большая политехническая энциклопедия

    ТЕПЛООБМЕН, а, муж. (спец.). Процесс необратимого распространения тепла от более нагретых тел к менее нагретым. Регулирование теплообмена. | прил. теплообменный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    теплообмен - Самопроизвольный необратимый процесс переноса тепла, обусловленный градиентом температуры [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики термодинамика EN heat exchangeintercambio térmico DE… … Справочник технического переводчика

    Теплообмен - – самопроизвольный процесс передачи теплоты от бо­лее нагретых частей бетона к менее нагретым. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Рубрика… … Энциклопедия терминов, определений и пояснений строительных материалов

    Теплообмен - самопроизвольный необратимый перенос теплоты в пространстве с неоднородным температурным полем, характеризуется градиентом температуры. Теплообмен происходит от более нагретых тел к менее нагретым и характеризуется вектором… … Энциклопедический словарь по металлургии

Книги

  • Теплообмен в однофазных средах и при фазовых превращениях. Учебное пособие , В. В. Ягов , Содержание учебного пособия соответствует программе дисциплины "Тепломассообмен", которая читается студентам, обучающимся по профилю теплофизика в рамках направления подготовки "140700.… Категория: Термодинамика и статистическая физика Издатель: МЭИ ,
  • Теплообмен и тепловые испытания материалов и конструкций аэрокосмической техники при радиационном нагреве , Виктор Елисеев , Монография посвящена проблемам теплообмена и тепловых испытаний материалов и конструкций аэрокосмической техники c использованием источников высокоинтенсивного излучения. Приведены результаты… Категория: Учебная литература Издатель:

Способы передачи теплоты - теплота всегда передается от тел более нагретых к менее нагретым. Способы передачи теплоты от твердого тела (стенки) к обтекающей его жидкости или газу называются теплоотдачей. Способы передачи теплоты из одной среды в другую, разделенных перегородкой (стенкой), называются теплопередачей. Различают три способа переноса теплоты: теплопроводность, конвекцию и излучение (радиацию).

Теплопроводностью называется процесс распространения теплоты в теле (одном) посредством передачи кинетической энергии от более нагретых молекул к менее нагретым, находящимся в соприкосновении друг с другом. В чистом виде теплопроводность имеет место в твердых телах очень тонких, неподвижных слоях жидкости и газа.

Способы передачи теплоты распространяются через стенки котла. Теплопроводность различных веществ различна. Хорошими проводниками теплоты являются металлы. Весьма незначительна теплопроводность воздуха. Слабо проводят теплоту пористые тела, асбест, войлок и сажа.

Конвекцией называется перенос, теплоты за счет перемещения молярных объемов среды. Обычно конвективный способ перенос теплоты происходит совместно с теплопроводностью и осуществляется в результате свободного или вынужденного движения молярных объемов жидкости или газов (естественная или вынужденная конвекция). Естественной конвекцией распространяется теплота от печей, отопительных приборов, при нагревании воды в паровых котлах, охлаждении обмуровки котлов и других тепловых устройств. Свободное движение жидкости или газов обусловлено различной плотностью нагретых и холодных частиц среды. Например, воздух около поверхности печи нагревается становится легче, поднимается вверх, а на его место поступает более тяжелый, холодный. В результате этого в комнате возникает циркуляция воздуха, которая переносит теплоту.

Способы передачи теплоты включают в себя конвекцию. Вынужденная конвекция имеет место при передаче теплоты от внутренней стенки котла к воде, движущейся под действием насоса.

Излучением (радиацией) называется передача теплоты от одного тела к другому путем электромагнитных волн через прозрачную для теплового излучения среду. Этот процесс передачи теплоты сопровождается превращением энергии тепловой в лучистую и, наоборот, лучистой в тепловую. Радиацией передается теплота от факела горящего топлива к поверхности чугунных секций или стальных труб котла. Радиация - это наиболее эффективный способ передачи теплоты, особенно если излучающее тело имеет высокую температуру, а лучи от него направлены перпендикулярно к нагреваемой поверхности.

Понятие о теплопередаче. Рассмотренные выше три вида теплообмена в чистом виде встречаются очень редко. В большинстве случаев один вид сопровождается другим. Примером этого может служить передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла (рис. 7). Слева поверхность ее соприкасается с горячими газообразными продуктами сгорания и имеет температуру t 1 справа омывается водой и имеет температуру t 2 Температура в стенке снижается в направлении оси х.

Рис. 7.Передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла.

В данном случае теплота от газа к стенке передается одновременно путем конвекции, теплопроводности и излучением (лучистый теплообмен). Одновременная передача теплоты конвекцией, теплопроводностью и излучением называется сложным теплообменом.

Результат одновременного действия отдельных элементарных явлений приписывают одному из них, которое и считают главным. Так, радиация (излучение), называемая еще прямой отдачей, в передаче теплоты в топочной камере от топочных газов к внешней поверхности нагрева котла играет главенствующую роль, хотя наряду с ней в передаче теплоты участвуют и конвекция, и теплопроводность.

Способы передачи теплоты от внешней поверхности нагрева к внутренней через слой сажи, металлическую стенку и слой накипи осуществляются только путем теплопроводности. Наконец, от внутренней поверхности нагрева котла к воде теплота передается только конвекцией. В газоходах котла процесс теплообмена между стенкой секции и омывающими ее газами также является результатом совокупного действия конвекции, теплопроводности и радиации. Однако в качестве основного явления принимается конвекция.

Количественной характеристикой передачи теплоты от одного теплоносителя к другому через разделяющую их стенку является коэффициент теплопередачи К. Для плоской стенки коэффициент К количество теплоты, переданной в единицу времени: от одной жидкости к другой на площади 1 м 2 при разности температура между ними в один град. - определяется по формуле:

К = (1/α 1 +δ 3 /λ 3 + δ ст /λ ст +δ н /λ н + 1/α 2) -1

где α 1 - коэффициент теплоотдачи от газов к стенке поверхности нагрева, Вт/(м 2 ×град); δ 3 - толщина золовых или сажевых отложений (так называемые наружные загрязнения), м; δ ст - толщина стенки секций или труб, м; δ н - толщина накипи (так называемое внутреннее загрязнение), м; λ 3 , λ ст, λ в - соответствующие коэффициенты теплопроводности золы или сажи, стенки и накипи, Вт/(м×град); α 2 -. коэффициент теплоотдачи от стенки к воде/ Вт/(м 2 ×град).

В соответствии с приведенным примером сложного теплообмена (см. рис. 7) общий коэффициент теплоотдачи, а от газов к стенке котла соответственно равен:

α 1 = α к + α л

где α к и α л - коэффициенты, теплоотдачи конвекцией и излучением.

Величина, обратная коэффициенту теплопередачи, называется термическим сопротивлением теплопередачи. Для данного случая:

R = 1/K = 1/α 1 +δ 3 /λ 3 +δ cт /λ ст +δ н /λ н + 1/α 2

Различные вещества имеют разные коэффициенты теплопроводности.

Коэффициент теплопроводности К - количество теплоты, передаваемое через единицу площади поверхности нагрева в единицу времени при разности температур в 1 град и толщине стенки в 1 м. При использовании внесистемных единиц (ккал в ч) размерность коэффициента теплопроводности ккал×м/(м 2 ×ч×град), в системе СИ - Вт/ (м × град).

Коэффициенты теплопроводности различных материалов, наиболее часто встречающихся в отопительно - котельной технике, приведены ниже, Вт/(м×град).

Количество теплоты Q, передаваемое через стенку, определяется по формуле:

где К - коэффициент теплопередачи, Вт/ (мг×град); ∆t - средняя разность температур греющей и нагреваемой сред или среднелогарифмический температурный напор, град; Н - площадь поверхности нагрева, м 2 .

Среднелогарифмический температурный напор ∆t определяется по формуле:

∆t = ∆t - ∆t м /2,31 g (∆t 0 /∆t м)

где ∆t g и ∆t м - наибольшая и наименьшая разности температур греющей и нагреваемой среды.

Рис. 8. Характер изменения температур рабочих жидкостей при

а - прямотоке; б - противотоке.

Характер изменения температур рабочих жидкостей показан на рис. 8. Если в теплообменном аппарате греющая и нагреваемая жидкости протекают в одном направлении, то такая схема движения называется прямотоком (см. рис. 8, а), а в противоположных - противотоком (см. рис. 8, б).

Для единицы площади теплопередающей поверхности удельный поток, обозначаемый q, будет равен:

Из приведенных формул видно, что количество передаваемой теплоты тем больше, чем больше площадь поверхности нагрева Н и чем больше средняя разность температур или температурный напор и коэффициент теплопередачи К. Наличие на стенке котла накипи, золы или сажи значительно снижает коэффициент теплопередачи (см. ниже пример).

Определяющим фактором в передаче теплоты радиацией являются температура излучающего тела и степень его черноты. Поэтому, чтобы интенсифицировать передачу теплоты радиацией, необходимо увеличить температуру излучающего тела, повысив шероховатость поверхности.

Теплоотдача конвекцией зависит: от скорости движения газов, разности температур греющей и нагреваемой среды, характера обтекания газами поверхности нагрева - продольное или поперечное, вида поверхности - гладкая или оребренная. Основными способами интенсификации передачи теплоты конвекцией являются: повышение скорости газов, их завихрение в газоходах, увеличение площади поверхности нагрева за счет ее оребрения, повышение разности температур между греющей и нагреваемой средами, осуществление встречного (противоточного) омывания.

Пример. Рассмотрим влияние накипи и сажи на теплопередачу в котле, используя данные настоящего раздела. Принимаем толщину стенки секции чугунного котла δ 1 = 8 мм, а отложившиеся на ней слой накипи толщиной δ 2 = 2 мм и слой сажи δ 3 = 1 Гмм. Коэффициенты теплопроводности стенки λ 1 , накипи λ 2 и сажи λ 3 соответственно принимаем равными 54; 0,1 и 0,05 ккал/(м×ч×град) (√62,7; 0,116 и 0,058 Вт/ (м 2 × К). Значения коэффициентов теплоотдачи: от, газов к стенке α 1 = 20 ккал/(м 2 ×град); от стенки к воде α 2 = 1000 ккал/(м 2 ×ч×град). Температуру газов принимаем равной t газ = 800°С, воды t = 95 С.

Расчеты производим для чистой и загрязненной стенок чугунного котла.

А. Стенка котла чистая.

Найдем коэффициент теплопередачи:

К = (l/α 1 + δ/λ + l/α 2) -1 = (1/20 + 0,008/54 + 1/1000) -1 = 1/0,0512 = 19,5 ккал/(м 2 × ч ×град) = 22,6 Вт/ (м 2 × град) и тепловой поток через стенку.

q = K∆t = 19,5 (800-95) = 13700 ккал/(м 2 ×ч) = 15850 Вт/ (м 2).

Определим температуру наружной поверхности стенки чугунной секции, воспользовавшись формулой

q =α 1 (t газ - t cт) -1 q = α 1 t газ - α 1 t ст; α i t ст = α 1 t газ

t cт = t газ - q/α 1 = 800 - 13700/20 = 115 °С.

Из расчета видно, что при чистой стенке котла температура ее мало отличается от температуры воды внутри котла.

Б. Стенка котла загрязненная.

Повторив весь расчет, найдем:

К = (l/α 1 +δ 1 /λ 1 + δ 2 /λ 2 + δ 3 /λ 3 + 1/α 2) -1 = (1/20+0,008/54+0,002/0,1 (+0,001/0,05+ 1=1000) -1 = (0,0912) -1 = 11ккал/ (м 2 ×ч×1×град) = 12,7 Вт/ (м 2 ×град)

q = 11 (800 - 95) = 7750 ккал/ (м 2 ×ч) = 8960 Вт/ (м 2), t ст = 800 - 7750/20 = 412C.

Из расчета видно, что отложение сажи нежелательно тем, что она, обладая малой теплопроводностью, затрудняет передачу теплоты от топочных газов к стенкам котла. Это приводит к перерасходу топлива, снижению выработки котлами пара или горячей воды.

Накипь, имея малую теплопроводность - значительно уменьшает передачу теплоты oт стенки котла к воде, в результате чего стенки, сильно перегреваются и в некоторых случаях; разрываются, вызывая аварии котлов.

Сравнивая результаты расчета, видим, что теплопередача через загрязненную стенку уменьшилась почти в два раза, температура стенки чугунной секции при накипи возросла до опасных, по условиям прочности металла, пределов, что может привести к разрыву секции. Этот пример наглядно показывает необходимость регулярной очистки котла как от накипи, так и от сажи или золы.

Инструкция

Теплопроводность заключается в передаче тепла от более нагретых частей вещества к менее нагретым, приводящая к выравниванию температуры вещества. Молекулы вещества, обладающие большей энергией, передают ее молекулам, обладающим меньшей энергией. К теплопроводности относится закон Фурье, который заключается в связи между градиентом температуры в среде и плотности теплового потока. Градиент - это вектор, показывающий направление изменения скалярного поля. Отклонения от этого закона могут быть при очень сильных ударных волнах (большие значения градиента), при очень низких температурах и в разреженных газах, когда молекулы вещества чаще сталкиваются со стенками сосуда, чем между собой. В случает разреженных газов процесс теплопередачи рассматривается не как теплообмен, а как передача тепла между телами, находящимися в газовой среде.

Это перенос тепла в жидкостях, газах или сыпучих веществах, согласно кинетической теории. Суть кинетической теории состоит в том, что все тела (материальные) состоят из атомов и молекул, которые находятся в непрерывном движении. На основе этой теории, конвекция представляет собой теплопередачу между веществами на молекулярном уровне, при условии что тела находятся под действием силы тяжести и неравномерно нагреты. Нагретое вещество, под действием силы тяжести, перемещается относительно менее нагретого вещества в сторону, обратную силе тяжести. Более нагретые вещества поднимаются, а более холодные - опускаются. Ослабление действия конвекции наблюдается в случаях высокой теплопроводности и вязкой среды, а также на конвекцию в ионизированных газах сильно влияет степень его ионизации и магнитное поле.

Тепловое излучение. Вещество за счет внутренней энергии создает электромагнитное излучение со сплошным спектром, которое может передаваться между веществами. От того, насколько нагрето вещество, зависит положение максимума его спектра. Чем выше температура, тем больше энергии выделяет вещество и, следовательно, тем больше тепла можно передать.

Теплопередача может происходить через тонкую перегородку или стенку между телами, от более теплого вещества к менее теплому. Более нагретое вещество передает часть тепла к стенке, после чего происходит процесс теплопередачи в стенке и от стенки идет теплоотдача к менее нагретому веществу. Интенсивность количества передаваемой теплоты напрямую зависит от коэффициента теплопередачи, который определяется как количество теплоты, передающееся через единицу площади поверхности перегородки в единицу времени при разнице температур между веществами в 1 Кельвин.