Биологическое и медицинское значение фенотипической изменчивости. Наследственность и ее роль в патологии медицинская генетика и ее задачи наследственность

НАСЛЕДСТВЕННОСТЬ И ЕЕ РОЛЬ В ПАТОЛОГИИ

Медицинская генетика и ее задачи

Наследственность есть свойство живых существ и клеток организма передавать свои признаки (анатомо-физиологические особенности) потомкам. Она обеспечивает относительную стабильность вида. Основу для естественного и искусственного отбора, для эволюции вида дает изменчивость – свойство организма и его клеток, проявляющееся в возникновении новых признаков. Материальными носителями наследственной информации являются гены – участки молекулы ДНК.

Наука о наследственности и изменчивости носит название генетика . Отрасль генетики, занимающаяся изучением наследственности и изменчивости человека под углом зрения патологии, называется медицинской генетикой .

Основные задачи медицинской генетики сводятся к следующему:


  1. ^ Изучение наследственных форм патологии . Это значит изучение их этиологии, патогенеза, совершенствование диагностики, разработка методов профилактики и лечения. Фатальный характер наследственных заболеваний существует лишь до тех пор пока не познаны конкретные причины и механизмы их развития. Установление закономерностей развития ряда наследственных болезней позволило не только лечить, но и в определенной мере предупреждать достаточно тяжело протекающие формы наследственной патологии.

  2. ^ Изучение причин и механизмов наследственно детерминированной предрасположенности и резистентности к различным (в том числе и инфекционной природы) заболеваниям.

  3. Изучение роли и значения генетического аппарата в развитии реакций адаптации, компенсации и явлениях декомпенсации (см. «Двойственная природа болезни»).

  4. Подробное всестороннее изучение процессов мутагенеза и антимутагенеза , их роли в развитии болезней.

  5. ^ Изучение ряда общебиологических проблем : молекулярно-генетических механизмов канцерогенеза, роли генетического аппарата в явлениях тканевой несовместимости, аутоиммунных реакциях организма и др.

^ 2. Распространение наследственных форм патологии.

Начнем с разграничения далеко неоднозначных понятий « наследственные болезни » и « врожденные болезни » . Врожденными называют заболевания, проявляющиеся сразу после рождения. Они могут быть и наследственными и ненаследственными – обусловленными действием неблагоприятных факторов среды на развивающийся плод в период беременности и не затрагивающие его генетический аппарат. К числу наследственных болезней относятся лишь те, в основе которых лежат структурные изменения в генетическом материале. Одни из них клинически проявляются уже в первые дни после рождения, другие в юношеском, зрелом, а иногда и в пожилом возрасте.

В настоящем параграфе речь пойдет о наследственных болезнях и аномалиях развития.

Сегодня число известных наследственных болезней превышает 2500, только наследственно детерминируемых нарушений обмена веществ, сопровождающихся умственной неполноценностью, около тысячи. На каждые 500-800 новорожденных приходится один ребенок с болезнью Дауна, высока частота рождения детей и с другими достаточно серьезными хромосомными заболеваниями такими как синдром Клайнфельтера (1,39-1,98; в среднем 1,3 на 1000 мальчиков), трисомия по Х-хромосоме (1 на 750 девочек). От 1/3 до 1/2 слепых страдают от наследственных дефектов органа зрения. По данным США, Канады, Великобритании до 25% больничных коек в детских стационарах занято пациентами с наследственными формами патологии. Только на территории бывшего СССР ежегодно рождалось порядка 60000 детей с наследственной патологией, в том числе около 5000 детей стакими наследственными дефектами развития как расщелина верхней губы («заячья губа»), неба («волчья пасть»), микроцефалия, гидроцефалия, анэнцефалия.

Половина спонтанных абортов и преждевременных родов генетически детерминирована. Перечень можно продолжать долго.

В течение 20 столетия отмечен значительный абсолютный и относительный рост числа наследственных болезней и аномалий развития. Причин этому много. Назовем важнейшие:

Значительные успехи медицины в лечении и предупреждении многих инфекционныхи алиментарных болезней, практически ликвидированы такие особо опасные инфекции, как чума, оспа, холера, уносившие в прошлые века десятки миллионов жизней, полиомиелит, оставлявший десятки тысяч калек. Туберкулез, занимавший еще в прошлом столетии первое место по причине смертностинаселения в большинстве развитых стран мира, сегодня передвинулись на 10-15 место. В такой ситуации на более видное место вышли те формы патологии, успех в лечении и профилактике которых значительно скромнее;

Совершенствование методов диагностики;

Всевозрастающее загрязнение окружающей среды мутагенными агентами;

Успехи молекулярной биологии, позволившей установить генетическую природу ряда серьезных заболеваний, ранее не связываемых саномалиями генома (пример – хромосомные болезни);

Увеличение средней продолжительности жизни человека. На территории Беларуси, например, в 1898 г. она составляла 37,5 лет, в I978 г. – 72 года, а ведь многие формы наследственных заболеваний, как уже говорилось, проявляются спустя много лет после рождения (подагра – после 30-40, хорея Гентингтона – после 40-50 лет).

Возможными причинами того, что наследственные болезни имеют «свой возраст» развития могут быть следующие:

1) до поры до времени аномальный ген может быть в репрессированном состоянии, а затем под влиянием, например, изменившегося гормонального фона организма дерепрессируется и начинает проявлять свою активность;

2) в ряде случаев для реализации действия аномального гена требуется более илименее длительное специфическое – «проявляющее» действие среды (при подагре, ряде форм сахарного диабета);

3) с возрастом снижается активность процессов репарации.

^ 3. Классификация наследственных форм патологии

В развитии любой болезни, как и в жизнедеятельности здорового организма, участвуют различного рода воздействия внешней среды (внешний фактор) и наследственность (внутренний фактор). В качестве этиологического фактора болезниили составляющего звена ее патогенеза. Доля участия каждого изних в различных заболеваниях своя.

С учетом удельного веса наследственности и среды выделяют 4 группы болезней, между которыми нет резкой границы (Н.П. Бочков).

Первую группу составляют собственно наследственные болезни, в возникновении и развитии которых решающая роль принадлежит аномалиям в генетическом аппарате. К ней относятся моногенно обусловленные заболевания (алкаптонурия, фенилкетонурия, гепатоцеребральная дистрофия, гемофилия и др.) и хромосомные болезни. Среда определяет лишь пенетрантность (проявляемость действия гена в популяции особей, обладающих данными геном 1) и экспрессивность (степень выраженности действия гена у конкретной особи).

В развитии болезней второй группы, также как и в первой, основополагающее значение имеет наследственность, однако необходимо специфическое, так называемое «проявляющее», действие среды, без чего болезнь, несмотря на наличие патологической мутации, клинически не проявляется. Так, у гетерозиготных носителей H в S (аутосомно-рецессивноеили полудоминантно наследуемая гемоглобинопатия – серповидно клеточная анемия) гемолитические кризы, ведущие к анемии, возникают лишь в условиях гипоксииили ацидоза; при наследственной ферментопатии, связанной с дефицитом гдюкозо-6-фосфат-дегидрогеназы, аналогичную роль могут играть применение лекарств-окислителей, употребление конских бобов, иногда вирусная инфекция. Появлению клинических признаков подагры, при которой генетически детерминировано нарушение обмена мочевой кислоты, способствует систематическое переедание, неумеренное употребление мясной пищи, виноградных вин и других веществ, метаболизм которых ведет к образованию избыточных количеств солей мочевой кислоты, откладывающихся в суставах и вызывая их поражение.

Основным этиологическим фактором третьей группы болезней являются факторы внешней среды. Генетически детерминируется повышенная чувствительность к так называемым «факторам риска». Это болезни с наследственной предрасположенностью мультифакториальные полигенные болезни. Кним относятся подавляющее число болезней зрелого и пожилого возраста: гипертоническая болезнь, атеросклероз, ишемическая болезнь сердца, язвенная болезнь желудка и 12-перстной кишки, злокачественные новообразования и др.

Четвертую группу составляют болезни, возникновение которых обусловлено факторами среды, к действию которых организм не имеет средств защиты – экстремальными. Это травмы (механические, электрическая), действие ионизирующей радиации, ожоги, отморожения, особо опасные инфекции. Генетический фактор в этих случаях определяет тяжестью болезни, ее исход, в ряде случаев – вероятность возникновения. Известно, например, что возникновение даже заболеваний, вызываемых такими высокопатогенными возбудителями, как возбудители чумы, оспы, холеры, в определенной степени сопряжено с группой крови, детерминируемой, как известно, генетически. Люди с первой группой крови предрасположены к заболеванию чумой, со второй группой – к оспе и холере.

Итак, согласно приведенной классификации наследственные формы патологии подразделяются на собственно наследственные болезни (нуждающиеся и не нуждающиеся в действии специфических – «проявляющих» факторов среды) и болезни с наследственным предрасположением.

По количеству затронутых повреждением (мутацией) генов выделяют моногенные и полигенные заболевания. К числу последних относятся болезни с наследственной предрасположенностью, поскольку они являются многофакторными, а также большая отдельная группа заболеваний, связанная с хромосомными или геномными мутациями – хромосомных.

Моногенные болезни, наследуемые по законам Менделя, в свою очередь подразделяются по типу наследования: на аутосомно-доминантные, аутосомно-рецессивные и наследуемые сцеплено с половыми (обычно X) хромосомами. Среди наиболее часто встречающихся аутосомно-доминантных болезней и аномалий развития, суммарная частота которых составляет 7 на 1000 новорожденных (C.O.Carler, I969), можно назвать полидактилию (чаще – гексодактилия), ахондроплазию, неврофиброматоз, таллаесемию, хорею Гентингтона, врожденный отосклероз, несовершенный остеогенез и др. К числу аутосомно-рецессивных (суммарная частота 2 на 1000 новорожденных) относятся ретинобластома детей, пигментная ксеродерма, анемия Адиссона-Бирмера, алкаптонурия, фенилкетонурия, семейная гиперхолистеринемия, гепатоцеребральная дистрофия, галактоземия, микроцефалия, анэнцефалия, одна из форм гидроцефалии и др.

Примерами форм патологии, наследуемых сцеплено с Х-хромосомой являются:

Рецессивно наследуемые (суммарная частота 0,4 на 1000 родившихся) гемофилия А и Б, мышечная дистрофия Дюшена, ихтиоз, дальтонизм, альбинизм, ферментопатия, связанные с дефицитом глюкозо-6-фосфат-гидрогеназы, атрофия зрительного нерва;

Доминантно наследуемые гипоплазия эмали зубов, витамин-Д-резистентный рахит.

Часто используется системно-органная классификация наследственных форм патологии, в основу которой положен учет преимущественно поражаемых органов (наследственные болезни и аномалии развития сердечно-сосудистой системы, эндокринной, нервной системы и т.п.). Данная классификация достаточно условна, поскольку генетические дефекты очень часто затрагивают многие органы и системы.

Клинически наиболее значимой является классификация по первичному биохимическому дефекту, обнаружение которого позволяет не только с достаточной степенью надежности диагностировать заболевание, но и осуществлять патогенетически обоснованное лечение болезни. Однако до сих пор первичный биохимический дефект удалось выяснить для сравнительно небольшого числа наследственных болезней.

^ 4. Методы определения наследственной природы

болезней и аномалий развития

Генеалогический метоз, основанный на составлении родословных таблиц с помощью принятых в генетике символов, позволяет выявить наследственный характер изучаемого признакаили болезни и установить тип наследования (доминантный, рецессивный, сцепленный с полом). Доминантные признаки и болезни наследуются по прямой линии (от родителей к детям, из потомства в потомство и проявляются как у гомозигот так и у гетерозигот); рецессивные – не по прямой линии, с перерывами, проявляются только в гомозиготном состоянии.

Близнецовый метод (сопоставление внутрипарной конкордантности – идентичности признаков или форм патологии у одно- и двуяйцевых близнецов, живущих в одинаковых и разных условиях среды) позволяет выявить относительную роль наследственности и среды в развитии анализируемого патологического явления. Высокая конкордантность однояйцевых близнецов, живущих в разных условиях, по изучаемому признаку свидетельствует в пользу его наследственной природы. О решающем значении в развитии той или иной конкретной формы патологии факторов окружающей среды говорит высокая конкордантность разнояйцевых близнецов, особенно живущих в одинаковых условиях.

Демографический (статистический) метод основан на статистическом анализе заболеваемости изолятов – группы людей (не менее 50 человек), которые в силу географических условий, религиозных или племенных традиций вынуждены часто вступать в близкородственные браки. Последние значительно увеличивают вероятность встречи двух одинаковых патологических рецессивных генов и рождения детей, гомозиготных по данному признаку. Вредность браков между близкими родственниками проявляется в большей частоте возникновения рецессивных форм патологии, преждевременных родов, числа мертворождений и ранней детской смертности, поскольку летальные и полулетальные гены, детерминирующие эти явления, также относятся к категории рецессивных.

Кариологический или цитогенетический метод – метод изучения кариотипа (структурной организации ядра, характеризующейся количеством и строением хромосом) в делящихся клетках пациента позволяет выявить и определить характер хромосомных болезней, в основе которых лежат генные мутации и хромосомные абберации.

Метод исследования полового хроматина (телец Барра) в лейкоцитах и эпителии больного также позволяет выявлять больных с хромосомными заболеваниями.

Половой хроматин или хроматиновое тельце, находится под оболочкой ядра, в нейтрофилах по форме напоминает барабанную палочку, образован неактивной, находящейся в состоянии спирализации Х-хромосомой. В норме один половой хроматин обнаруживается только в клетках женщин, поскольку у них 2 Х-хромосомы: одна активная и одна в состоянии спирализации. Выявление полового хроматина в клетках мужского организма, равно как увеличение числа или отсутствие полового хроматина в клетках женского организма позволяет, наряду с результатами кариологического метода исследования, определить виды хромосомных болезней, связанных с изменением числа половых хромосом (синдром Клайнфельтера, трисомия-Х, синдром Шерешевского-Тернера и др.).

Выявлению ряда серьезных наследственных болезней способствует биохимический метод, основанный на определении биохимических отличий в составе мочи, крови. Так, обнаружение в эритроцитах крови больного Н в S позволяет диагностировать у него серповидно-клеточную анемию, определение в моче феникпировиноградной кислоты используется для диагностики фенилкетонурии.

Изучению природы и закономерностей развития наследственных форм патологии способствует и экспериментальный метод исследования, для чего выявляют и создают условия для размножения животных с различного рода наследственными дефектами, аналогичными тем, которые присущи человеку. Собаки болеют гемофилией, у кроликов встречается ахондроплазия, у мышей гипофизарная карликовость, ожирение и т.д.

^ 5. Этиология наследственных форм патологии

Причинами возникновения наследственных болезней и аномалий развития являются факторы, способные изменить качественную или количественную характеристику генотипа (структуру отдельных генов, хромосом, их число), то есть вызвать мутации. Такого рода факторы называют мутагенами. Мутагены классифицируют на экзогенные и эндогенные. Экзогенные мутагены могут быть химической, физической и биологической природы. Кхимическим экзогенным мутагенам относятся многие вещества промышленного производства (бензпирен, альдегиды, кетоны, эпоксид, бензол, асбест, фенол, формалин, ксилол и др.), пестициды. Выраженной мутагенной активностью обладает алкоголь. В клетках крови алкоголиков число дефектов в генетическом аппарате встречаются в 12-16 раз чаще, чем у непьющихили мало пьющих людей. Намного чаще в семьях алкоголиков рождаются дети с синдромами Дауна, Клайнфельтера, Патау, Эдвардса и другими хромосомными болезнями. Мутагенные свойства присущи и некоторым лекарственным препаратам (цитостатикам, акрихину, клофелину, соединениям ртути и др.), веществам, применяемым с пищей (сильный мутаген гидразин содержится в больших количествах в съедобных грибах, эстрагон и пиперин в черном перце; множество веществ, обладающих генотоксическими свойствами, образуется при кулинарной обработке жира и т.д.). Значительный генетический риск возникает при длительном употреблении человеком молока и мяса животных, в кормах которых преобладают травы, содержащие много мутагенов (например, люпин). Группу экзогенных физических мутагенов составляют все виды ионизирующей радиации (α-, β-, γ-, рентгеновские лучи), ультрафиолетовое излучение. Продуцентами биологических экзогенных мутагенов являются вирусыкори, краснухи, гепатита.

Эндогенные мутагены также могут быть химической (Н 2 О 2 , перекиси липидов, свободные радикалы) и физической (К 40 , С 14 , родон) природы.

Различают также истинные и косвенные мутагены. К числу последних относятся соединения, которыесами в обычном состоянии не оказывают повреждающего действия на генетический аппарат, однако, попав в организм, в процессе метаболизма приобретают мутагенные свойства. Например, некоторые широко распространенные азотсодержащие вещества, (нитраты азотистых удобрений), преобразуются в организме в весьма активные мутагены и канцерогены (нитриты).

Роль дополнительных условий в этиологии наследственных заболеваний в одних случаях весьма существенна (если развитие наследственной болезни, клиническое ее проявление сопряжено с действием определенных «проявляющих» факторов среды), в других менее значима, ограничивается лишь влиянием на экспрессивность болезни, не связанной с действием каких-либо специфических факторов среды.

^ 6. Общие закономерности патогенеза наследственных болезней

Инициальным звеном патогенеза наследственных болезней являются мутации – внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генотипов не признаетналичия специфических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации. Сторонниками существования специфических мутаций являются И.П. Дубинин, Е.Ф. Давыденкова, Н.П. Бочков.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации – в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутацияили амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные иди точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные абберации, в свою очередь подразделяются на следующие виды:

Делеция (нехватка) – вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующиеим гены хромосомы. Если последовательность генов в хромосоме изобразить рядом цифр 1, 2, 3, 4, 5, 6, 7, 8....... 10000, то при делеции участка 3-6 хромосома укорачивается, а последовательность в ней генов меняется (1, 2, 7, 8...... 10000). Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция сегмента р1 – p-eг (короткого плеча) 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Н в – генов связано развитие одной из форм наследственных гемоглобинопатий – α-талассемии (см. раздел «Патофизиология системы крови»);

Дупликация – вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. При принятой выше нумерации генов в хромосоме и дупликации на уровне 3-6 генов последовательность генов в такой хромосоме будет выглядеть следующим образом – 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8 - 10000. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко.

Инверсия – вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180° – 1, 2, 6, 5, 4,3, 7, 8 .... 10000;

Транслокация – вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами), миелоцитарный лейкоз – реципрокная транслокация между 9-й и 22-ой хромосомами (подробнее см. в разделе «Опухоли»).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с Х хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

В основе развития гепато-церебральной дистрофии лежит дефицит белка – церрулоплазмина, что сопряжено с увеличением всасывания, нарушением метаболизма и выведения меди, избыточным ее накоплением в тканях. Токсическое действие меди сказывается особенно сильно на состоянии и функции нервной системы и печени (процесс который завершается циррозом). Первые симптомы болезни проявляются в возрасте 10-20 лет, быстро прогрессируют и заканчиваются смертельным исходом. Наследование аутосомно-рецессивное.

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тканях и нарушением катализируемых им процессов. В качестве примеров развития по такому пути наследственных форм патологии можно назвать ряд болезней аминокислотного, углеводного обмена и др. Фенилпировиноградная олигофрения, например, связана с нарушением синтеза фенилаланингидроксилазы, катализирующей в норме превращение потребляемого с пищей фенилаланина в тирозин. Дефицит фермента ведет к избыточному содержанию в крови фенилаланина, многообразным изменениям в обмене тирозина, продукции значительных количеств фенилпировиноградной кислоты, повреждению мозга с развитием микроцефалии и умственной отсталости. Заболевание наследуется аутосомно-рецессивно. Диагноз его может быть поставлен в первые дни после рождения ребенка, еще до проявления выраженных симптомов болезни по обнаружению в моче фенилпировиноградной кислоты и фенил-аланинемии. Ранняя диагностика и своевременно начатое лечение (диета с низким содержанием фенилаланина) позволяет избежать развития болезни, наиболее тяжелого ее проявления – умственной неполноценности.

Отсутствие оксидазы гомогентизиновой кислоты, участвующей в обмене тирозина, ведет к накоплению промежуточного продукта тирозинового обмена – гомогентизиновой кислоты, которая не окисляется в малеилацетоуксусную кислоту, а откладывается в суставах, хрящах, соединительной ткани, вызывая с возрастом (обычно уже после 40 лет) развитие тяжелых артритов. Диагноз и в этом случае может быть поставлен очень рано: на воздухе моча таких детей из-за наличия в ней гомогентизиновой кислоты чернеет. Наследуется аутосомно-рецессивно.

3. Нередко в результате мутации формируется ген с патологическим кодом, вследствие чего синтезируется аномальная РНК и аномальный белок с измененными свойствами. Наиболее ярким примером патологии такого типа является серповидно-клеточная анемия, при которой в 6-ом положении β-цепи гемоглобина глутаниновая аминокислота заменена на валин, образуется нестабильный Н в S. В восстановленном состоянии растворимость его резко уменьшается, повышается его способность к полимеризации. Образуются кристаллы, нарушающие форму эритроцитов, которые легко гемолизируются, особенно в условиях гипоксии и ацидоза, приводя к развитию анемии. Наследование аутосомно-рециссивное или полудоминантное (более подробные сведения в разделе «Патология системы крови»).

Важным условием для возникновения и реализации действия мутаций является несостоятельность системы репарации ДНК, что может быть детерминировано генетически или развиться в процессе жизни, под влиянием неблагоприятных факторов внешнейили внутренней среды организма.

Так, в генотипе здоровых людей есть ген с кодом программы синтеза фермента экзонуклеазы, обеспечивающей «вырезание» пиримидиновых димеров, которые образуются под влиянием ультрафиолетового излучения. Аномалия данного гена, выражающаяся в утрате кода программы синтеза экзонуклеазы, повышает чувствительность кожи к солнечному свету. Под влиянием даже непродолжительной инголяции возникает сухость кожи, хроническое ее воспаление, патологическая пигментация, позже появляются новообразования, подвергающиеся злокачественному перерождению. Две трети больных умирают в возрасте до 15 лет. Заболевание – пигментная ксеродерма – наследуется аутосомно-рецессивно.

Функциональные потенции системы репарации ДНК ослабевают с возрастом.

Определенная роль в патогенезе наследственных форм патологии может принадлежать, по-видимому, стойким нарушениям регуляции генной активности, что, как уже отмечалось, может быть одной из возможных причин проявления наследственной болезни лишь спустя много лет после рождения.

Итак, основные механизмы развития наследственной патологии связаны с:

1) мутациями, в результате которых возникает

А) выпадение нормальной наследственной информации,

Б) увеличение объема нормальной наследственной информации,

В) замена нормальной наследственной информации на патологическую;

2) нарушением репарации поврежденной ДНК;

3) стойкими изменениями регуляции генной активности.

^ 7. Хромосомные болезни

Особую группу заболеваний, связанных со структурными изменениями в генетическом материале» составляют хромосомные болезни, условно относящиеся к категории наследственных. Дело в том, что в подавляющем большинстве случаев хромосомные болезни не передаются потомству, поскольку их носители чаще всего бывают бесплодными.

Хромосомные болезни обусловлены геномнымиили хромосомными мутациями, произошедшими в гамете одного из родителей, или в зиготе, сформированной гаметами с нормальным набором хромосом. В первом случае все клетки будущего ребенка будут содержать аномальный хромосомный набор (полная форма хромосомной болезни), во втором – развивается мозаичный организм, лишь часть клеток которого с аномальным набором хромосом (мозаичная форма болезни). Степень выраженности патологических признаков при мозаичной форме болезни слабее, нежели при полной.

Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбриогенеза, вследствие чего болезнь всегда характеризуется множественными пороками развития.

Частота хромосомных нарушений достаточно высока: из каждой 1000 живорожденных младенцев 3-4 имеют хромосомные болезни, у мертворожденных детей они составляют 6%; дисбалансом хромосом обусловлено около 40% спонтанных абортов (Н.П.Бочков, 1984). Количество вариантов хромосомных болезней не столь велико, как можно было бы ожидать теоретически. Дисбаланс, затрагивающий все пары хромосом, вызывает настолько значительные нарушения в организме, что они, как правило, оказываются несовместимыми с жизнью уже на ранних или более поздних этапах эмбриогенеза. Так, моноплоидия не обнаружена ни у новорожденных, ни у абортусов. Описаны редкие случаи триплаидии и тетраплоидии у абортусов и у живорожденных, которые, однако, погибали в первые дни жизни. Чаще встречаются изменения числа или структуры отдельных хромосом. Недостаток генетического материала вызывает более значительные дефекты, чем избыток. Полные моносомии, например, по аутосомам практически не обнаружены. По-видимому такой дисбаланс вызывает летальный исход уже в гаметогенезе или на стадии зиготы и ранней бластулы.

Основа для развития хромосомных болезней, связанных с изменением числа хромосом формируется в гаметогенезе, во время первого или второго мейотических делений или в период дробления оплодотворенной яйцеклетки, чаще всего в результате нерасхождения хромосом. При этом одна из гамет вместо одинарного набора хромосом содержит крайне редко – диплоидный набор всех хромосом, или 2 хромосомы какой-либо из пар хромосом, вторая гамета не содержит ни одной такой хромосомы. При оплодотворении аномальной яйцеклетки сперматозоидом с нормальным набором хромосом или нормальной яйцеклетки аномальным сперматозоидом, реже при сочетании двух гамет, содержащих измененное число хромосом, создают предпосылки для развития хромосомной болезни.

Вероятность такого рода нарушений, а, следовательно, и рождения детей с хромосомными болезнями, нарастает с возрастом родителей, особенно матери. Так, частота нерасхождения 21-ой пары хромосом в 1-м мейотическом делении составляет 80% всех его случаев, из них в 66,2% – у матери и в 13,8% – у отца; суммарный риск иметь ребенка с трисомией по 13-ой, 18-ой, 21-ой хромосоме для женщины в возрасте 45 лет и старше в 60 раз выше риска для женщины 19-24 лет (Н.П. Бочков и др. 1984).

Самой частой хромосомной болезнью является болезнь Дауна. Кариотип больных в 94% состоит из 47 хромосом за счет трисомии по 21 хромосоме. Примерно в 4% случаев отмечается транслокация лишней 21-ой хромосомы в 14-ю или 22-ю, общее число хромосом равно 46. Болезнь характеризуется резкой задержкой и нарушением физического и психического развития ребенка. Такие дети низкорослы, поздно начинают ходить, говорить. Бросаются в глаза внешний вид ребенка (характерная форма головы со скошенным затылком, широкая, глубоко запавшая переносица, монголоидный разрез глаз, открытый рот, неправильный рост зубов, макроглоссия, мышечная гипотония с разболтанностью суставов, брахидактилия, особенно мизинца, поперечная складка на ладони и др.) и выраженная умственная отсталость, иногда до полной идиотии. Нарушения отмечаются во всех системах и органах. Особенно часты пороки развития нервной (в 67%), сердечно-сосудистой (64,7%) системы. Как правило, изменены реакции гуморального и клеточного иммунитета, страдает система репарации поврежденной ДНК. С этим связана повышенная восприимчивость к инфекции, более высокий процент развития злокачественных новообразований, в особенности лейкозов. В большинстве случаев больные бесплодны. Однако, встречаются случаи рождения больной женщиной детей, часть из них страдают той же болезнью.

Второй по частоте (1:5000-7000 родов) патологией обусловленной изменением числа аутосом, является синдром Патау (трисомия 13). Синдром характеризуется тяжелыми пороками головного мозга и лица (дефекты строения костей мозгового и лицевого черепа, головного мозга, глаз; микроцефалия, расщелина верхней губы и неба), полидактилией (чаще – гексодактилия), дефектами перегородок сердца, незавешенным поворотом кишечника, поликистозом почек, пороками развития других органов. 90% детей родившихся с этой патологией, погибают в течение 1-го года жизни.

Третье место (1:7000 рождений) среди полисемии аутосом занимает трисомия 18 (синдром Эдвардса). Основные клинические проявления болезни: многочисленные пороки костной системы (патология строения лицевой части черепа: микрогнатия, эпикант, птоз, гипертелоризм) сердечно-сосудистой (дефекты межжелудочковой перегородки, пороки клапанов легочной артерии, аорты), гипоплазия ногтей, подковообразная почка, крипторхизм у мальчиков. 90% больных погибает на первом году жизни.

Намного чаще встречаются хромосомные болезни, связанные с нерасхождением половых хромосом. Известные варианты гоносомных полисомий приведены в таблице.

Типы гоносомных полисомий, обнаруженных у новорожденных

(по Н.П.Бочкову, А.Ф. Захарову, В.И.Иванову, 1984)


^ Х-полисомия при отсутствии у-хромосомы

Х-полисомии в присутствии одной у-хромосомы

у-полисомия в присутствии одной Х-хромосомы

Полисомия по обеим хромосомам

47 XXX

(1,3: 1000)


47 ХХУ

(1,5: 1000)


47 ХУУ

(1: 1000)


48 ХХУУ

48 ХХХХ

(30 известных случаев)


48 ХХХУ

(редко)


48 ХУУУ

(очень редко)


49 ХХХУУ

(1:25000)


49 ХХХХХ

(число случаев

Не указано)


49 ХХХХУ

(около 100 известных случаев)


49 ХУУУУ

(число случаев не указано)

Как следует из таблицы, подавляющее число полисимий по половым хромосомам приходится на трисомии XXX, XXV, XVV.

При трисомии по Х-хромосоме («сверхженщина») клинические признаки болезни нередко отсутствуют или минимальны. Болезнь диагносцируется по обнаружению вместо одного двух телец Барра и по кариотипу 47,XXX. В других случаях у больных отмечается гипоплазия яичников, матки, бесплодие, различные степени умственной неполноценности. Увеличение в кариотипе числа Х-хромосом увеличивает проявление умственной отсталости. Такие женщины чаще, чем в общей популяции страдают шизофренией.

Варианты полисомий с участием У-хромосом более многочислены и многообразны. Наиболее частый из них – синдром Клайнфельтера – обусловлен увеличением общего числа хромосом до 47 за счет Х-хромосомы. Больной мужчина (наличие У-хромосомы доминирует при любом количестве Х-хромосом) отличается высоким ростом, женским типом строения скелета, инертностью и умственной отсталостью. Генетический дисбаланс обычно начинает проявляться в период полового созревания, недоразвитием мужских половых признаков. Яички уменьшены в размерах, наблюдается аспермия или олигоспермия, часто гинекомастия. Надежным диагностическим признаком синдрома служит обнаружение в клетках мужского организма полового хроматина. Синдром сверхклайн-фельтера (ХХХУ, два тельца Барра), характеризуется большей выраженностью названных признаков, умственная несостоятельность достигает степени идиотии.

Обладатель кариотипа 47, ХУУ – «супер мужчина» отличается импульсивным поведением с выраженными элементами агрессивности. Большое число таких индивидов выявляется среди заключенных.

Гоносомная моносомия встречается намного реже, чем полисомия, и ограничивается лишь моносомией Х (синдром Шерешевского-Тернера). Кариотип состоит из 45 хромосом, половой хроматин отсутствует. Больные (женщины) отличаются низким ростом, короткой шеей, шейными боковыми кожными складками. Характерны лимфатический отек стоп, слабое развитие половых признаков, отсутствие гонад, гипоплазия матки и фолопиевых труб, первичная аменорея. Такие женщины бесплодны. Умственная способность, как правило, не страдает.

Случаев моносомии У не выявлено. По-видимому отсутствие Х-хро-мосомы несовместимо с жизнью и особи типа «ОУ» гибнут на ранних этапах эмбриогенеза.

Хромосомные болезни, обусловленные структурными изменениями хромосом, встречаются реже и, как правило, приводят к более тяжелым последствиям: спонтанным абортам, недоношенности, мертворождению, ранней детской смертности.

8. Фенокопии

Фенокопиями называют формы патологии, формирующиеся в период эмбриогенеза под влиянием факторов внешней среды, не связанные с изменением в генетическом аппарате, но по основным проявлениям сходные с наследственными формами патологии.

Причинами фенокопий могут быть:

Кислородное голодание плода, длительное воздействие которого чревато поражением Ц.Н.С.;

Инфекционные заболевания беременной женщины, особенно в ранний период беременности. Крайне опасны такие инфекции как токеоплазмоз, краснуха, сифилис и др., вызывающие в значительном проценте случаев (до 60-70%) тяжелые уродства (микроцефалию, гидроцефалию, аномалию глаз, глухонемоту, расщелину мягкого неба и др.);

Эндокринные нарушения в организме беременной женщины, до 2-2,5 раз и более увеличивающие вероятность различного рода отклонений у будущего ребенка;

Психическая травма и эмоциональные перенапряжения женщины в период беременности;

Лекарственные препараты, обладающие цитотоксическим или антиметаболическим действием. В свое время весь мир потрясли тяжелые последствия применения беременными широко разрекламированного снотворного – талидамида (десятки тысяч детей с тяжелыми формами уродств и пороков развития;

Недостаток в пище женщины микроэлементов (железа, кобальта, меди), витаминов (С, Е, В 1 , РР и др.);

Алкоголизм родителей (для сравнения: нарушение интеллекта, пороки развития у детей непьющих родителей составляют около 2%, у умеренно пьющих – до 9%, у сильно пьющих – порядка 74%);

Неграмотное использование контрацептивов, а также применение различного рода средств для прерывания беременности.

^ 9. Принципы профилактики наследственной патологии и фенокопий

Принципы профилактики наследственных форм патологии и фенокопий коротко сводятся к следующим основным положениям:

1. Охрана окружающей среды от загрязнения ее мутагенами и создание условий, ограничивающих (лучше – предотвращающих) их попадание в организм человека.

2. Предотвращение негативных последствий действия на организм мутагенов.

3. Грамотное, хорошо налаженное генетическое консультирование людей, собирающихся вступить в брак или готовящиеся к деторождению с определением возможного риска рождения больного ребенка. Это особенно важно в тех случаях, когда хотя бы один из родителей или их близких страдают (страдали) наследственными болезнями или имели уродства и другие аномалии развития.

4. Избегание близкородственных браков и разъяснение населению вредности брака между близкими родственниками.

5. Здоровый образ жизни.

7. Охрана здоровья беременной женщины.

8. Избегание криминальных абортов и применения средств для прерывания беременности.

На двух первых из названных положений остановимся подробнее.

Сегодня предлагается 3 пути борьбы с загрязнением окружающей среды, мутагенными агентами и ограничения степени вредного их воздействия на организм:

А) технологический – перевод промышленного производства на замкнутые циклы (безотходное производство) – наиболее радикальный, но крайне дорогостоящий, практически недостижимый путь (в условиях интенсивного транспорта) мутагенов и незастрахованности от возможных аварий, последствия которых иногда оказываются катастрофическими (пример – авария на ЧАЭС);

Б) компонентный – предполагающий выявление мутагенов среды и их изъятие, – тоже весьма заманчивый, неимоверно дорогой и ограниченный для реализации путь уже хотя бы потому, что отказаться от использования многих мутагенов человечество сегодня не в состоянии (от использования рентгеновских лучей, радиоизотопов, цитостатиков, других лекарств и диагностических процедур с побочным мутагенным эффектом – в медицине; от применения пестицидов в сельском хозяйстве, некоторых химических соединений в металлургии, химическом и коксохимическом производстве и т.п.;

В) компенсационный – рассчитанный на снижение вероятности частоты мутаций за счет повышения устойчивости генетического аппарата к мутагенным воздействиям и устранение уже возникших мутаций, – наиболее перспективный, чаще всего используемый путь борьбы с последствиями загрязнения среды.

Процесс подавления спонтанных и индуцированных мутаций называется антимутагенезом, а вещества, обладающие такими свойствами, – антимутагена-ми. К числу антимутагенов относятся соединения 1) нейтрализующие мутаген до его реакции с молекулой ДНК, 2) снимающие повреждение молекулы ДНК, вызванные мутагеном, или повышающие ее устойчивость к ним, 3) препятствующие превращению в организме косвенных мутагенов в истинные. Сегодня известно около 200 природных и синтетических соединений, обладающих всеми или частью из перечисленных свойств. Это некоторые аминокислоты (аргинин, гистидин, метионин и др.), ферменты (пероксидаза, НАДФ-оксидаза, каталазы, глутаминпероксидазы и др.), ряд лекарственных средств (сульфаниламиды, интерферон, антиоксиданты и др.). Высокой антимутагенной активностью обладают витамины Е, С, А, К. Первые два из них относятся к числу универсальных антимутагенов, блокирующие различные звенья мутагенеза: повышают активность ферментов, обезвреживающих мутагены, подавляют процесс превращения косвенных мутагенов в истинные, предохраняют ДНК от повреждающего действа мутагенов, подавляют активность свободных радикалов, активируют процесс репарации ДНК, т.е. повышают ее устойчивость к генотоксическим влияниям (Алекперов У.К., 1989). Выраженные антимутагенные свойства присущи многим овощам и фруктам. Особенно сильно они проявляются у капусты, яблок, мяты, зеленого перца, ананаса, баклажанов, винограда. Многократно (от 4 до 11 раз) снижается токсический эффект мутагенов в эксперименте. Вот почему правильное сбалансированное, богатое фруктами и овощами питание может быть одним из действенных средств индивидуальной профилактики генотоксического эффекта факторов окружающей среды.

^ 10. Принципы лечения наследственных болезней и дефектов развития

Для лечения наследственных болезней, как и при лечении заболеваний ненаследственной природы (инфекционных, алиментарных, обменного характера и других) применяется симптоматическое, патогенетическое, этиологическое лечение с использованием всех видов терапевтического воздействия: от применения лекарств, диетотерапии физио-, бальнео- климатотерапии до хирургического вмешательства.

Наиболее часто применяется симптоматическое лечение (в отличие от ненаследственных форм патологии, при которых данный метод используется обычно лишь как вспомогательное средство). Для многих наследственных болезней симптоматическое лечение является единственным. Особенно часто используется лекарственная терапия: анальгетики при наследственных формах мигрени; пилокарпин при глаукоме; специальные, снимающие зуд и боль, мази при многих кожных заболеваниях; муколитические (разжижающие слизь) средства в сочетании с антибиотиками при муковисцидозе, главным и наиболее тягостным проявлением одной из форм которого является обильное образование очень густой и вязкой слизи в протоках экзокринных желез бронхов.

Патогенетическое лечение, рассчитанное на прерывание патологической цепи патогенеза болезни, является при наследственных, как и при ненаследственных формах заболеваний наиболее обоснованным и эффективным. Варианты патогенетического лечения при наследственных формах патологии могут быть следующими:

1. Коррекция обмена, достигаемая

Исключением или ограничением в рационе больного веществ, которые в результате действия мутантного гена и связанного с этим нарушенного обмена превращаются в токсичные для организма (фенилаланина при фенилкетонурии, галактозы при галактоземии и т.д.);

Возмещением продукта, выработка которого нарушена в результате мутации гена (введение инсулина при сахарном диабете, антигемофильного глобулина А или В при соответствующих формах гемофилии, тиреоидных гормонов при гипофункции щитовидной железы и т.д.);

Освобождением от продуктов обмена, усиленно накапливающихся в организме (назначение препаратов БАЛ, унитод, Д-пеницилламина, способствующих выведению меди; при гепато-церебральной дистрофии; лекарств, обеспечивающих выведение солей мочевой кислоты при подагре; в ряде случаев прибегают к использованию сорбционных методов детоксикации);

Метаболической ингибицией (аллопуринод, например, применяется при подагре для угнетения синтеза ксантиноксидазы и уменьшения таким образом концентрации мочевой кислоты).

2. Добавление к рациону больного определенных веществ, компенсирующих нарушение их синтеза.

3. Исключение лекарств, употребление которых провоцирует обострение наследственной болезни (например, противомалярийных препаратов при недостаточности глюкозо-6-фосфатдегидрогеназы).

Существенное место в лечении наследственных форм патологии занимает хирургическое лечение, которое в одних случаях может расцениваться как симптоматическое (коррегирующая операция при расщелине верхней губы), в других – как патогенетическое (удаление опухоли при ретинобластоме, полипов толстого кишечника, устранение дефектов перегородок сердца, трансплантация почки при их поликистозе и др.).

Этиологическое лечение наследственных заболеваний предполагает серьезное «маневрирование» с генетическим материалом (пересадку гена, выключение мутантного гена, вызывание обратных мутаций, превращающих патологический ген в его нормальную аллель и т.п.). Пока генной инженерией занимаются в экспериментальных исследованиях. До применения ее в клинических условиях требуется решение еще очень многих сложных вопросов, в том числе и этического плана.

При лечении наследственных болезней используют и особый метод

1 при рецессивных заболеваниях учитываются, естественно, лишь особи, гомозиготные по анализируемому гену.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

С. А. Жадан, Т. Н. Афанасьева, Ф. И. Висмонт

РОЛЬ НАСЛЕДСТВЕННОСТИ В ПАТОЛОГИИ

Учебно-методическое пособие

Минск БГМУ 2012

ОБЩАЯ ХАРАКТЕРИСТИКА НАСЛЕДСТВЕННОЙ ПАТОЛОГИИ

Медицинская генетика и ее задачи

Наследственность - это свойство живых существ и клеток организма передавать свои признаки (анатомо-физиологические особенности) потомкам. Она обеспечивает относительную стабильность вида. Материальными носителями наследственной информации являются гены - участки молекулы ДНК.

Изменчивость - свойство организма и его клеток, проявляющееся в возникновении новых признаков.

В настоящее время известно около 2000 видов наследственной патологии

и генетически детерминированных синдромов. Число их постоянно растет, ежегодно описываются десятки новых форм наследственных болезней . Основными причинами, способствующими увеличению роста наследственной патологии, являются:

– значительные успехи медицины в лечении и предупреждении многих инфекционных болезней;

– возрастающее загрязнение окружающей среды мутагенными агентами;

– увеличение средней продолжительности жизни человека.

Наряду с этим совершенствование методов диагностики и успехи молекулярной биологии позволяют выявлять генетическую природу ряда серьезных заболеваний, ранее не связываемых с аномалиями генома (например, хромосомные болезни).

Генетика - это наука о наследственности и изменчивости организма. Раздел генетики, который занимается изучением наследственности и изменчивости человека с точки зрения патологии, называется медицинской генетикой .

Основными задачами медицинской генетики являются:

1. Изучение наследственных форм патологии, их этиологии, патогенеза, совершенствование диагностики, разработка методов профилактики и лечения.

2. Изучение причин и механизмов наследственно детерминированной предрасположенности и резистентности к различным (в том числе и инфекционной природы) заболеваниям.

3. Изучение роли и значения генетического аппарата в развитии реакций адаптации, компенсации и явлениях декомпенсации.

4. Подробное всестороннее изучение процессов мутагенеза и антимутагенеза, их роли в развитии болезней.

5. Изучение ряда общебиологических проблем: молекулярногенетических механизмов канцерогенеза, роли генетического аппарата в явлениях тканевой несовместимости, аутоиммунных реакциях организма и др.

Понятие о наследственной и врожденной патологии. Фенокопии

Понятия «наследственные болезни» и «врожденные заболевания» далеко не однозначны.

Врожденными называют любые заболевания, проявляющиеся сразу после рождения ребенка. Они могут быть наследственными и ненаследственными.

К числу наследственных болезней относятся лишь те, в основе которых лежат структурные изменения в генетическом материале. Одни из них клинически проявляются уже в первые дни после рождения, другие -в юношеском, зрелом, а иногда и в пожилом возрасте.

Ненаследственные болезни обусловлены действием неблагоприятных факторов среды на развивающийся плод в период беременности и не затрагивают его генетический аппарат.

Фенокопии, причины их развития

В медицинской генетике выделяют еще одно понятие - фенокопии. Фенокопия представляет собой клинический синдром, возникающий под влиянием факторов внешней среды в период эмбрионального развития, сходный по своим проявлениям с наследственным заболеванием, но имеющий негенетическую природу возникновения. Например, такие аномалии, как «волчья пасть », «заячья губа », могут быть и наследственно обусловленными (синдром Патау), и ненаследственными, возникающими в результате нарушения эмбрионального развития. Гипотиреоз наследуется как аутосомно-рецессивный признак, но может встречаться и как фенокопия у людей, проживающих в районах, где питьевая вода бедна йодом. Ранняя глухота может наследоваться как рецессивный или доминантный признак, а может встречаться как фенокопия у детей, рожденных женщинами, переболевшими во время беременности краснухой.

Таким образом, фенокопии представляют собой заболевания, внешне похожие на наследственные болезни, но не связанные с изменением генотипа.

Причинами фенокопии могут быть:

кислородное голодание плода (внутриутробная гипоксия), вызывающее развитие серьезных дефектов структуры мозга и черепа, микроцефалию;

эндокринные нарушения в организме беременной женщины (вероятность рождения больного ребенка у такой женщины примерно в 2,5 раза выше);

инфекционные заболевания беременной женщины (токсоплазмоз, краснуха, сифилис и др.), особенно в ранний период беременности, вызывающие в значительном проценте случаев (до 60–70 %) тяжелые уродства (микроцефалию, глухонемоту, расщелину мягкого неба и др.);

тяжелая психическая травма и длительные эмоциональные перенапряжения женщины в период беременности;

лекарственные препараты, обладающие цитотоксическим или антиметаболическим действием;

хронический алкоголизм родителей (пороки развития у детей непьющих родителей составляют около 2 %, у умеренно пьющих - до 9 %, у сильно пьющих - 74 %) и др.

Классификация болезней с учетом взаимоотношения наследственных и средовых факторов в их развитии. Понятие

о пенетрантности и экспрессивности

В развитии болезни, как и в жизнедеятельности здорового организма, принимают участие два основных фактора: воздействия внешней среды

(внешний фактор) и наследственность (внутренний фактор).

С учетом удельного веса внутреннего и внешнего факторов в развитии болезни выделяют следующие группы заболеваний (Н. П. Бочков, 2002):

1. Собственно наследственные болезни. Причиной этих заболеваний являются аномалии в генетическом аппарате клетки, т. е. мутации (генные, хромосомные и геномные). Среда определяет лишь пенетрантность (частоту проявления аномального гена в популяции особей, обладающих данным геном)

и экспрессивность (степень выраженности действия гена у конкретной особи). К этой группе относятся такие моногенно обусловленные заболевания, как алкаптонурия, фенилкетонурия, гепатоцеребральная дистрофия, гемофилия и др., а также все хромосомные болезни.

2. Экогенетические заболевания . Эта группа наследственных болезней обусловлена мутацией, действие которой проявляется только при воздействии на организм определенного, специфического для данного мутантного гена фактора внешней среды. Для этих болезней и генетическая, и средовая

составляющая представлены однофакторно: индивидуальный ген - специфический к данному гену средовой фактор. К таким заболеваниям относится, например, серповидноклеточная анемия (полудоминантно наследуемая гемоглобинопатия). У гетерозиготных носителей HbS гемолитические кризы, ведущие к анемии, возникают лишь в условиях гипоксии или ацидоза. При наследственной ферментопатии, связанной с дефицитом глюкозо-6-фосфатдегидрогеназы, аналогичную роль может играть применение лекарств-окислителей, употребление конских бобов, иногда вирусная инфекция.

3. Болезни с наследственной предрасположенностью. Являются результатом взаимодействия генетических и средовых факторов, причем и те, и другие многочисленны. Иногда эти болезни называют многофакторными, или мультифакториальными. К ним относится подавляющее число болезней зрелого и пожилого возраста: гипертоническая болезнь, атеросклероз, ишемическая болезнь сердца, язвенная болезнь желудка и 12-перстной кишки, злокачественные новообразования и др.

Между второй и третьей группой болезней нет четкой разницы. Их часто объединяют в одну группу болезней с наследственной предрасположенностью, различая моногенно и полигенно детерминированную предрасположенность.

4. Болезни, обусловленные факторами среды, от действия которых организм не имеет средств защиты (экстремальные). Это различные травмы

(механическая, электрическая), болезни, возникающие под действием ионизирующей радиации, ожоги, отморожения, особо опасные инфекции и др. Генетический фактор в этих случаях определяет лишь тяжесть болезни, ее исход, в ряде случаев - вероятность возникновения.

Классификация наследственных форм патологии

В связи со сложной природой наследственной патологии существует два основных принципа ее классификации: клинический и генетический.

Клинический принцип классификации подразумевает деление наследственных форм патологии в зависимости от органа или системы, наиболее вовлеченных в патологический процесс. В соответствии с этим критерием выделяют наследственно обусловленные заболевания нервной системы, болезни опорно-двигательного аппарата, кожи, крови и др.

В основу генетической классификации наследственных болезней положен этиологический принцип, а именно тип мутаций и характер их взаимодействия со средой. В соответствии с этим критерием всю наследственную патологию можно разделить на группы:

1) генные болезни, вызываемые генными мутациями;

2) хромосомные болезни, возникающие в результате хромосомных или геномных мутаций;

3) болезни с наследственной предрасположенностью (многофакторные )

- развиваются у лиц с соответствующим сочетанием «предрасполагающих» наследственных и «проявляющих» внешних факторов;

4) генетические болезни соматических клеток ;

5) болезни генетической несовместимости матери и плода .

Каждая из этих групп, в свою очередь, подразделяется в соответствии с более детальной генетической характеристикой и типом наследования.

Этиология наследственных форм патологии. Мутации, их виды. Понятие о мутагенах

Отдельные гены, хромосомы и геном в целом постоянно претерпевают разнообразные изменения. Несмотря на то, что существуют механизмы репарации (восстановления) ДНК, часть повреждений и ошибок сохраняется. Изменения в последовательности и числе нуклеотидов в ДНК называют мутациями.

Мутации - стойкое скачкообразное изменение в наследственном аппарате клетки, не связанное с обычной рекомбинацией генетического материала.

Все мутации классифицируют в соответствии с несколькими критериями. 1. По причине возникновения различают спонтанные и индуцированные

Спонтанные мутации - это мутации, возникшие самопроизвольно под влиянием естественных мутагенов экзоили эндогенного происхождения. Причиной таких мутаций может быть космическое излучение, радиоактивные изотопы, эндогенные химические мутагены (перекиси и свободные радикалы - аутомутагены), образующиеся в организме в процессе обмена веществ. Значительную роль в возникновении спонтанных мутаций играет возраст. У мужчин с возрастом в половых клетках накапливаются генные мутации. У женщин зависимость генных мутаций от возраста не отмечена, но выявлена четкая связь возраста матери с частотой хромосомных заболеваний у потомства.

Индуцированные мутации - это мутации, вызванные направленным воздействием на организм факторов различного происхождения - физических, химических или биологических мутагенов. Распространенность некоторых мутагенов в среде обитания человека представлена в прил. 1.

К физическим мутагенам относятся ионизирующие излучения (α-, β- и γ- лучи, рентгеновское излучение, нейтроны) и УФ-излучение. Особенность ионизирующего излучения состоит в том, что оно может индуцировать мутации

в низких дозах, не вызывающих лучевого поражения.

К химическим мутагенам относят спирты, кислоты, тяжелые металлы, соли и другие соединения. Химические мутагены содержатся в воздухе (мышьяк, фтор, сероводород, свинец и др.), почве (пестициды и другие

химикаты), пищевых продуктах, воде. Установлено, что многие лекарственные препараты обладают выраженной мутагенной активностью (прил. 2). Очень сильным мутагеном является конденсат сигаретного дыма, который содержит бензпирен. Конденсат дыма и поверхностная корочка, образующиеся при обжаривании рыбы и говядины, содержат пиролизаты триптофана, которые являются химическими мутагенами. Особенность химических мутагенов состоит в том, что их действие зависит от дозы и стадии клеточного цикла. Чем выше доза мутагена, тем сильнее мутагенный эффект.

К биологическим мутагенам относятся бактериальные токсины, вирусы кори, краснухи, гриппа, герпеса, антигены некоторых микроорганизмов.

Основные медицинские последствия мутагенеза в различных типах клеток представлены на рис. 1.

2. По виду клеток , в которых произошла мутация, выделяют гаметические, соматические и мозаичные мутации.

Гаметические мутации возникают в половых клетках. Они наследуются потомками и, как правило, обнаруживаются во всех клетках организма. Их последствия сказываются на судьбе потомства и служат причиной наследственных заболеваний.

Рис. 1 . Медицинские последствия мутагенеза в различных типах клеток

Соматические мутации возникают в соматических клетках, носят случайный характер, могут возникать на любой стадии развития, начиная с зиготы. По наследству не передаются.

Мозаичные мутации - это мутации, которые возникают в клетках эмбриона или плода. В результате возникают клеточные линии с различными генотипами. Одни клетки организма имеют нормальный кариотип, а другие - аномальный. Чем раньше в онтогенезе происходит соматическая мутация, тем больше клеток содержит данную мутацию и тем более выражены ее проявления.

3. По значению различают патогенные, нейтральные и благоприятные мутации.

Патогенные мутации приводят к гибели эмбриона (или плода) или к развитию наследственных и врожденных заболеваний. Они делятся на летальные, полулетальные, нелетальные. Летальность может проявляться на уровне гамет, зигот, эмбрионов, плодов, а также после рождения.

Нейтральные мутации обычно не влияют на жизнедеятельность организма (например, мутации, вызывающие появление веснушек на коже, изменение цвета волос, радужной оболочки глаза).

Благоприятные мутации повышают жизнеспособность организма или вида (например, темная окраска кожных покровов у жителей африканского континента).

4 . В зависимости от объема поврежденного материала мутации делятся на генные (изменения в отдельных генах), хромосомные (структурные хромосомные аберрации), геномные (численные хромосомные аберрации).

Антимутагенез. Механизмы действия антимутагенов

Антимутагенез - это процесс подавления спонтанных и индуцированных мутаций. Вещества, обладающие такими свойствами, называются антимутагенами. Некоторые из них приведены в прил. 3.

Существуют различные принципы классификации антимутагенов:

1) по происхождению: экзогенные и эндогенные, внутриклеточные и внеклеточные;

2) механизму действия;

3) химическому строению и антиканцерогенным свойствам.

К экзогенным относят антимутагены:

незаменимые аминокислоты (метионин, гистидин, аргинин, глютаминовая кислота и др.);

витамины и провитамины (преимущественно А, Е, С, К);

полиненасыщенные жирные кислоты;

микроэлементы (Se), хлорид кобальта;

пищевые волокна;

2) проникающие в организм респираторным путем (фитонциды);

3) поступающие в организм человека перорально в процессе фармакотерапии либо профилактического применения:

лекарства (стрептомицин, левомицетин и др., применяемые в малых

специально синтезированные лекарства (бемитил);

биологически активные добавки (индол-3-карбинол и др.);

синтетические антимутагены (ионол, дибунол и др.).

К эндогенным антимутагенам относятся:

1) система репарации поврежденной ДНК;

2) антиоксидантная система;

3) ферментные системы;

4) клеточные метаболиты;

5) гормоны щитовидной железы, мелатонин;

6) эмбриональные вещества (Со);

7) S-содержащие соединения (глутатион).

Механизмы действия антимутагенов

К основным механизмам действия антимутагенов относятся:

1. Инактивация мутагенов внешнего происхождения и предохранение ДНК от их повреждающего действия (дисмутагены). В большинстве случаев дисмутагены устойчиво связываются с мутагеном и выводят его из организма (экстракты петрушки, свеклы, редиса, сельдерея, сливы, черники, яблок).

2. Подавление процесса образования истинных мутагенов из предшествующих немутагенных веществ (витамины С, Е, дубильные вещества,

некоторые фенолы).

3. Подавление активности свободных радикалов, которые могут повреждать ДНК (антиоксиданты: супероксиддисмутаза, глютатионпероксидаза, каталаза, витамин С, А, α-токоферол, β-каротин, Е, мелатонин и др.).

4. Повышение активности ферментных систем, обезвреживающих мутагены, канцерогены и другие генотоксические соединения . Универсальный механизм инактивации ксенобиотиков обеспечивают микросомальные ферменты печени, которые метаболизируют до 75 % всех лекарств.

5. Антимутагены, уменьшающие ошибки репарации и репликации ДНК,

активация и коррекция репарации (репарагены). К репарационным

антимутагенам, которые содержатся в некоторых пищевых продуктах (например, в кукурузном, хлопковом, подсолнечном, соевом и других растительных маслах), относятся:

ванилин, цианамальдегид и другие альдегиды, образующиеся при окислении насыщенных жирных кислот. Эти вещества стимулируют генетическую рекомбинацию, временно угнетают деление клеток, увеличивая время репарации ДНК;

соли кобальта, повышающие эффективность безошибочной репарации ДНК (содержатся в достаточном количестве в луке, капусте, томатах, салате, картофеле, черной смородине и грушах).

6. Антимутагены с неизвестным механизмом действия. В последние годы установлена полифункциональность у некоторых антимутагенов (фенольный компонент зеленого чая - эпигаллокатехингалат, изоцианаты из крестоцветных овощей - сульфоран и фенолизоционат и др.). Антимутагены выступают в роли перехватчиков свободных радикалов, подавляют синтез метаболической активации ксенобиотиков и стимулируют их детоксикацию, модулируют репарацию ДНК, влияют на транскрипционные факторы и сигнальные пути, вовлеченные в апоптоз и регуляцию клеточного цикла, подавляют воспаление и ангиогенез.

Таким образом, к основным антимутагенам относятся:

1) соединения, нейтрализующие мутаген до его реакции с молекулой

2) вещества, снимающие повреждение молекулы ДНК, вызванное мутагеном, или повышающие ее устойчивость к мутагену;

3) соединения, препятствующие превращению в организме косвенных мутагенов в истинные.

ГЕННЫЕ БОЛЕЗНИ

Генные болезни - разнородная по клиническим проявлениям группа заболеваний, обусловленных мутациями на генном уровне. Основой для объединения их в одну группу являются этиологическая генетическая характеристика и, соответственно, закономерности наследования в семьях и популяциях.

Этиология генных болезней

Причинами генных болезней являются генные мутации , которые могут затрагивать структурные, транспортные и эмбриональные белки, а также ферменты.

Генные мутации - это молекулярные изменения структуры ДНК. Они обусловлены изменением химического строения гена, а именно специфической

Изменчивость – это всеобщее свойство живых систем, связанное с изменениями фенотипа и генотипа, возникающими под влиянием внешней среды или в результате изменений наследственного материала. Различают ненаследственную и наследственную изменчивость.

Ненаследственная изменчивость . Ненаследственная, или групповая (определенная), или модификационная изменчивость – это изменения фенотипа под влиянием условий внешней среды. Модификационная изменчивость не затрагивает генотип особей. Генотип, оставаясь неизменным, определяет пределы, в которых может изменяться фенотип. Эти пределы, т.е. возможности для фенотипического проявления признака, называются нормой реакции и наследуются . Норма реакции устанавливает границы, в которых может изменяться конкретный признак. Разные признаки обладают разной нормой реакции – широкой или узкой. Так, например, такие признаки, как группа крови, цвет глаз не изменяются. Форма глаза млекопитающих изменяется незначительно и обладает узкой нормой реакции. Удойность коров может варьировать в довольно широких пределах в зависимости от условий содержания породы. Широкую норму реакции могут иметь и другие количественные признаки – рост, размеры листьев, количество зерен в початке и т.д. Чем шире норма реакции, тем больше возможностей у особи приспособиться к условиям окружающей среды. Вот почему особей со средней выраженностью признака больше, чем особей с крайними его выражениями. Это хорошо иллюстрируется таким примером, как количество карликов и гигантов у людей. Их мало, тогда как людей с ростом в диапазоне 160-180 см в тысячи раз больше.

На фенотипические проявления признака влияет совокупное взаимодействие генов и условий внешней среды. Модификационные изменения не наследуются, но не обязательно носят групповой характер и не всегда проявляются у всех особей вида, находящихся в одинаковых условиях среды. Модификации обеспечивают приспособленность особи к этим условиям.

Наследственная изменчивость (комбинативная, мутационная, неопределенная).

Комбинативная изменчивость возникает при половом процессе в результате новых сочетаний генов, возникающих при оплодотворении, кроссинговере, конъюгации т.е. при процессах, сопровождающихся рекомбинациями (перераспределением и новыми сочетаниями) генов. В результате комбинативной изменчивости возникают организмы, отличающиеся от своих родителей по генотипам и фенотипам. Некоторые комбинативные изменения могут быть вредны для отдельной особи. Для вида же комбинативные изменения, в целом, полезны, т.к. ведут к генотипическому и фенотипическому разнообразию. Это способствует выживанию видов и их эволюционному прогрессу.

Мутационная изменчивость связана с изменениями последовательности нуклеотидов в молекулах ДНК, выпадения и вставок крупных участков в молекулах ДНК, изменений числа молекул ДНК (хромосом). Сами подобные изменения называются мутациями . Мутации наследуются.

Среди мутаций выделяют:

генные – вызывающими изменения последовательности нуклеотидов ДНК в конкретном гене, а следовательно в и-РНК и белке, кодируемом этим геном. Генные мутации бывают как доминантными, так и рецессивными. Они могут привести к появлению признаков, поддерживающих или угнетающих жизнедеятельность организма;

генеративные мутации затрагивают половые клетки и передаются при половом размножении;

соматические мутации не затрагивают половые клетки и у животных не наследуются, а у растений наследуются при вегетативном размножении;

геномные мутации (полиплоидия и гетероплоидия) связаны с изменением числа хромосом в кариотипе клеток;

хромосомные мутации связаны с перестройками структуры хромосом, изменением положения их участков, возникшего в результате разрывов, выпадением отдельных участков и т.д.

Наиболее распространены генные мутации, в результате которых происходит изменение, выпадение или вставка нуклеотидов ДНК в гене. Мутантные гены передают к месту синтеза белка уже иную информацию, а это, в свою очередь, ведет к синтезу других белков и возникновению новых признаков. Мутации могут возникать под влиянием радиации, ультрафиолетового излучения, различных химических агентов. Не все мутации оказываются эффективными. Часть их исправляется при репарациях ДНК. Фенотипически мутации проявляются в том случае, если они не привели к гибели организма. Большинство генных мутаций носят рецессивный характер. Эволюционное значение имеют фенотипически проявившиеся мутации, обеспечившие особям либо преимущества в борьбе за существование, либо наоборот, повлекшие их гибель под давлением естественного отбора.

Мутационный процесс повышает генетическое разнообразие популяций, что создает предпосылки для эволюционного процесса.

Частоту мутаций можно повышать искусственно, что используется в научных и практических целях.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Под модификационной изменчивостью понимают

1) фенотипическую изменчивость

2) генотипическую изменчивость

3) норму реакции

4) любые изменения признака

А2. Укажите признак с наиболее широкой нормой реакции

1) форма крыльев ласточки

2) форма клюва орла

3) время линьки зайца

4) количество шерсти у овцы

А3. Укажите правильное утверждение

1) факторы среды не влияют на генотип особи

2) наследуется не фенотип, а способность к его проявлению

3) модификационные изменения всегда наследуются

4) модификационные изменения вредны

А4. Укажите пример геномной мутации

1) возникновение серповидно-клеточной анемии

2) появление триплоидных форм картофеля

3) создание бесхвостой породы собак

4) рождение тигра-альбиноса

А5. С изменением последовательности нуклеотидов ДНК в гене связаны

1) генные мутации

2) хромосомные мутации

3) геномные мутации

4) комбинативные перестройки

А6. К резкому повышению процента гетерозигот в популяции тараканов может привести:

1) увеличение количества генных мутаций

2) образование диплоидных гамет у ряда особей

3) хромосомные перестройки у части членов популяции

4) изменение температуры окружающей среды

А7. Ускоренное старение кожи у сельских жителей по сравнению с городскими, является примером

1) мутационной изменчивости

2) комбинационной изменчивости

3) генных мутаций под действием ультрафиолетового излучения

4) модификационной изменчивости

А8. Основной причиной хромосомной мутации может стать

1) замена нуклеотида в гене

2) изменение температуры окружающей среды

3) нарушение процессов мейоза

4) вставка нуклеотида в ген

Часть В

В1. Какие примеры иллюстрируют модификационную изменчивость

1) загар человека

2) родимое пятно на коже

3) густота шерстяного покрова кролика одной породы

4) увеличение удоя у коров

5) шестипалость у человека

6) гемофилия

В2. Укажите события, относящиеся к мутациям

1) кратное увеличение числа хромосом

2) смена подшерстка у зайца зимой

3) замена аминокислоты в молекуле белка

4) появление в семье альбиноса

5) разрастание корневой системы у кактуса

6) образование цист у простейших

ВЗ. Соотнесите признак, характеризующий изменчивость с ее видом

Часть С

С1. Какими способами можно добиться искусственного повышения частоты мутаций и зачем это нужно делать?

С2. Найдите ошибки в приведенном тексте. Исправьте их. Укажите номера предложений, в которых сделаны ошибки. Объясните их.

1. Модификационная изменчивость сопровождается генотипическими изменениями. 2. Примерами модификации являются осветление волос после долгого пребывания на солнце, повышение удойности коров при улучшении кормления. 3. Информация о модификационных изменениях содержится в генах. 4. Все модификационные изменения наследуются. 5. На проявление модификационных изменений оказывают влияние факторы окружающей среды. 6. Все признаки одного организма характеризуются одинаковой нормой реакции, т.е. пределами их изменчивости.

Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм. Наследственные болезни человека, их причины, профилактика

Основные термины и понятия, проверяемые в экзаменационной работе: биохимический метод, близнецовый метод, гемофилия, гетероплоидия, дальтонизм, мутагены, мутагенез, полиплоидия.

Ненаследственная (фенотипическая) изменчивость – это тип изменчивости, отражающий изменения фенотипа под действием условий внешней среды, не затрагивающих генотип. Степень ее выраженности может определяться генотипом. Фенотипические различия у генетически тождественных особей, возникающие вследствие воздействия факторов внешней среды, называются модификациями . Различают возрастные, сезонные и экологические модификации. Они сводятся к изменению степени выраженности признака. Нарушения структуры генотипа при них не происходит.

Возрастные (онтогенетические) модификации выражаются в виде постоянной смены признаков в процессе развития особи. У человека в процессе развития наблюдаются модификации морфофизиологических и психических признаков. К примеру, ребенок не сможет правильно развиваться и физически и интеллектуально, если в раннем детстве на него не будут оказывать влияние нормальные внешние и социальные факторы. Долгое пребывание ребенка в социально неблагополучной среде может вызвать необратимый дефект его интеллекта.

Онтогенетическая изменчивость, как и сам онтогенез, детерминируется генотипом, где закодирована программа развития особи. Однако особенности формирования фенотипа в онтогенезе обусловлены взаимодействием генотипа и среды. Под влиянием необычных внешних факторов могут происходить отклонения в формировании нормального фенотипа.

Сезонные модификации особей или целых популяций проявляются в виде генетически детерминированной смены признаков, (например, изменение окраски шерсти, появление подпушка у животных), происходящей в результате сезонных изменений климатических условий. Например, при высоких температурах у кролика развивается белая окраска шерсти, а при низких – темная. У сиамских котов в зависимости от сезона года палевая окраска шерсти сменяется на темно-палевую и даже коричневую.

Экологических модификации представляют собой адаптивные изменения фенотипа в ответ на изменение условий среды. Экологические модификации фенотипически проявляются в изменении степени выраженности признака. Они могут возникать на ранних стадиях развития и сохраняться в течение всей жизни особи. Примерами могут служить крупные и мелкие экземпляры растений, выращенные на почвах, содержащих разное количество питательных веществ; низкорослые и слабожизнеспособные особи у животных, развивающиеся в плохих условиях и не получающие достаточного количества необходимых для жизни питательных веществ; число лепестков у цветков печеночницы, поповника, лютика, количество цветков в соцветии у растений и т. д.

Экологические модификации затрагивают количественные (количество лепестков в цветке, потомства у животных, масса животных) и качественные (цвет кожи у человека под влиянием ультрафиолетовых лучей) признаки.

Экологические модификации обратимы и со сменой поколений при условии изменения внешней среды могут не проявиться. Например, потомство низкорослых растений на хорошо удобренных почвах будет нормальной высоты; у человека с кривыми ногами вследствие рахита бывает вполне нормальное потомство. Если же в ряду поколений условия не меняются, степень выраженности признака в потомстве сохраняется то ее принимают за стойкий наследственный признак (длительные модификации). При изменении условий развития длительные модификации не наследуются. Предполагалось, что от хорошо дрессированных животных потомство получается с лучшими «актерскими» данными, чем от недрессированных. Потомство дрессированных животных действительно легче поддается воспитанию, но объясняется это тем, что оно наследует не приобретенные родительскими особями навыки, а способность к дрессировке, обусловленную наследуемым типом нервной деятельности.

В большинстве случаев модификации носят адекватный характер, т.е. степень выраженности признака находится в прямой зависимости от вида и продолжительности действия того или иного фактора. Так, улучшение содержания скота способствует увеличению живой массы животных, плодовитости, удоя и жирности молока. Модификации носят приспособительный, адаптивный характер. Это означает, что в ответ на изменившиеся условия среды у особи проявляются такие фенотипические изменения, которые способствуют ее выживанию. Примером служит содержания эритроцитов и гемоглобина у лиц, оказавшихся высоко над уровнем моря. Но, приспособительны не сами модификации, а способность организма изменяться в зависимости от условий среды.

Одним из основных свойств модификаций является их массовость. Она обусловливается тем, что один и тот же фактор вызывает примерно одинаковое изменение у особей, сходных генотипически.

Модификационная изменчивость вызывается внешними факторами, но предел ее и степень выраженности признака контролируются генотипом. Так, однояйцевые близнецы сходны фенотипически и даже одинаково реагируют на разные условия (например, чаще всего переносят одни и те же заболевания). Но среда существенно влияет на формирование признаков. К примеру, у однояйцевых близнецов веснушки проявляются в разной степени в различных климатических условиях. У животных резкое ухудшение пищевого рациона может привести к похуданию одних и к смерти других особей. У человека при одинаково усиленном питании резко прибавит в массе тела гиперстеник, в меньшей степени - нормастеник, масса же астеника может вообще не измениться. Это свидетельствует о том, что генотип контролирует не только возможность организма изменяться, но и ее пределы. Предел модификации называется нормой реакции . Именно норма реакции, а не сами модификации, наследуется, т.е. наследуется способность к развитию того или иного признака. Норма реакции – это конкретная количественная я качественная характеристика генотипа, т.е. определенное сочетание генов в генотипе и характер их взаимодействия. К числу генных сочетаний и взаимодействий относят:

    полигенную детерминацию признаков, когда часть полигенов, контролирующих развитие количественного признака, в зависимости от условий может переходить из гетерохроматинового состояния в эухроматиновое и обратно (предел модификации в данном случае определяется количеством полигенов в генотипе);

    смену доминирования у гетерозигот при изменении внешних условий;

    различные типы взаимодействия неаллельных генов;

    экспрессивность мутации.

Различают признаки с широкой (масса, урожайность и т.д.), узкой (например, процент жира в молоке, количество птенцов у птиц, содержание белков в крови у человека) и однозначной нормой реакции (большинство качественных признаков: масть животных, цвет волос и глаз у человека и др.).

Иногда особи того или иного вида подвергаются влиянию таких вредных факторов, с которыми он не сталкивался в процессе эволюции, а токсичность их настолько велика, что исключает возможность модификационной изменчивости организма, определяемой нормой реакции. Такие агенты могут оказаться летальными, или их действие ограничивается индуцированием уродств развития. Уродства, или аномалии, развития называют морфозами. Морофозы – это различные нарушения формообразовательных процессов в период морфогенеза, приводящие к резкому изменению морфологических, биохимических, физиологических признаков и свойств организма. Примером морфозов служат дефекты развития крыльев и конечностей у насекомых, уродства раковины у моллюсков, уродства физического строения млекопитающих. Примером морфозов у человека является рождение, детей без конечностей, с непроходимостью кишечника, опухолью верхней губы, принявшее характер почти эпидемии в 1961 г. в ФРГ и некоторых странах Западной Европы и Америки. Причиной уродств послужило то, что матери в первые три месяца беременности принимали в качестве успокоительного препарата талидомид. Известен еще ряд веществ (тератогены, или морфогены), вызывающих уродства развития у человека. К ним относятся хинин, галлюциноген ЛСД, наркотики, алкоголь. Морфозы являются новыми, не имеющими исторической базы реакциями организма на необычные вредные факторы среды. Фенотипически они резко отличаются от модификаций: если модификация – это изменение степени выраженности признака, то морфоз – это резко измененный, нередко качественно новый признак.

Морфозы возникают при воздействии вредных агентов (морфогенов) на ранние процессы эмбрионального развития. Эмбриогенез подразделяется на ряд этапов, в течение которых осуществляется дифференциация и рост определенных органов и тканей. Развитие признака начинается коротким периодом, получившим название «критического». В этот период организм отличается высокой чувствительностью и снижением репаративных (восстановительных) возможностей. В случае воздействия морфогенов в критические периоды обычный путь развития зачатка изменяется, так как при этом происходит индуцированная репрессия генов, отвечающих за его формирование. Развитие того или иного органа как бы перескакивает с одного пути на другой. Это приводит к отклонениям от нормального развития фенотипа и к формированию уродств. Нарушения эмбриогенеза иногда носят специфический характер, так как их фенотипическое выражение зависит от стадии развития организма в момент воздействия. Самые разные токсические агенты могут вызывать одинаковые или сходные аномалии, если на организм воздействовать в строго определенный период развития, когда повышена чувствительность соответствующих тканей и органов. Некоторые морфогены (химические вещества) в силу своих структурных особенностей могут вызвать специфические морфозы в результате избирательного воздействия в тот или иной период развития.

Морфозы не носят приспособительного характера, поскольку реакция организма на индицирующие их факторы обычно бывает неадекватной. Частота индуцированных морфозов и чувствительность организмов при этом к вредным агентам-морфогенам контролируется генотипом и различна у разных особей одного и того же вида.

Морфозы фенотипически часто сходны с мутациями и в таких случаях носят название фенокопий. Механизмы возникновения мутаций и фенокопий различны: мутация является следствием изменения структуры гена, а фенокопия – результатом нарушения реализации наследственной информации. Фенокопий могут возникать и вследствие подавления функции определенных генов. В отличие от мутаций, они не наследуются.

Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

3.6.1. Изменчивость, ее виды и биологическое значение

Изменчивость – это всеобщее свойство живых систем, связанное с изменениями фенотипа и генотипа, возникающими под влиянием внешней среды или в результате изменений наследственного материала. Различают ненаследственную и наследственную изменчивость.

Ненаследственная изменчивость . Ненаследственная, или групповая (определенная), или модификационная изменчивость – это изменения фенотипа под влиянием условий внешней среды. Модификационная изменчивость не затрагивает генотип особей. Генотип, оставаясь неизменным, определяет пределы, в которых может изменяться фенотип. Эти пределы, т.е. возможности для фенотипического проявления признака, называются нормой реакции и наследуются . Норма реакции устанавливает границы, в которых может изменяться конкретный признак. Разные признаки обладают разной нормой реакции – широкой или узкой. Так, например, такие признаки, как группа крови, цвет глаз не изменяются. Форма глаза млекопитающих изменяется незначительно и обладает узкой нормой реакции. Удойность коров может варьировать в довольно широких пределах в зависимости от условий содержания породы. Широкую норму реакции могут иметь и другие количественные признаки – рост, размеры листьев, количество зерен в початке и т.д. Чем шире норма реакции, тем больше возможностей у особи приспособиться к условиям окружающей среды. Вот почему особей со средней выраженностью признака больше, чем особей с крайними его выражениями. Это хорошо иллюстрируется таким примером, как количество карликов и гигантов у людей. Их мало, тогда как людей с ростом в диапазоне 160-180 см в тысячи раз больше.

На фенотипические проявления признака влияет совокупное взаимодействие генов и условий внешней среды. Модификационные изменения не наследуются, но не обязательно носят групповой характер и не всегда проявляются у всех особей вида, находящихся в одинаковых условиях среды. Модификации обеспечивают приспособленность особи к этим условиям.

Наследственная изменчивость (комбинативная, мутационная, неопределенная).

Комбинативная изменчивость возникает при половом процессе в результате новых сочетаний генов, возникающих при оплодотворении, кроссинговере, конъюгации т.е. при процессах, сопровождающихся рекомбинациями (перераспределением и новыми сочетаниями) генов. В результате комбинативной изменчивости возникают организмы, отличающиеся от своих родителей по генотипам и фенотипам. Некоторые комбинативные изменения могут быть вредны для отдельной особи. Для вида же комбинативные изменения, в целом, полезны, т.к. ведут к генотипическому и фенотипическому разнообразию. Это способствует выживанию видов и их эволюционному прогрессу.

Мутационная изменчивость связана с изменениями последовательности нуклеотидов в молекулах ДНК, выпадения и вставок крупных участков в молекулах ДНК, изменений числа молекул ДНК (хромосом). Сами подобные изменения называются мутациями . Мутации наследуются.

Среди мутаций выделяют:

генные – вызывающими изменения последовательности нуклеотидов ДНК в конкретном гене, а следовательно в и-РНК и белке, кодируемом этим геном. Генные мутации бывают как доминантными, так и рецессивными. Они могут привести к появлению признаков, поддерживающих или угнетающих жизнедеятельность организма;

генеративные мутации затрагивают половые клетки и передаются при половом размножении;

соматические мутации не затрагивают половые клетки и у животных не наследуются, а у растений наследуются при вегетативном размножении;

геномные мутации (полиплоидия и гетероплоидия) связаны с изменением числа хромосом в кариотипе клеток;

хромосомные мутации связаны с перестройками структуры хромосом, изменением положения их участков, возникшего в результате разрывов, выпадением отдельных участков и т.д.

Наиболее распространены генные мутации, в результате которых происходит изменение, выпадение или вставка нуклеотидов ДНК в гене. Мутантные гены передают к месту синтеза белка уже иную информацию, а это, в свою очередь, ведет к синтезу других белков и возникновению новых признаков. Мутации могут возникать под влиянием радиации, ультрафиолетового излучения, различных химических агентов. Не все мутации оказываются эффективными. Часть их исправляется при репарациях ДНК. Фенотипически мутации проявляются в том случае, если они не привели к гибели организма. Большинство генных мутаций носят рецессивный характер. Эволюционное значение имеют фенотипически проявившиеся мутации, обеспечившие особям либо преимущества в борьбе за существование, либо наоборот, повлекшие их гибель под давлением естественного отбора.

Мутационный процесс повышает генетическое разнообразие популяций, что создает предпосылки для эволюционного процесса.

Частоту мутаций можно повышать искусственно, что используется в научных и практических целях.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Под модификационной изменчивостью понимают

1) фенотипическую изменчивость

2) генотипическую изменчивость

3) норму реакции

4) любые изменения признака

А2. Укажите признак с наиболее широкой нормой реакции

1) форма крыльев ласточки

2) форма клюва орла

3) время линьки зайца

4) количество шерсти у овцы

А3. Укажите правильное утверждение

1) факторы среды не влияют на генотип особи

2) наследуется не фенотип, а способность к его проявлению

3) модификационные изменения всегда наследуются

4) модификационные изменения вредны

А4. Укажите пример геномной мутации

1) возникновение серповидно-клеточной анемии

2) появление триплоидных форм картофеля

3) создание бесхвостой породы собак

4) рождение тигра-альбиноса

А5. С изменением последовательности нуклеотидов ДНК в гене связаны

1) генные мутации

2) хромосомные мутации

3) геномные мутации

4) комбинативные перестройки

А6. К резкому повышению процента гетерозигот в популяции тараканов может привести:

1) увеличение количества генных мутаций

2) образование диплоидных гамет у ряда особей

3) хромосомные перестройки у части членов популяции

4) изменение температуры окружающей среды

А7. Ускоренное старение кожи у сельских жителей по сравнению с городскими, является примером

1) мутационной изменчивости

2) комбинационной изменчивости

3) генных мутаций под действием ультрафиолетового излучения

4) модификационной изменчивости

А8. Основной причиной хромосомной мутации может стать

1) замена нуклеотида в гене

2) изменение температуры окружающей среды

3) нарушение процессов мейоза

4) вставка нуклеотида в ген

Часть В

В1. Какие примеры иллюстрируют модификационную изменчивость

1) загар человека

2) родимое пятно на коже

3) густота шерстяного покрова кролика одной породы

4) увеличение удоя у коров

5) шестипалость у человека

6) гемофилия

В2. Укажите события, относящиеся к мутациям

1) кратное увеличение числа хромосом

2) смена подшерстка у зайца зимой

3) замена аминокислоты в молекуле белка

4) появление в семье альбиноса

5) разрастание корневой системы у кактуса

6) образование цист у простейших

ВЗ. Соотнесите признак, характеризующий изменчивость с ее видом

Часть С

С1. Какими способами можно добиться искусственного повышения частоты мутаций и зачем это нужно делать?

С2. Найдите ошибки в приведенном тексте. Исправьте их. Укажите номера предложений, в которых сделаны ошибки. Объясните их.

1. Модификационная изменчивость сопровождается генотипическими изменениями. 2. Примерами модификации являются осветление волос после долгого пребывания на солнце, повышение удойности коров при улучшении кормления. 3. Информация о модификационных изменениях содержится в генах. 4. Все модификационные изменения наследуются. 5. На проявление модификационных изменений оказывают влияние факторы окружающей среды. 6. Все признаки одного организма характеризуются одинаковой нормой реакции, т.е. пределами их изменчивости.

Из книги Управление финансами автора Дараева Юлия Анатольевна

4. Финансовый рынок, его виды и значение Финансовый рынок – это финансовый механизм, осуществляемый посредниками на основании спроса и предложения на капитал, который перераспределяется между кредиторами и заемщиками. На практике – это совокупность

Из книги Большая Советская Энциклопедия (БИ) автора БСЭ

Из книги Большая Советская Энциклопедия (ИЗ) автора БСЭ

Из книги Большая Советская Энциклопедия (ОК) автора БСЭ

автора Щербатых Юрий Викторович

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Из книги Экология автора Митчелл Пол

Из книги Обществознание: Шпаргалка автора Автор неизвестен

1. БИОЛОГИЧЕСКОЕ И СОЦИАЛЬНОЕ В ЧЕЛОВЕКЕ Человек – существо многоплановое и многомерное, сочетающее в себе биологические и социальные черты. Религия приписывает человеку божественное происхождение, наука говорит о происхождении человека из животного мира.Ученые,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия Основные термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, взаимодействие генов, ген, генотип,

Из книги Гомеопатический справочник автора Никитин Сергей Александрович

3.6. Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции. Норма реакции Основные термины и понятия, проверяемые в экзаменационной работе: близнецовый метод,

Из книги Психология любви и секса [Популярная энциклопедия] автора Щербатых Юрий Викторович

3.8. Селекция, ее задачи и практическое значение. Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений. Закон гомологических рядов в наследственной изменчивости. Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов.

Из книги Я познаю мир. Тайны человека автора Сергеев Б. Ф.

4.4.5. Цветок и его функции. Соцветия и их биологическое значение Цветок – это видоизмененный генеративный побег, служащий для семенного размножения. На основании строения цветков растения относят к определенному семейству. Цветок развивается из генеративной почки.

Из книги автора

6.2. Развитие эволюционных идей. Значение работ К. Линнея, учения Ж.-Б. Ламарка, эволюционной теории Ч. Дарвина. Взаимосвязь движущих сил эволюции. Элементарные факторы эволюции. Формы естественного отбора, виды борьбы за существование. Взаимосвязь движущих сил эволюции.

Из книги автора

Из книги автора

Из книги автора

Биологическое оружие В последние десятилетия термин "биологическое оружие" стал регулярно появляться в средствах массовой информации. Создавалось впечатление, что речь идет о чем–то совершенно новом и необычном. Между тем, биохимическое оружие, видимо, было первым