Чему равен потенциал покоя. Потенциал покоя

Для объяснения происхождения потенциала покоя были предложены различные теории. У истоков современного понимания этой проблемы стоит работа В. Ю. Чаговца, который в 1896 г., будучи студентом-медиком, высказал мысль об ионной природе биоэлектрических процессов и сделал попытку применить теорию электролитической диссоциации Аррениуса для объяснения происхождения этих потенциалов. В дальнейшем в 1902 г. Ю. Бернштейном была развита мембранно-ионная теория, которая модифицирована и экспериментально обоснована А. Ходжкином и А. Хаксли (1952) и в настоящее время пользуется широким признанием. Согласно этой теории, биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов Кֹ, Naֹ, Сl" внутри и вне клетки и различной проницаемостью для них поверхностной мембраны.

Протоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чём внеклеточная жидкость.

Препятствием для быстрого выравнивания этой разности концентраций является тончайшая (около 100 Å) плазматическая мембрана, покрывающая живые клетки.

Представления о структуре этой мембраны строятся на основании данных, полученных методами электронной микроскопии, оптической микроскопии, диффракции рентгеновых лучей и химического анализа. Предполагают, что мембрана состоит из двойного слоя молекул фосфолипидов, покрытого изнутри слоем белковых молекул, а снаружи слоем молекул сложных углеводов - мукополисахаридов. Трехслойная структура мембраны схематически изображена на рис. 116 .

Рис. 116. Схема молекулярной структуры мембраны. Показан бимолекулярный липидныи слой Z (кружками обозначены полярные группы фосфолипидов) и два нелипидных монослоя: наружный - мукополисахаридный - Х, внутренний - белковый - Y (по Робертсону).

В клеточной мембране имеются тончайшие канальцы - «поры» диаметром в несколько ангстрем. Через эти канальцы молекулы воды и других веществ, а такжо ионы, имеющие соответствующий размеру пор диаметр, входят в клетку выходят из нее.

На структурных элементах мембраны фиксируются личные ионы, что придает стенкам ее пор тот или иной заряд и тем самым затрудняет или облегчает прохождение через них ионов. Так, предполагается, что наличие в мембране диссоциированных фосфатных и карбоксильных групп является причиной того, что мембрана нервных волокон значительно менее проницаема для анионов, чем для катионов.

Проницаемость мембраны для различных катионов также неодинакова, и она закономерно изменяется при разных функциональных состояниях ткани. В покое мембрана нервных волокон примерно в 20-100 раз более проницаема для ионов Кֹ, чем для ионов Naֹ, а при возбуждении натриевая проницаемость начинает значительно превышать калиевую проницаемость мембраны.

Для того чтобы понять механизм возникновения мембранного потенциала покоя с точки зрения теории Бернштейна - Ходжкина, рассмотрим модельный опыт. Первую половину сосуда (рис. 117 ), разделенного искусственной полупроницаемой мембраной, поры которой свободно пропускают положительно заряженные ионы Кֹ и не пропускают отрицательно заряженных ионов SO"4, наполняют концентрированным раствором K2SО4, а левую половину наполняют также раствором K2SО4, но меньшей концентрации.

Вследствие существования концентрационного градиента ионы Кֹ начнут диффундировать через мембрану преимущественно из правой половины сосуда (где их концентрация равна С1) в левую (с концентрацией С2). Соответственно отрицательно заряженные анионы SO"4, для которых мембрана непроницаема, будут концентрироваться в правой половине сосуда у поверхности мембраны.

Своим отрицательным зарядом они электростатически будут удерживать ионы Кֹ на поверхности мембраны слева. В результате мембрана поляризуется: между двумя ее поверхностями возникает разность потенциалов.

Рис. 117. Возникновение разности потенциалов на искусственной мембране, разделяющей растворы K2SО4 разной концентрации (С1 и С2). Мембрана избирательно проницаема для катионов Кֹ (маленькие кружки) и не пропускает анионы SО"4 (большие кружки). 1 и 2 - электроды, опущенные в раствор; 3 - электроизмерительный прибор.

Если теперь в правую и левую половины сосуда опустить электроды, то электроизмерительный прибор обнаружит наличие разности потенциалов, при этом раствор с меньшей концентрацией ионов K2SО4, в который происходит преимущественно диффузия положительно заряженных ионов Кֹ, приобретает положительный заряд по отношению к раствору с большей концентрацией K2SО4.

Разность потенциалов (Е) в рассмотренном случае может быть подсчитана по формуле Нернста:

Есть много оснований считать, что сходные отношения имеют место и в живом нервном волокне, поскольку концентрация ионов Кֹ в протоплазме более, чем в 30 роз превышает концентрацию этих ионов в наружном растворе, а органические (белковые и др.) анионы протоплазмы через мембрану практически не проникают.

В состоянии физиологического покоя диффузия положительно заряженных ионов Кֹ из протоплазмы во внешнюю жидкость придает наружной поверхности мембраны положительный заряд, а внутренней - отрицательный.

Важным доводом в пользу правильности этого представления послужил тот факт, что рассчитанная по формуле Нернста разность потенциалов между наружной и внутренней сторона мембраны мышечного волокна (около 90 мв) оказалась близкой к измеренной в опытах с помощью внутриклеточного микроэлектрода.

Было установлено также, что повышение концентрации ионов Кֹ во внешней среде клетки, а следовательно, cнижение разности концентрации этих ионов по обе стороны мембраны приводят к падению потенциала покоя, причем в определенном диапазоне концентрацией эти сдвиги количественно хорошо совпадают с расчитанными по формуле Нернста.

Однако наиболее важные, прямые, доказательства правильности этих представлений были получены А. Ходжкиным с сотрудниками (1962) в опытах с заменой протоплазмы в гигантских нервных волокнах моллюска кальмара солевыми растворами. Из волокна, имеющего диаметр около 1 мл, осторожно выдавливали протоплазму и спавшуюся оболочку заполняли искусственным солевым раствором.

В том случае, когда концентрация ионов калия в этом растворе была близка к внутриклеточной, между внутренней и наружной стороной мембраны устанавливалась разность потенциалов, примерно равная потенциалу покоя нормального волокна (50-80 мв). Уменьшение концентрации ионов Кֹ во внутреннем растворе приводило к закономерному снижению или даже извращению потенциала покоя.

Такие опыты показали, что концентрационный градиент ионов Кֹ действительно является основным фактором, определяющим величину потенциала покоя нервного волокна.

Наряду с ионами Кֹ в возникновении потенциала покоя принимают участие и ионы Naֹ, диффундирующие в протоплазму из внеклеточной жидкости, где их концентрация велика. Диффузия эта сильно затруднена низкой натриевой проницаемостью мембраны в покое. Тем не менее, диффундируя через мембрану внутрь протоплазмы, ионы Naֺ переносят сюда свои положительные заряды, что несколько уменьшает величину потенциала покоя, создаваемого диффузией из клетки ионов Кֺ. Этим объясняется тот факт, что потенциал покоя большинства нервных клеток и волокон имеет величину не 90 мв, как это следовало ожидать, если бы эхтот потенциал создавался только ионами Кֺ но 60-70 мв.

Таким образом, величина потенциала покоя нервных волокон и клеток определяется соотношением числа положительно заряженных ионов Кֺ, диффундирующих в единицу времени из клетки наружу, и положительно заряженных ионов Naֺ, диффундирующих через мембрану в противоположном направлении. Чем это соотношение выше, тем больше величина потенциала покоя, и наоборот.

В данной теме будут рассмотрены два катиона – натрий (Na) и калий (К). Говоря об анионах, примем во внимание то, что определенное количество анионов находится у наружной и внутренней стороны мембраны клетки.

Форма клетки зависит от того, к какой ткани она принадлежит. По своей форме клетки могут быть:

· цилиндрические и кубические (клетки кожи);

· дисковидные (эритроциты);

· шаровидные (яйцеклетки);

· веретеновидные (гладкомышечные);

· звездчатые и пирамидные (нервные клетки);

· не имеющие постоянной формы – амебовидные (лейкоциты).

Клетка обладает рядом свойств: она питается, растет, размножается, восстанавливается, адаптируется к окружающей её среде, обменивается энергией и веществами с окружающей средой, выполняет присущие ей функции (в зависимости от того, к какой ткани принадлежит данная клетка). Кроме того, клетка обладает возбудимостью.

Возбудимость это способность клетки в ответ на раздражения переходить из состояния покоя к состоянию активности.

Раздражения могут поступать из внешней среды или возникать внутри клетки. Раздражителями, вызывающими возбуждение, могут быть: электрические, химические, механические, температурные и иные стимулы.

Клетка может находиться в двух основных состояниях – в покое и в возбуждении. Покой и возбуждение клетки иначе называют – мембранный потенциал покоя и мембранный потенциал действия.

Когда клетка не испытывает ни каких раздражений, она находится в состоянии покоя. Покой клетки иначе называется мембранным потенциалом покоя (МПП).

В состоянии покоя внутренняя поверхность ее мембраны заряжена отрицательно, а наружная – положительно. Это объясняется тем, что внутри клетки находится много анионов и мало катионов, а за клеткой наоборот, преобладают катионы.

Поскольку в клетке присутствуют электрические заряды, то создаваемое ими электричество можно измерить. Величина мембранного потенциала покоя равна: - 70 мВ, (минус 70, поскольку внутри клетки отрицательный заряд). Данная величина условна, так как в каждой клетке может быть своя величина потенциала покоя.

В состоянии покоя поры мембраны открыты для ионов калия и закрыты для ионов натрия. Это означает, что ионы калия могут легко проникать в клетку и выходить из нее. Ионы натрия не могут поступать в клетку, поскольку для них закрыты поры мембраны. Но небольшое число ионов натрия проникает в клетку, потому что притягиваются большим количеством анионов, расположенных на внутренней поверхности мембраны (разноименные заряды притягиваются). Такое перемещение ионов является пассивным, поскольку не требует затрат энергии.



Для нормальной жизнедеятельности клетки величина ее МПП должна оставаться на постоянном уровне. Однако, перемещение ионов натрия и калия через мембрану вызывает колебания данной величины, что может привести к уменьшению или увеличению значения: - 70 мВ.

Для того, чтобы величина МПП оставалась относительно постоянной начинает действовать так называемый натрий – калиевый насос. Его функция заключается в том, что он ионы натрия убирает из клетки, а ионы калия нагнетает в клетку. Именно определенное соотношение ионов натрия и калия в клетке и за клеткой создает нужную величину МПП. Работа насоса является активным механизмом, поскольку для нее требуется энергия.

Источником энергии в клетке является АТФ. АТФ дает энергию только при расщеплении на более простую кислоту - АДФ, при обязательном участии в реакции фермента АТФ-азы:

АТФ + фермент АТФ-аза АДФ + энергия

Лекция 2 . Общая физиология возбудимых тканей. Потенциал покоя. Потенциал действия .

۩ Сущность процесса возбуждения . Сущность процесса возбуждения можно сформулировать следующим образом. Все клетки организма имеют электрический заряд, который создается неодинаковой концентрацией анионов и катионов внутри и вне клетки. Различная концентрация анионов и катионов внутри и вне клетки является следствием неодинаковой проницаемости клеточной мембраны для различных ионов и работы ионных насосов. Процесс возбуждения начинается с действия на возбудимую клетку раздражителя. Сначала очень быстро повышается проницаемость её мембраны для ионов натрия и быстро возвращается к норме, затем – для ионов калия и также быстро, но с некоторым отставанием возвращается к норме. Вследствие этого ионы перемещаются в клетку и из клетки согласно электрохимическому градиенту – это и есть процесс возбуждения. Возбуждение возможно только в том случае, если клетка постоянно поддерживает потенциал покоя (мембранный потенциал) и при её раздражении быстро изменяется проницаемость клеточной мембраны.

۩ Потенциал покоя . Потенциал покоя (ПП) – это разность электрических потенциалов между внутренней и наружной средами клетки в состоянии её покоя. При этом внутри клетки регистрируется отрицательный заряд. Величина ПП в различных клетках различна. Так, в волокнах скелетной мышцы регистрируется ПП равный 60-90 мВ, в нейронах – 50-80 мВ, в гладких мышцах – 30-70 мВ, в сердечной мышце – 80-90 мВ. Органеллы клеток имеют свои вариабельные мембранные потенциалы.

Непосредственной причиной существования потенциала покоя является неодинаковая концентрация анионов и катионов внутри и вне клетки (смотри таб.1!).

Таблица 1. Внутри- и внеклеточные концентрации ионов в мышечных клетках.

Внутриклеточная концентрация, мМ

Внеклеточная концентрация, мМ

A- (крупномолекулярные внутриклеточные анионы)

A-(крупномолекулярные внутриклеточные анионы)

Небольшое количество

Небольшое количество

Очень мало

Основное количество

Неравномерное расположение ионов внутри и вне клетки является следствием неодинаковой проницаемости клеточной мембраны для различных ионов и работы ионных насосов, транспортирующих ионы в клетку и из клетки вопреки электрохимическому градиенту. Проницаемость – это её способность пропускать воду, незаряженные и заряженные частицы согласно законам диффузии и фильтрации. Она определяется:

    Размерами каналов и размерами частиц;

    Растворимостью частиц в мембране (клеточная мембрана проницаема для растворимых в ней липидов и непроницаема для пептидов).

Проводимость – это способность заряженных частиц проходить через клеточную мембрану согласно электрохимическому градиенту.

Различная проницаемость различных ионов играет важную роль в формировании ПП:

    Калий является основным ионом, обеспечивающим формирование ПП, так как его проницаемость в 100 раз выше, чем проницаемость для натрия. При уменьшении концентрации калия в клетке ПП уменьшается, а при увеличении – увеличивается. Он может входить и выходить из клетки. В покое количество входящих ионов калия и выходящих его ионов уравновешивается и устанавливается так называемый калиевый равновесный потенциал, который рассчитывается по уравнению Нернста. Механизм его таков: так как электрический и конценрационный градиенты противодействуют друг другу, то калий стремится выйти наружу по концентрационному градиенту, а отрицательный заряд внутри клетки и положительный вне клетки препятствует этому. Тогда количество входящих ионов становится равным количеству выходящих ионов.

    Натрий входит в клетку. Его проницаемость мала по сравнению с проницаемостью калия, поэтому его вклад в формирование ПП невелик.

    Хлор входит в клетку в незначительном количестве, так как проницаемость мембраны для него невелика, причем он уравновешивается количеством ионов натрия (противоположные заряды притягиваются). Следовательно, его вклад в формирование ПП невелик.

    Органические анионы (глютамат, аспартат, органические фосфаты, сульфаты) вообще не могут выйти из клетки, так как они имеют большие размеры. Поэтому за счет них внутри клетки формируется отрицательный заряд.

    Роль ионов кальция в формировании ПП заключается в том, что они взаимодействуют с наружными отрицательными зарядами мембраны клетки и отрицательными карбоксильными группами интерстиция, нейтрализуя их, что ведет к стабилизации ПП.

Кроме выше перечисленных ионов, в формировании ПП играют важную роль и поверхностные заряды мембраны (в основном отрицательные). Их формируют гликопротеиды, гликолипиды и фосфолипиды: фиксированные наружные отрицательные заряды, нейтрализуя положительные заряды внешней поверхности мембраны, уменьшают ПП, а фиксированные внутренние отрицательные заряды мембраны, напротив, увеличивают ПП, суммируясь с анионами внутри клетки. Таким образом, потенциал покоя - это алгебраическая сумма всех положительных и отрицательных зарядов ионов вне и внутри клетки и поверхностных зарядов клеточной мембраны .

Роль ионных насосов в формировании ПП . Ионный насос – это молекула белка, которая обеспечивает перенос иона с непосредственной затратой энергии вопреки электрическому и концентрационному градиентам. В результате сопряженного транспорта натрия и калия поддерживается постоянная разность концентраций этих ионов внутри и вне клетки. Одна молекула АТФ обеспечивает один цикл работы Na/K-насоса – перенос трех ионов натрия за пределы клетки и двух ионов калия внутрь клетки. Таким образом, увеличивается ПП. Нормальная величина потенциала покоя является необходимым условием для формирования потенциала действия, то есть для формирования процесса возбуждения.

۩Потенциал действия . Потенциал действия – это электрофизиологический процесс, который выражается в быстром колебании мембранного потенциала вследствие изменения проницаемости мембраны и диффузии ионов в клетку и из клетки. Роль ПД заключается в обеспечении передачи сигналов между нервными клетками, нервными центрами и рабочими органами, в мышцах ПД обеспечивает процесс электромеханического сопряжения. ПД подчиняется закону «всё или ничего». Если сила раздражения мала, то возникает локальный потенциал, который не распространяется.

Потенциал действия состоит из трех фаз: деполяризации, то есть исчезновения ПП; инверсии – изменения знака заряда клетки на обратный; реполяризации – восстановление исходного МП.

Механизм возникновения потенциала действия .

Фаза деполяризации . При действии раздражителя на клетку начальная частичная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% пороговой величины, возрастает проницаемость мембраны для Na + , причем в первый момент сравнительно медленно. В этот период движущей силой, обеспечивающей движение Na + в клетку, являются концентрационный и электрический градиенты. Вспомним, что клетка внутри заряжена отрицательно (разноименные заряды притягиваются), а концентрация Na + вне клетки в 12 раз больше, чем внутри клетки. Условием, обеспечивающим дальнейший вход Na + в клетку, является увеличение проницаемости клеточной мембраны, который определяется состоянием воротного механизма натриевых каналов. Воротный механизм натриевых каналов расположен на внешней и внутренней стороне клеточной мембраны, воротный механизм калиевых каналов – только на внутренней стороне мембраны. В каналах для натрия имеются активационные m-ворота, которые расположены с внешней стороны клеточной мембраны, и инактивационные h-ворота, расположенные с внутренней стороны мембраны. В условиях покоя активационные m-ворота закрыты, инактивационные h-ворота открыты. Калиевые активационные ворота закрыты, а инактивационных калиевых ворот нет. Когда деполяризация клетки достигает критической величины, которая обычно составляет 50 мВ, проницаемость мембраны для Na + резко возрастает, так как открывается большое количество потенциалзависимых m-ворот натриевых каналов и ионы натрия лавиной устремляются в клетку. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, соответственно, проводимости натрия: открываются все новые и новые активационные m-ворота. В итоге ПП исчезает, то есть становится равным нулю. Фаза деполяризации на этом заканчивается. Ее длительность составляет примерно 0,2-0,5 мс.

Фаза инверсии . Процесс перезарядки мембраны представляет собой вторую фазу ПД – фазу инверсии. Фаза инверсии делится на восходящую и нисходящую составляющие. Восходящая часть . После исчезновения ПП вход в клетку ионов натрия продолжается, так как натриевые активационные m-ворота еще открыты. В результате заряд внутри клетки становится положительным, а снаружи-отрицательным. В течение доли миллисекунды ионы натрия еще продолжают входить в клетку. Таким образом, вся восходящая часть пика ПД обеспечивается в основном входом Na + в клетку. Нисходящая составляющая фазы инверсии . Примерно через 0,2-0,5 мс после начала деполяризации рост ПД прекращается в результате закрытия натриевых инактивационных h-ворот и открытия калиевых активационных ворот. Поскольку калий находится преимущественно внутри клетки, он, согласно концентрационному градиенту, начинает быстро выходить из нее, вследствие чего уменьшается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. Во время нисходящей составляющей фазы инверсии выходу ионов калия из клетки способствует также и электрический градиент. К + выталкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки. Калий выходит из клетки не только по управляемым каналам, но и по неуправляемым каналам – каналам утечки. Амплитуда ПД складывается из величины ПП и величины фазы инверсии, составляющей у разных клеток 10-50 мВ.

Фаза реполяризации . Пока активационные калиевые каналы открыты, K + еще продолжает выходить из клетки, согласно химическому градиенту. Заряд внутри клетки становится отрицательным, а снаружи – положительным, следовательно, электрический градиент резко тормозит выход ионов калия из клетки. Но так как сила химического градиента больше силы электрического градиента, ионы калия продолжают очень медленно выходить из клетки. Затем активационные калиевые ворота закрываются, остается только выход ионов калия по каналам утечки, то есть по концентрационному градиенту через неуправляемые каналы.

Таким образом, ПД вызывается циклическим процессом поступления ионов натрия в клетку и последующего выхода калия из нее. Роль Са 2+ в возникновении ПД в нервных клетках незначительна. Однако Са 2+ играет очень важную роль в возникновении ПД сердечной мышцы, в передаче импульсов от одного нейрона к другому, от нервного волокна к мышечному, в обеспечении мышечного сокращения.

Вслед за ПД возникают следовые явления (характерные для нейронов) – сначала следовая гиперполяризация, а затем следовая деполяризация. Следовая гиперполяризация клеточной мембраны обычно является следствием еще сохраняющейся повышенной проницаемости мембраны для ионов калия. Следовая деполяризация связана с кратковременным повышением проницаемости мембраны для Na + и входом его в клетку согласно химическому и электрическому градиентам.

Кроме этого существуют: а) так называемая фаза абсолютной рефрактерности , или полная невозбудимость клетки. Она приходится на пик ПД и продолжатся 1-2 мс; и б) фаза относительной рефрактерности – период частичного восстановления клетки, когда сильное раздражение может вызвать новое возбуждение. Относительная рефрактерность соответствует конечной части фазы реполяризации и следовой гиперполяризации клеточной мембраны. В нейронах вслед за гиперполяризацией возможна частичная деполяризация клеточной мембраны. В этот период очередной потенциал действия можно вызвать более слабым раздражением, так как МП несколько меньше обычного. Этот период называется фазой экзальтации (период повышенной возбудимости).

Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность. Лабильность , или функциональная подвижность, - это скорость протекания одного цикла возбуждения. Мерой лабильности возбудимого образования является максимальное число ПД, которое он может воспроизвести в 1 секунду. Обычно возбуждение продолжается менее 1 мс и подобно взрыву. Такой «взрыв» протекает мощно, но быстро завершается.

Мышцы, отличияДокумент

... . Возбудимость ткани и ее мера. Законы раздражения возбудимых тканей : силы, времени действия раздражителя... потенциал покоя (МПП); 2) мембранный потенциал действия (МПД); 3) потенциал градиента основного обмена (метаболический потенциал ). Потенциал ...

Установлено, что наиболее важными ионами, определяющими мембранные потенциалы клеток, являются неорганические ионы К + , Na + , СГ, а также в ряде случаев Са 2 + . Хорошо известно, что концентрации этих ионов в цитоплазме и в межклеточной жидкости различаются в десятки раз.

Из табл. 11.1 видно, что концентрация ионов К + внутри клетки в 40-60 раз выше, чем в межклеточной жидкости, тогда как для Na + и СГ распределение концентраций противоположное. Неравномерное распределение концентраций этих ионов по обе стороны мембраны обеспечивается как их различной проницаемостью, так и сильным электрическим полем мембраны, которое определяется ее потенциалом покоя.

Действительно, в состоянии покоя суммарный поток ионов через мембрану равен нулю, и тогда из уравнения Не- рнста - Планка следует, что

Таким образом, в покое градиенты концентрации - и

электрического потенциала -- на мембране направлены

противоположно друг другу и поэтому в покоящейся клетке высокая и постоянная разность концентраций основных ионов обеспечивает поддержание на мембране клетки электрического напряжения, которое и называют равновесным мембранным потенциалом.

В свою очередь возникающий на мембране потенциал покоя препятствует выходу ионов из клетки К + и чрезмерному входу в нее СГ, поддерживая тем самым их концентрационные градиенты на мембране.

Полное выражение для мембранного потенциала, учитывающее потоки диффузии этих трех видов ионов, было получено Гольдманом, Ходжкиным и Катцем:

где Р к, P Na , Р С1 - проницаемость мембраны для соответствующих ионов.

Уравнение (11.3) с высокой точностью определяет мембранные потенциалы покоя различных клеток. Из него следует, что для мембранного потенциала покоя важны не абсолютные величины проницаемостей мембраны для различных ионов, а их отношения, так как, разделив обе части дроби под знаком логарифма, например, на Р к, мы перейдем к относительным проницаемостям ионов.

В тех случаях, когда проницаемость одного из этих ионов значительно больше, чем других, уравнение (11.3) переходит в уравнение Нернста (11.1) для этого иона.

Из табл. 11.1 видно, что мембранный потенциал покоя клеток близок к потенциалу Нернста для ионов К + и СВ, но значительно отличается от него по Na + . Это свидетельствует

0 том, что в покое мембрана хорошо проницаема для ионов К + и СГ, тогда как для ионов Na + ее проницаемость очень низка.

Несмотря на то что равновесный потенциал Нернста для СГ наиболее близок к потенциалу покоя клетки, последний имеет преимущественно калиевую природу. Это обусловлено тем, что высокая внутриклеточная концентрация К + не может существенно уменьшиться, так как ионы К + должны уравновешивать внутри клетки объемный отрицательный заряд анионов. Внутриклеточные анионы представляют собой в основном крупные органические молекулы (белки, остатки органических кислот ит.п.), которые не могут пройти через каналы в клеточной мембране. Концентрация этих анионов в клетке практически постоянна и их суммарный отрицательный заряд препятствует значительному выходу калия из клетки, поддерживая вместе с Na-K-насосом его высокую внутриклеточную концентрацию . Однако основная роль в первоначальном установлении внутри клетки высокой концентрации ионов калия и низкой концентрации ионов натрия принадлежит Na-K-насосу.

Распределение ионов С1 устанавливается в соответствии с мембранным потенциалом, поскольку в клетке нет специальных механизмов поддержания концентрации СГ. Поэтому вследствие отрицательного заряда хлора его распределение оказывается обратным по отношению к распределению калия на мембране (см. табл. 11.1). Таким образом, концентрационные диффузии К + из клетки и С1 в клетку практически уравновешиваются мембранным потенциалом покоя клетки.

Что касается Na + , то в покое его диффузия направлена в клетку под действием как градиента концентрации, так и электрического поля мембраны и вход Na + в клетку ограничивается в покое только малой проницаемостью мембраны для натрия (закрыты натриевые каналы). Действительно, Ходжкин и Катц экспериментально установили, что в состоянии покоя проницаемости мембраны аксона кальмара для К + , Na + и СГ относятся как 1: 0,04: 0,45. Таким образом, в состоянии покоя клеточная мембрана малопроницаема только для Na + , а для СГ она проницаема почти так же хорошо, как и для К + . В нервных клетках проницаемость для СГ обычно ниже, чем для К + , но в мышечных волокнах проницаемость для СГ даже несколько преобладает.

Несмотря на малую проницаемость клеточной мембраны для Na + в покое, существует, хотя и весьма малый, пассивный перенос Na + в клетку. Этот ток Na + должен был бы приводить к снижению разности потенциалов на мембране и к выходу К + из клетки, что вело бы в конечном итоге к выравниванию концентраций Na + и К + по обе стороны мембраны. Этого не происходит благодаря работе Na + - К + -насоса, компенсирующего токи утечки Na + и К + и поддерживающего таким образом нормальные значения внутриклеточных концентраций этих ионов и, следовательно, нормальную величину потенциала покоя клетки.

Для большинства клеток мембранный потенциал покоя составляет (-бО)-(-ЮО) мВ. На первый взгляд может показаться, что это малая величина, но надо учесть, что толщина мембраны тоже мала (8-10 нм), так что напряженность электрического поля в клеточной мембране огромна и составляет около 10 млн вольт на 1 м (или 100 кВ на 1 см):

Воздух, например, не выдерживает такой напряженности электрического поля (электрический пробой в воздухе наступает при 30 кВ/см), а мембрана выдерживает. Это нормальное условие ее деятельности, поскольку именно такое электрическое поле необходимо для поддержания разности концентраций ионов натрия, калия и хлора на мембране.

Величина потенциала покоя, различная у клеток, может изменяться при изменении условий их жизнедеятельности. Так, нарушение биоэнергетических процессов в клетке, сопровождающееся падением внутриклеточного уровня макро- эргических соединений (в частности, АТФ), прежде всего исключает компоненту потенциала покоя, связанную с работой Ма + -К + -АТФ-азы.

Повреждение клетки приводит обычно к повышению проницаемости клеточных мембран, в результате чего различия в проницаемости мембраны для ионов калия и натрия уменьшаются; потенциал покоя при этом уменьшается, что может вызвать нарушение ряда функций клетки, например возбудимости.

  • Поскольку внутриклеточная концентрация калия поддерживается почти постоянной, то даже относительно небольшие изменения внеклеточной концентрации К* могут оказывать заметное влияние на потенциалпокоя и на деятельность клетки. Подобные изменения концентрации К"в плазме крови происходят при некоторых патологиях (например, припочечной недостаточности).

Любая живая клетка покрыта полупроницаемой мембраной, через которую осуществляется пассивное движение и активный избирательный транспорт положительно и отрицательно заряженных ионов. Благодаря этому переносу между наружной и внутренней поверхностью мембраны имеется разность электрических зарядов (потенциалов) – мембранный потенциал. Существует три отличающихся друг от друга проявления мембранного потенциала – мембранный потенциал покоя, местный потенциал , или локальный ответ , и потенциал действия .

Если на клетку не действуют внешние раздражители, то мембранный потенциал долго сохраняется постоянным. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя. Для наружной поверхности мембраны клетки потенциал покоя всегда положителен, а для внутренней поверхности клеточной мембраны всегда отрицателен. Принято измерять потенциал покоя на внутренней поверхности мембраны, т.к. ионный состав цитоплазмы клетки более стабилен, чем межклеточной жидкости. Величина потенциала покоя относительно постоянна для каждого типа клеток. Для поперечнополосатых мышечных клеток она составляет от –50 до –90 мВ, а для нервных клеток от –50 до –80 мВ.

Причинами возникновения потенциала покоя являются разная концентрация катионов и анионов снаружи и внутри клетки, а также избирательная проницаемость для них клеточной мембраны. Цитоплазма покоящейся нервной и мышечной клетки содержит примерно в 30–50 раз больше катионов калия, в 5–15 раз меньше катионов натрия и в 10–50 раз меньше анионов хлора, чем внеклеточная жидкость.

В состоянии покоя практически все натриевые каналы мембраны клетки закрыты, а большинство калиевых каналов открыто. Всякий раз, когда ионы калия наталкиваются на открытый канал, они проходят через мембрану. Поскольку внутри клетки ионов калия гораздо больше, то осмотическая сила выталкивает их из клетки. Вышедшие катионы калия увеличивают положительный заряд на наружной поверхности клеточной мембраны. В результате выхода ионов калия из клетки должна была бы вскоре уравняться их концентрация внутри и вне клетки. Однако этому препятствует электрическая сила отталкивания положительных ионов калия от положительно заряженной наружной поверхности мембраны.

Чем больше становится величина положительного заряда на наружной поверхности мембраны, тем труднее ионам калия проходить из цитоплазмы через мембрану. Ионы калия будут выходить из клетки до тех пор, пока сила электрического отталкивания не станет равной силе осмотического давления К + . При таком уровне потенциала на мембране вход и выход ионов калия из клетки находятся в равновесии, поэтому электрический заряд на мембране в этот момент называется калиевым равновесным потенциалом . Для нейронов он равен от –80 до –90 мВ.


Поскольку в покоящейся клетке почти все натриевые каналы мембраны закрыты, то ионы Nа + поступают в клетку по концентрационному градиенту в незначительном количестве. Они лишь в очень малой степени возмещают потерю положительного заряда внутренней средой клетки, вызванную выходом ионов калия, но не могут эту потерю существенно компенсировать. Поэтому проникновение в клетку (утечка) ионов натрия приводит лишь к незначительному снижению мембранного потенциала, вследствие чего мембранный потенциал покоя имеет несколько меньшую величину по сравнению с калиевым равновесным потенциалом.

Таким образом, выходящие из клетки катионы калия совместно с избытком катионов натрия во внеклеточной жидкости создают положительный потенциал на наружной поверхности мембраны покоящейся клетки.

В состоянии покоя плазматическая мембрана клетки хорошо проницаема для анионов хлора. Анионы хлора, которых больше во внеклеточной жидкости, диффундируют внутрь клетки и несут с собой отрицательный заряд. Полного уравнивания концентраций ионов хлора снаружи и внутри клетки не происходит, т.к. этому препятствует сила электрического взаимного отталкивания одноименных зарядов. Создается хлорный равновесный потенциал, при котором вход ионов хлора в клетку и их выход из нее находятся в равновесии.

Мембрана клетки практически непроницаема для крупных анионов органических кислот. Поэтому они остаются в цитоплазме и совместно с поступающими анионами хлора обеспечивают отрицательный потенциал на внутренней поверхности мембраны покоящейся нервной клетки.

Важнейшее значение мембранного потенциала покоя состоит в том, что он создает электрическое поле, которое воздействует на макромолекулы мембраны и придает их заряженным группам определенное положение в пространстве. Особенно важно то, что это электрическое поле обусловливает закрытое состояние активационных ворот натриевых каналов и открытое состояние их инактивационных ворот (рис. 61, А). Этим обеспечивается состояние покоя клетки и готовности ее к возбуждению. Даже относительно небольшое уменьшение мембранного потенциала покоя открывает активационные «ворота» натриевых каналов, что выводит клетку из состояния покоя и дает начало возбуждению.