Испытания на воздействие ударных нагрузок. Пульс - здоровье, продолжительность жизни, старение и бессмертие От чего зависит продолжительность удара

12 ступеней увеличения скорости удара

Скорость. Ослепляющая, завораживающая, скорость, возможно, является наиболее желанным и зритильно впечатляющим мастерством в боевых искусствах. Молниеносные удары Брюса Ли создали ему репутацию. Скорость присуща большинству из выдающихся профессиональных боксеров, таких, как Шугар Рэй Леонард и Мухаммед Али. Сила Али была лишь адекватна его телосложению в то время, как быстрота удара - просто феноменальной. А руки Леонарда, возможно, были самыми быстрыми из всех тех, которых когда-либо видел мир. Также, бывший чемпион фул-контакт каратэ Билл Уоллес никогда не обладал большой силой удара, но молниеносные удары ногами завоевали ему, до сих не побитый, профессиональный рекорд на ринге.

Заложена ли эта магическая сила в генах человека, или ее можно приобрести и увеличить с помощью тренировок? По словам Др. Джона ЛяТурретта - обладателя черного пояса в кэнпо-каратэ и докторской степени в спортивной психологии - любой может стать “самым быстрым”, если будет следовать нескольким основным принципам.

“Тренировка скорости на 90% является психологической, А может и на 99%”, говорят ЛяТурретт. Такой психологический подход к тренировке, кажется, принес результаты 50-летнему инструктуру каратэ из Медфорда, штат Орегон. Официально было зарегистрировано, что он сумел сделать 16,5 ударов за одну секунду, и он утверждает, что его ученики могут сделать это даже еще быстрее. Следуя 12 ступеням программы по увеличению скорости.

1. УЧИТЕСЬ, НАБЛЮДАЯ ЗА СПЕЦИАЛИСТАМИ. “Если человек хочет стать быстрым бегуном, но не выходит из дома, то он учится быть калекой в инвалидном кресле”, говорит ЛяТурретт. “Все, что ему нужно сделать, это выйти из дома, найти быстрого бегуна его возраста, силы и физиологии тела и изучать его движения, в точности делая то, что тот делает”.

2. ИСПОЛЬЗУЙТЕ ПЛАВНЫЕ, ТЕКУЧИЕ УДАРЫ. Плавная техника ударов китайского стиля обладает намного большей взрывной силой, чем традиционные реверсивные удары в каратэ и в боксе, утверждает ЛяТурретт, т. к. скорость удара генерируется импульсом. Вы можете натренировать мозг и нервную систему для нанесения быстрых ударов. Чтобы достичь этого, выполняйте “плавное” упражнение, состоящее из последовательности движений, начиная с трех-четырех ударов за раз. Как только вы начинаете выполнять эту комбинацию автоматически, добавьте немного больше движений, затем еще немного, до тех пор, пока ваше подсознание не научится связывать каждое отдельное движение в один поток, подобный водопаду. Спустя некоторое время, вы сможете делать 15-20 полных движений за одну или даже менее секунд.

3. ИСПОЛЬЗУЙТЕ СФОКУСИРОВАННУЮ АГРЕССИЮ . Вы должны научиться мгновенно переходить из пассивного состояния в состояние боевой готовности для того, чтобы атаковать до того, как противник сумеет предугадать ваши действия. Любые сомнения о вашей способности защитить себя должны быть искоренены путем психологической подготовки, прежде чем вы попадете в стрессовое состояние.

Время реакции на какое-либо действие делится на три фазы - восприятие, решение и действие - что вместе занимает, приблизительно шестую часть секунды. Воспринимать информацию и принимать соответствующие решения следует в расслабленном состоянии, чтобы не дать намек противнику о ваших последующих действиях. Как только вы сфокусировались, вы можете произвести атаку настолько быстро, что ваш соперник не успеет и глазом моргнуть.

Чтобы правильно выполнить этот тип атаки, вы должны быть абсолютно уверены в своей правоте и способности правильно действовать, иначе вы проиграете. Как выражается сам Ля Турретт: “Болтая, не готовьте рис”. Вы должны быть агрессивны и уверены в своем мастерстве. Уверенность в себе должна рождаться в бою с реальным противником в большей степени, чем при выполнении ката, где вы атакуете воображаемого противника.

Вы также должны сохранять постоянное состояние готовности, внимательно наблюдать за происходящими вокруг вас событиями, быть в любой момент готовым, в случае опасности, реализовать потенциальную силу. Это особенное физическое, психическое и эмоциональное состояние может освоить любой человек, но только в условиях непосредственной конфронтации с противником.

Как только вы достигли этого уровня подготовки, проанализируйте и постарайтесь разложить по категориям появившиеся у вас ощущения. Позже, в условиях поединка, вы можете извлечь из памяти полученный опыт, что даст вам несомненное преимущество перед противником.

Задайте себе следующие вопросы: Что в особенности отвлекает меня? Может быть расстояние между мной и противником? Или его нескрываемая злоба по отношению ко мне? Его манера выражаться? Какое внимание оказывает на меня это психическое состояние? Какие ощущения я переживаю? Как я выглядел? Какое у меня было выражение лица? Какие мышцы были напряжены? Какие расслаблены? Что я сам себе говорил, находясь в этом состоянии? (Лучше всего было бы, если бы вы не “бормотали” что-то там про себя.) Какие мысленные образы возникали у меня? На чем я был зрительно сосредоточен?

После того, как вы найдете себе ответы на заданные вопросы, воспроизведите ситуацию вновь, постарайтесь, чтобы в вашем мозгу снова ярко возникли ощущения, окружающая обстановка и звуки. Повторяйте это снова и снова до тех пор, пока вы не будете в состоянии ввести себя в это психическое состояние в любой момент.

4. ИСПОЛЬЗУЙТЕ ГОТОВЫЕ СТОЙКИ, КОТОРЫЕ МОГУТ ДАТЬ ВАМ ВОЗМОЖНОСТЬ ВЫБОРА. Один из секретов успеха Уоллеса заключался в том, что он из одной единственной позиции ног мог мгновенно произвести боковой удар ногой, круговой удар и обратный круговой с одинаковой точностью. Одним словом, ваша стойка должна дать вам возможность делать рубящие удары, удары в стиле “коготь”, локтями, толчки или удары “молот”, в зависимости от действий противника.

Используйте боевую технику, которая, как вы считаете, в наибольшей степени подходит вам. Научитесь занимать такую позицию, из которой вам достаточно сделать лишь незначительное движение, чтобы передвинуться от одной мишени к другой. Подбор натуральной (природной) боевой позиции исключает необходимость в выборе стойки и позволяет вам поймать противника врасплох. А озадаченный противник - уже наполовину побежденный.

5. ОСТЕРЕГАЙТЕСЬ ПСИХОЛОГИИ ОДНОГО СМЕРТЕЛЬНОГО УДАРА. Это заключение правила номер один. Ваша начальная атака должна быть последовательностью, состоящей из трех ударов даже в том случае, если первый удар был способен остановить атакующего противника. Первый удар является “закуской”, второй - “главным блюдом”, ну, а третий - “десертом”.

В то время, как ничего не подозревающий противник готовится к прямому удару или удару “задней” ногой, - говорит ЛяТурретт, - вы можете ослепить его шлепком по глазам, кулаком левой руки ударить в висок, правым локтем в другой висок. Затем вы можете ударить его правым локтем в челюсть, а левой рукой по глазам. Опуститесь в стойку на коленях и ударьте правым кулаком в пах, а двумя пальцами левой руки - по глазам противника. Вот и конец этой истории”.

6. ИСПОЛЬЗУЙТЕ УПРАЖНЕНИЯ ПО ВИЗУАЛИЗАЦИИ. Во время занятий упражнениями на развитие скорости удара, вы должны думать, что выполняете удары с желанной для вас скоростью. “Если вы не видите, вы не сможете это сделать”, - говорит ЛяТурретт. Такая психологическая подготовка во многом дополняет физическую.

Визуализация не так уж сложна, как думают многие люди. Попробуйте сделать следующий эксперимент: остановитесь прямо сейчас и опишите себе цвет вашей машины. Потом апельсин. Затем вашего лучшего друга. Каким образом вы сумели все это описать? Вы ВООБРАЗИЛИ их себе.

Многие люди не знают, что они часто создают “образы” в своей голове на подсазнательном уровне. Ту часть мозга, которая ответственна за создание и воспроизведение образов, вполне можно точно настроить даже в том случае, если они не привыкли обращаться к ней.

Как только вы научились представлять себя в условиях реального боя, попробуйте увидеть и почувствовать, что ваши действия достигают выбранных вами мишеней. Почувствуйте, что ваши согнутые колени добавляют мощи вашим ударам. Почувствуйте толчок вашей ноги по мячу во время удара, и т. д…

7. ИДЕНТИФИЦИРУЙТЕ ОТКРЫТЫЕ МИШЕНИ. Чтобы научиться идентифицировать открытые мишени и предугадывать действия противника, необходимо тренироваться с реальным противником. Чувства синхронности можно добиться путем многократного воспроизведения атак до тех пор, пока у вас не появится твердая уверенность в том, что вы сможете применять его в условиях реального боя.

Одной из причин того, что у боксеров настолько хорошая скорость удара является то, что они тысячи раз отрабатывают свою технику в спарринге. И когда перед ними возникает цель, они не думают, они ДЕЙСТВУЮТ. Этот подсознательный навык можно легко приобрести, но короткого пути достижения этого нет. Вы должны тренироваться вновь и вновь до тех пор, пока ваши действия не станут инстинктивными.

8. НЕ “ТЕЛЕГРАФИРУЙТЕ” ВАШИ ДЕЙСТВИЯ. Не имеет значения, насколько вы быстры, т. к. если ваш противник предугадал ваши действия, вы уже не достаточно быстры. Можете верить или нет, вашему противнику сложнее увидеть удар, идущий на уровне его глаз, чем круговой удар сбоку.

Удар “хук” (не круговой, а хук) требует намного больше движений, и его намного легче блокировать. Одним словом, правильно произведенный удар в область переносицы может поразить противника раньше, чем он поймет, что вы его ударили. Прежде всего, не выдавайте своих намерений сжимая кулаки, двигая плечом или глубоким вздохом перед нанесением удара.

Как только вы усвоите физическую структуру техники упражнений, попрактикуйтесь в извлечении преимуществ из ограничений восприятия человека, пытаясь занять положение, ограничивающее возможность противника увидеть и предугадать ваши действия. Этот навык требует много практики, но как только вы усвоите его, вы сможете атаковать противника, практически безнаказанно.

9. ИСПОЛЬЗУЙТЕ ПРАВИЛЬНУЮ ДЫХАТЕЛЬНУЮ ТЕХНИКУ. Во время боя многие спортсмены задерживают дыхание, чем наносят себе большой вред. Тело становится напряженным, в следствие чего уменьшается скорость и сила ваших ударов. Киай во время выполнения техники даже вредит вам, т. к. гасит ваш импульс. Ключом к высокой скорости ударов является то, что вы должны выдыхать воздух в соответствии с ударами.

10. ПОДДЕРЖИВАЙТЕ ХОРОШУЮ ФИЗИЧЕСКУЮ ФОРМУ. Гибкость, сила и выносливость играют важнейшую роль при самозащите даже учитывая то, что большинство уличных боев длятся секунды. Если ваше тело одновременно гибкое и расслабленное, то вы сможете наносить удары практически под любым углом, поражая высокие и низкие цели без неудобной перемены стоек. Также, чрезвычайно важна и сила ног. Чем сильнее будут ваши ноги, тем сильнее будет ваш удар, и тем быстрее вы сможете сокращать расстояние между вами и противником. Важно увеличить силу рук и предплечий путем тренировок с отягощениями и специальными упражнениями на удары. Упражнения помогут вам укрепить ладони и запястья, улучшат точность и проникновение ударов.

11. БУДЬТЕ УПОРНЫМИ. Вы должны дать себе обязательство три раза в неделю в течение 20-30 минут стараться заметно улучшить скорость удара. Будьте готовы к тому, что неизбежно наступят периоды, когда вам будет казаться, чтовы не делаете значительного прогресса. Большинство людей испытывают пять уровней чувства прогресса или отсутствия зримых результатов во время тренировок.

Существует “бессознательная некомпетентность” (буквально) когда Вы не осознаете проблемы и пути их решения.

Это такая точка, когда вы пониматете, что ваши знания и мастерство недостаточны, и вы начинаете искать пути решения проблемы. “Бессознательная некомпетентность” означает то, что вы можете выполнить новые упражнения только тогда, когда ваше внимание предельно сфокусированно.

Это наиболее трудная ступень ориентировок, и вам кажется, что она будет длиться целую вечность. Процесс трансформации сознания в рефлексивные действия занимает приблизительно от 3000 до 5000 повторений. “Бессознательная некомпетентность” является единственным уровнем мастерства, когда настоящая скорость становится достижимой. В то время, как вы учитесь реагировать инстинктивно. Достичь этого уровня можно лишь путем тысяч повторений техники. Большинство людей находится в этом рефлексивном или автоматическом психическом состоянии, когда ведут свою машину, что позволяет им реагировать на дорожные неприятности с бессознательным хладнокровием, они не задумываются над тем, как переключить передачи или нажимать на тормоз. Вы не сможете увеличить скорость удара до тех пор, пока ваши базовые движения не будут основываться на рефлексах. Финальной ступенью мастерства является “сознание вашей бессознательной некомпетентности”, точки, которой сумели за все время достичь лишь несколько людей.

12. СОХРАНЯЙТЕ ЕСТЕСТВЕННУЮ, РАССЛАБЛЕННУЮ, СБАЛАНСИРОВАННУЮ СТОЙКУ. Лучшей боевой стойкой является та, что не выглядит как боевая стойка. Как точно отметил легендарный мастер меча из Японии Мусаси Миямото “Ваша боевая стойка становится вашей повседневной стойкой, а ваша повседневная стойка становится боевой”. Вы должны точно знать, какие техники вы можете применить из каждой позиции, и должны уметь выполнить их естественным путем, без колебаний или перемены стоек.

Практикуйте эти 12 принципов каждый день в течение 20-ти минут. После месяца тренировок вы будете совершенствовать новую, сокрушительную скорость. ЛяТурретт говорит: “Не существует от природы быстрых бойцов. Каждому приходилось так же, как и вам, тренироваться. Чем с большим усердием вы тренируетесь, тем менее вы уязвимы в бою”.

Загляните в словарь иностранных слов: «импульс» – от лат. impulsus – толчок, удар, побуждение». Эффект, производимый ударом, всегда вызывал удивление у человека. Почему тяжелый молот, положенный на кусок металла на наковальне, только прижимает его к опоре, а тот же молот ударом молотобойца плющит металл? А в чем секрет старого циркового трюка, когда сокрушительный удар молота по массивной наковальне не наносит никакого вреда человеку, на груди которого установлена эта наковальня? В чем ошибка в вопросе, который задал однажды один ученик: «Какова сила удара при падении груза массой 20 кг с высоты 10 м?» И что значит само выражение «сила удара»?

Еще Галилей интересовался проблемой «удивительной силы удара». Он описывает остроумный опыт, при помощи которого он пытался определить «силу удара». Опыт состоял в следующем: к прочному брусу, укрепленному горизонтально на оси подобно коромыслу весов (рис. 39), подвешены с одного конца два ведра, а с другого – груз (камень), уравновешивающий их. Верхнее ведро было наполнено водой, в дне этого ведра было проделано отверстие, закрытое пробкой.

Если вынуть пробку, то вода будет выливаться в нижнее ведро и сила удара струи о дно этого ведра, казалось бы, заставит правую часть коромысла опуститься. Добавка соответствующего груза слева восстановит равновесие, а его масса позволит оценить, какова сила удара струи.

Однако, к удивлению Галилея, опыт показал совершенно иное. Сначала, как только была вынута пробка и вода начала выливаться, опустилась не правая, а левая часть коромысла. И лишь когда струя достигла дна нижнего ведра, равновесие восстановилось и уже больше не нарушалось до конца опыта.

Как же объяснить этот «странный» результат? Разве ошибочно первое предположение Галилея о том, что струя, ударяя о дно нижнего ведра, заставит его опускаться? Для понимания этого довольно сложного вопроса надо знать закон сохранения количества движения, который вместе с законом сохранения энергии относится к величайшим законам природы.

Термин «количество движения» был введен современником Галилея – французским философом и математиком Декартом, но введен далеко не на научном основании, а из метафизических (не основанных на опыте) религиозных идей философа. Неопределенный, туманный термин «количество движения» заменяют сейчас термином «импульс».

В предыдущей беседе мы приводили формулировку второго закона Ньютона в том виде, какой ему дал сам Ньютон: «Изменение количества движения пропорционально движущей силе и происходит по направлению той прямой, по которой эта сила действует».

Ньютон первый ввел в механику понятие массы и, пользуясь им, дал точное определение количества движения как произведения массы тела на его скорость (mv).

Если начальная скорость v 0 тела массой m под действием какой-либо силы в течение времени t увеличивается до v 1 , то изменение количества движения за единицу времени будет:

Это изменение пропорционально приложенной силе F:

mv 1 – mv 0 = Ft

Это и есть второй закон Ньютона. Из него следует, что одно и то же изменение количества движения может произойти и при продолжительном действии малой силы, и при кратковременном действии большой силы. Произведение Ft можно рассматривать как меру действия силы. Оно получило название импульс силы. Не смешивайте только импульс силы с самой силой, а также с импульсом. Из приведенной формулы видно, что импульс силы равен не самому количеству движения, а изменению количества движения. Иными словами, импульс силы за время t равен изменению импульса тела за это время. Импульс обозначают обычно буквой p:

В общем случае надо учитывать, что импульс является векторной физической величиной:

Выше мы уже упоминали о двух величайших законах природы: законе сохранения импульса и законе сохранения энергии. Эти законы удобно продемонстрировать на примере удара. Явление удара имеет огромное значение в науке и технике. Рассмотрим это явление внимательнее.

Мы различаем материалы упругие и неупругие. Например, резиновый мячик упругий; это значит, что после прекращения действия деформирующей силы (сжатия или растяжения) он вновь возвращается к первоначальной форме. Наоборот, кусок глины, смятый рукой, к первоначальной форме не возвращается. Резина, сталь, мрамор, кость относятся к упругим материалам. Вы легко убедитесь в упругости стального шарика, уронив его с некоторой высоты на упругую же опору. Если шарик был предварительно закопчен, то на опоре останется след не в виде точки, а в виде достаточно различимого пятнышка, так как при ударе шарик смялся, хотя затем, отскочив, восстановил свою форму. Деформируется и опора. Возникающая при этом упругая сила действует со стороны опоры на шарик и постепенно уменьшает его скорость, сообщая ему ускорение, направленное вверх. При этом направление скорости шарика меняется на противоположное и он взлетает над опорой на ту же высоту, с какой упал (идеальный случай при идеальной упругости соударяющихся тел). Сама опора, как связанная с имеющей огромную массу Землей, практически остается неподвижной.

Последовательные изменения формы шарика и поверхности опоры для разных моментов времени показаны на рисунке 40. Шарик падает с высоты h и в момент приземления (положение на рисунке) имеет скорость , направленную вертикально вниз. В положении B деформация шарика максимальна; в этот момент его скорость равна нулю, а сила F, действующая на шарик со стороны плоскости опоры, максимальна: F = F max . Затем сила F начинает уменьшаться, а скорость шарика расти; точка C соответствует моменту, когда значение скорости . В отличие от состояния A теперь скорость направлена вертикально вверх, вследствие чего шарик взлетает (подскакивает) на высоту h.

Предположим, что упругий шарик, движущийся с некоторой скоростью, сталкивается с неподвижным шариком такой же массы. Действие неподвижного шарика сводится опять к уменьшению скорости первого шарика и остановке его. В то же время первый шарик, действуя на второй, сообщает ему ускорение и увеличивает его скорость до своей первоначальной скорости. Описывая это явление, говорят, что первый шарик передал второму свой импульс. Вы легко можете проверить это на опыте двумя шариками, подвешенными на нитях (рис. 41). Измерить скорость, с которой движутся шарики, конечно, трудно. Но можно воспользоваться известным положением, что скорость, приобретаемая падающим телом, зависит от высоты падения (). Если не считать небольших потерь энергии вследствие неполной упругости шаров, то шар 2 взлетит от соударения с шаром 1 на такую же высоту, с какой упал шар 1. При том шар 1 остановится. Сумма импульсов обоих шаров остается, таким образом, все время постоянной.


Можно доказать, что закон сохранения импульса соблюдается при взаимодействии многих тел. Если на систему тел не действуют внешние тела, то взаимодействие тел внутри такой замкнутой системы не может изменить ее полного импульса. Вы теперь можете «на научной основе» опровергнуть хвастливые россказни барона Мюнхгаузена, уверявшего, что ему удалось вытащить себя из болота за свои собственные волосы.

Возвращаясь к знаменитому опыту Галилея, с которого мы начали нашу беседу, мы теперь не будем удивляться результату опыта: в отсутствие внешних сил импульс всей системы не мог измениться и потому брус оставался в равновесии, несмотря на удар струи о дно второго ведра. Подробный математический анализ опыта довольно сложен: надо подсчитать уменьшение массы верхнего ведра, из которого выливается струя воды, реакцию вытекающей струи и, наконец, импульс, сообщаемый дну нижнего ведра ударом струи. Подсчет показывает, что сумма всех импульсов с учетом их знаков равна нулю, как было до вытаскивания пробки, и вся система – брус, ведра, противовес – остается в равновесии.

Закон сохранения импульса и закон сохранения энергии являются основными законами природы. Заметим, однако, что сохранение импульса в механических процессах справедливо всегда и безусловно, в то время как при применении закона сохранения энергии в механике надо быть осторожным (справедливость его требует соблюдения некоторого условия). «Не может быть! – возмущенно воскликнете вы, – закон сохранения энергии справедлив всегда и везде!» А я и не спорю, по читайте дальше. Рассмотрим пример столкновения упругих и неупругих шаров.

Упругий удар . Пусть шар массой 2 кг движется со скоростью 10 м/с к ударяет по второму (неподвижному) шару такой же массы. Как мы уже знаем, после удара первый шар остановится, а второй будет двигаться со скоростью первого шара до столкновения.

Проверим закон сохранения импульса:

Закон сохранения энергии:

Оба закона соблюдены.

Неупругий удар (шары из мягкой глины или замазки). После удара слипшиеся шары продолжают двигаться вместе, но со скоростью, вдвое меньшей скорости первого шара до удара.

Закон сохранения импульса:

Закон соблюдается.

Закон сохранения энергии:

До удара энергия была равна 100 Дж, а после удара 50 Дж! Куда же девалась половина энергии? Вы, наверное, догадались: механическая энергия, равная 50 Дж, превратилась во внутреннюю энергию: после удара молекулы стали двигаться более оживленно – шары нагрелись. Если бы мы могли учесть все виды энергии до и после удара, то убедились бы, что и в случае неупругого удара закон сохранения энергии не нарушается. Закон сохранения энергии справедлив всегда, но надо учитывать возможность превращения энергии из одного вида в другой. В практических случаях применения законов сохранения энергии и импульса это особенно важно. Рассмотрим несколько примеров применения этих законов.

Поковка изделий в кузнечном цехе. Цель поковки – изменить форму изделия при помощи ударов молота. Для наилучшего использования кинетической энергии падающего молота необходимо класть изделие на наковальню большой массы. Такая наковальня получит ничтожно малую скорость, и большая часть энергии при ударе превратится в энергию деформации (форма изделия изменится).

Забивка свай. В этом случае желательно передать большую часть кинетической энергии свае, чтобы она могла совершить работу по преодолению сопротивления грунта и углубиться в грунт. Масса копровой бабы, т. е. груза, который падает на сваю, должна быть больше массы сваи. В соответствии с законом сохранена импульса скорость сваи в этом случае будет больше и свая глубже уйдет в грунт.

О силе удара. В задаче, поставленной в начале нашей беседы, не указана продолжительность удара, а последняя зависит т природы опоры. При жесткой опоре продолжительность удара будет меньше, а средняя сила удара больше; при мягкой опоре наоборот. Сетка, протянутая под трапецией в цирке, предохраняет воздушного гимнаста от сильного удара при падении. Футболист, принимая удар мяча, должен подаваться назад, тем самым увеличивая продолжительность удара, – это смягчит удар. Таких примеров можно привести много. В заключение осмотрим еще одну интересную задачу, которая после всего вышесказанного будет понятна вам.

«Две лодки движутся по инерции в спокойной воде озера навстречу друг другу параллельным курсом со скоростью v 1 = 6 м/с. Когда они поравнялись, то с первой лодки на вторую быстро переложили груз. После этого вторая лодка продолжала двигаться в прежнем направлении, но со скоростью v 2 = 4 м/с.

Определить массу M 2 второй лодки, если масса M 1 первой без груза равна 500 кг, а масса m груза 60 кг. Подсчитать запас энергии лодок и груза до и после перекладывания груза. Объяснить, почему изменился этот запас энергии».

Решение. До встречи импульс первой лодки равен: (M 1 + m)v 1 , а импульс второй лодки: M 2 v 1 .

При перекладывании груза из первой лодки во вторую скорость первой лодки не изменяется, так как она испытывает толчок в боковом направлении (отдача), который не может преодолеть сопротивление воды. Скорость же второй лодки меняется, так как переложенный груз должен резко изменить направление своей скорости на противоположное, что можно рассматривать как толчок.

Применяя закон сохранения импульса, пишем:


Энергия уменьшилась на 3500 Дж. Куда же девалась энергия? Потерянная часть механической энергии превратилась во внутреннюю энергию (в теплоту) при выравнивании скоростей груза и второй лодки.

Если изделия имеют амортизаторы, то при выборе длительности действия ударного ускорения учитывают низшие резонансные частоты самих изделий, а не элементов защиты.

В качестве проверяемых выбирают параметры, по изменению которых можно судить об ударной устойчивости РЭА в целом (искажение выходного сигнала, стабильность характеристик функционирования и т.д.).

При разработке программы испытаний направления воздействий ударов устанавливают в зависимости от конкретных свойств испытываемых РЭА. Если свойства РЭА неизвестны, то испытание следует проводить в трех взаимно перпендикулярных направлениях. При этом рекомендуется выбирать (из диапазона, оговоренного в ТУ) длительность ударов, вызывающих резонансное возбуждение испытываемых РЭА.

Ударную прочность оценивают по целостности конструкции (например, отсутствию трещин, наличию контакта). Изделия считают выдержавшими испытание на ударную прочность, если после испытания они удовлетворяют требованиям стандартов и ПИ для данного вида испытания.

Испытание на ударную устойчивость рекомендуется проводить после испытания на ударную прочность. Часто их совмещают. В отличие от испытания на ударную прочность испытание на ударную устойчивость осуществляют под электрической нагрузкой, характер и параметры которой устанавливают в ТУ и ПИ. При этом контроль параметров РЭА производят в процессе удара для проверки работоспособности изделий и выявления ложный срабатываний. Изделия считают выдержавшими испытание, если в процессе и после него они удовлетворяют требованиям, установленным в стандартах и ПИ для данного вида испытания.



2.3. Задание третье.

Изучить устройства для испытания РЭА на воздействие удара /1. с.263-268. 2. с.171-178. 3. с.138-143/

Устройства для испытания. Ударные стенды классифицируют по следующим признакам:

По характеру воспроизводимых ударов – стенды одиночных и многократных ударов;

По способу получения ударных перегрузок – стенды свободного падения и принудительного разгона платформы с испытываемым изделием;

По конструкции тормозных устройств – с жесткой наковальней, с пружинящейся наковальней, с амортизирующими резиновыми и фетровыми прокладками, со сминающимися деформируемыми тормозными устройствами, с гидравлическими тормозными устройствами и т.д.

В зависимости от конструкции ударного стенда и в особенности от применяемого в нем тормозного устройства получают ударные импульсы полусинусоидальной, треугольной и трапецеидальной формы.

Для испытания РЭА на одиночные удары служат ударные стенды копрового типа, а на многократные – стенды кулачкового типа, воспроизводящие удары полусинусоидальной формы. В этих стендах используется принцип свободного падания платформы с испытываемым изделием на амортизирующие прокладки.

Основными элементами ударного стенда копрового типа (рис.2.3.1.) являются: стол 3; основание 7, служащее для гашения скорости стола в момент удара; направляющая 4, обеспечивающая горизонтальное положение стола в момент удара; прокладки 5, формирующие ударный импульс.

Энергия, необходимая для создания удара, накапливается в результате подъема стола с закрепленным на нем испытываемым изделием на заданную высоту. Для подъема стола и последующего его сбрасывания стенд снабжается приводом и механизмом сброса. Кинетическая энергия, приобретенная телом в процессе

Звукоизоляцией, снижающей уровень звукового давления до установленных норм;

Заземляющим контуром, сопротивление не 40 м;

Бетонным фундаментом.

4. При эксплуатации стенд ударный должен быть

установлен на фундамент.

5. Питание установки от сети переменного тока

напряжением 220± В, частоты 50 Гц.

6. Потребляемая электрическая мощность (максимальная) не

более 1кВт.

7. Установка обеспечивает получение сочетаний ускорений и

В механике ударом называют механическое воздействие материальных тел, приводящее к конечному изменению скоростей их точек за бесконечно малый промежуток времени. Ударное движение — движение, возникающее в результате однократного взаимодействия тела (среды) с рассматриваемой системой при условии, что наименьший период собственных колебаний системы или ее постоянная времени соизмеримы или больше времени взаимодействия.

При ударном взаимодействии в рассматриваемых точках определяют ударные ускорения, скорость или перемещение. В совокупности такие воздействия и реакции называют ударными процессами. Механические удары могут быть одиночными, многократными и комплексными. Одиночные и многократные ударные процессы могут воздействовать на аппарат в продольном, поперечном и любом промежуточном направлениях. Комплексные ударные нагрузки оказывают воздействие на объект в двух или трех взаимно перпендикулярных плоскостях одновременно. Ударные нагрузки на ЛА могут быть как непериодическими, так и периодическими. Возникновение ударных нагрузок связано с резким изменением ускорения, скорости или направления перемещения ЛА. Наиболее часто в реальных условиях встречается сложный одиночный ударный процесс, представляющий собой сочетание простого ударного импульса с наложенными колебаниями.

Основные характеристики ударного процесса:

  • законы изменения во времени ударного ускорения a(t), скорости V(t) и перемещения X(t) \ длительность действия ударного ускорения т - интервал времени от момента появления до момента исчезновения ударного ускорения, удовлетворяющий условию, а> ап, где ап - пиковое ударное ускорение;
  • длительность фронта ударного ускорения Тф - интервал времени от момента появления ударного ускорения до момента, соответствующего его пиковому значению;
  • коэффициент наложенных колебаний ударного ускорения - отношение полной суммы абсолютных значений приращений между смежными и экстремальными значениями ударного ускорения к его удвоенному пиковому значению;
  • импульс ударного ускорения - интеграл от ударного ускорения за время, равное длительности его действия.

По форме кривой функциональной зависимости параметров движения ударные процессы разделяют на простые и сложные. Простые процессы не содержат высокочастотных составляющих, и их характеристики аппроксимируются простыми аналитическими функциями. Наименование функции определяется формой кривой, аппроксимирующей зависимость ускорения от времени (полусинусоидальная, косанусоидальная, прямоугольная, треугольная, пилообразная, трапецеидальная и т.д.).

Механический удар характеризуется быстрым выделением энергия, в результате чего возникают местные упругие или пластические деформации, возбуждение волн напряжения и другие эффекты, приводящие иногда к нарушению функционирования и к разрушению конструкции ЛА. Ударная нагрузка, приложенная к ЛА, возбуждает в нем быстро затухающие собственные колебания. Значение перегрузки при ударе, характер и скорость распределения напряжений по конструкции ЛА определяются силой и продолжительностью удара, и характером изменения ускорения. Удар, воздействуя на ЛА, может вызвать его механическое разрушение. В зависимости от длительности, сложности ударного процесса и его максимального ускорения при испытаниях определяют степень жесткости элементов конструкции ЛА. Простой удар может вызвать разрушение вследствие возникновения сильных, хотя и кратковременных перенапряжений в материале. Сложный удар может привести к накоплению микродеформации усталостного характера. Так как конструкция ЛА обладает резонансными свойствами, то даже простой удар может вызвать колебательную реакцию в ее элементах, также сопровождающуюся усталостными явлениями.


Механические перегрузки вызывают деформацию и поломку деталей, ослабление соединений (сварных, резьбовых и заклепочных), отвинчивание винтов и гаек, перемещение механизмов и органов управления, в результате чего изменяется регулировка и настройка приборов и появляются другие неисправности.

Борьба с вредным действием механических перегрузок ведется различными путями: увеличением прочности конструкции, использованием деталей и элементов с повышенной механической прочностью, применением амортизаторов и специальной упаковки, рациональным размещением приборов. Меры защиты от вредного воздействия механических перегрузок делят на две группы:

  1. меры, направленные на обеспечение требуемой механической прочности и жесткости конструкции;
  2. меры, направленные на изоляцию элементов конструкции от механических воздействий.

В последнем случае применяют различные амортизирующие средства, изолирующие прокладки, компенсаторы и демпферы.

Общая задача испытаний ЛА на воздействие ударных нагрузок состоит в проверке способности ЛА и всех его элементов выполнять свои функции в процессе ударного воздействия и после него, т.е. сохранять свои технические параметры при ударном воздействии и после него в пределах, указанных в нормативно-технических документах.

Основные требования при ударных испытаниях в лабораторных условиях — максимальная приближенность результата испытательного удара на объект к эффекту реального удара в натурных условиях эксплуатации и воспроизводимость ударного воздействия.

При воспроизведении в лабораторных условиях режимов ударного нагружения накладывают ограничения на0форму импульса мгновенного ускорения как функции времени (рис. 2.50), а также на допустимые пределы отклонений формы импульса. Практически каждый ударный импульс на лабораторном стенде сопровождается пульсацией, являющейся следствием резонансных явлений в ударных установках и вспомогательном оборудовании. Так как спектр ударного импульса в основном является характеристикой разрушающего действия удара, то наложенная даже небольшая пульсация может сделать результаты измерений недостоверными.

Испытательные установки, имитирующие отдельные удары с последующими колебаниями, составляют специальный класс оборудования для механических испытаний. Ударные стенды можно классифицировать по различным признакам (рис. 2.5!):

I — по принципу формирования ударного импульса;

II — по характеру испытаний;

III — по виду воспроизводимого ударного нагружения;

IV — по принципу действия;

V — по источнику энергии.

В общем виде схема ударного стенда состоит из следующих элементов (рис. 2.52): испытуемого объекта, укрепленного на платформе или контейнере вместе с датчиком ударной перегрузки; средства разгона для сообщения объекту необходимой скорости; тормозного устройства; системы управления; регистрирующей аппаратуры для записей исследуемых параметров объекта и закона изменения ударной перегрузки; первичных преобразователей; вспомогательных приборов для регулировки режимов функционирования испытуемого объекта; источников питания, необходимых для работы испытуемого объекта и регистрирующей аппаратуры.

Простейшим стендом для ударных испытаний в лабораторных условиях является стенд, работающий по принципу сбрасывания закрепленного на каретке испытуемого объекта с некоторой высоты, т.е. использующий для разгона силы земного тяготения. При этом форма ударного импульса определяется материалом и формой соударяющихся поверхностей. На таких стендах можно обеспечить ускорение до 80000 м/с2. На рис. 2.53, а и б приведены принципиально возможные схемы таких стендов.

В первом варианте (рис. 2.53, а) специальный кулачок 3 с храповым зубом приводится во вращение мотором. По достижении кулачком максимальной высоты H стол 1 с объектом испытания 2 падает на тормозные устройства 4, которые и сообщают ему удар. Ударная перегрузка зависит от высоты падения Н, жесткости тормозящих элементов к, суммарной массы стола и объекта испытания M и определяется следующей зависимостью:

Варьируя эта величины, можно получить различные перегрузки. Во втором варианте (рис. 2.53, б) стенд работает по методу сбрасывания.

Испытательные стенды, использующие гидравлический либо пневматический привод для разгона каретки, практически не зависят от действия гравитации. На рис. 2.54 показаны два варианта ударных пневматических стендов.

Принцип работы стенда с пневмопушкой (рис. 2.54, а) заключается в следующем. В рабочую камеру / подается сжатый газ. При достижении заданного давления, которое контролируется манометром, срабатывает автомат 2 освобождения контейнера 3, где размещен испытуемый объект. При выходе из ствола 4 пневмопушки контейнер контактирует с устройством 5, которое позволяет измерять скорость движения контейнера. Пневмопушка через амортизаторы крепится к опорным стойкам б. Заданный закон торможения на амортизаторе 7 реализуется за счет изменения гидравлического сопротивления перетекающей жидкости 9 в зазоре между специально спрофилированной иглой 8 и отверстием в амортизаторе 7.

Конструктивная схема другого пневматического ударного стенда, (рис. 2.54, б) состоит из объекта испытаний 1, каретки 2, на которой установлен объект испытаний, прокладки 3 и тормозного устройства 4, клапанов 5, позволяющих создавать заданные перепады давления газа на поршне б, и системы подачи газа 7. Тормозное устройство включается сразу же после соударения каретки и прокладки, чтобы предотвратить обратный ход каретки и искажение форм ударного импульса. Управление такими стендами может быть автоматизировано. На них можно воспроизвести широкий диапазон ударных нагрузок.

В качестве разгонного устройства могут быть использованы резиновые амортизаторы, пружины, а также, в отдельных случаях, линейные асинхронные двигатели.

Возможности практически всех ударных стендов определяются конструкцией тормозных устройств:

1. Удар испытуемого объекта с жесткой плитой характеризуется торможением за счет возникновения упругих сил в зоне контакта. Такой способ торможения испытуемого объекта позволяет получать большие значения перегрузок с малым фронтом их нарастания (рис. 2.55, а).

2. Для получения перегрузок в широком диапазоне, от десятков до десятков тысяч единиц, с временем нарастания их от десятков микросекунд до нескольких миллисекунд используют деформируемые элементы в виде пластины или прокладки, лежащей на жестком основании. Материалами этих прокладок могут быть сталь, латунь, медь, свинец, резина и т.д. (рис. 2.55, б).

3. Для обеспечения какого-либо конкретного (заданного) закона изменения п и т в небольшом диапазоне используют деформируемые элементы в виде наконечника (крешера), который устанавливается между плитой ударного стенда и испытуемым объектом (рис. 2.55, в).

4. Для воспроизведения удара с относительно большим путем торможения применяют тормозное устройство, состоящее из свинцовой, пластически деформируемой плиты, расположенной на жестком основании стенда, и внедряющегося в нее жесткого наконечника соответствующего профиля (рис. 2.55, г), закрепленного на объекте или платформе стенда. Такие тормозные устройства позволяют получать перегрузки в широком диапазоне n(t) с небольшим временем их нарастания, доходящим до десятков миллисекунд.

5. В качестве тормозного устройства может быть использован упругий элемент в виде рессоры (рис. 2.55, д), установленной на подвижной части ударного стенда. Такой вид торможения обеспечивает получение относительно малых перегрузок полусинусоидальной формы с продолжительностью, измеряемой миллисекундами.

6. Пробиваемая металлическая пластина, закрепленная по контуру в основании установки, в сочетании с жестким наконечником платформы или контейнера, обеспечивает получение относительно малых перегрузок (рис. 2.55, е).

7. Деформируемые элементы, установленные на подвижной платформе стенда (рис. 2.55, ж), в сочетании с жестким коническим уловителем обеспечивают получение длительно действующих перегрузок с временем нарастания до десятков миллисекунд.

8. Тормозное устройство с деформируемой шайбой (рис. 2.55, з) позволяет получать большие пути торможения объекта (до 200 — 300 мм) при малых деформациях шайбы.

9. Создание в лабораторных условиях интенсивных ударных импульсов с большими фронтами возможно при использовании пневматического тормозного устройства (рис. 2.55, ы). К числу достоинств пневмодемпфера следует отнести его многоразовое действие, а также возможность воспроизведения ударных импульсов различной формы, в том числе и со значительным заданным фронтом.

10. В практике проведения ударных испытаний широкое применение получило тормозное устройство в виде гидравлического амортизатора (см. рис. 2.54, а). При ударе испытуемого объекта об амортизатор его шток погружается в жидкость. Жидкость выталкивается через очко штока по закону, определяемому профилем регулирующей иглы. Изменяя профиль иглы, можно реализовать различный вид закона торможения. Профиль иглы можно получить расчетным путем, но при этом слишком трудно учесть, например, наличие воздуха в полости поршня, силы трения в уплотнительных устройствах и т.д. Поэтому расчетный профиль необходимо экспериментально корректировать. Таким образом, расчетно-экспериментальным методом можно получить профиль, необходимый для реализации любого закона торможения.

Проведение ударных испытаний в лабораторных условиях выдвигает и ряд специальных требований к монтажу объекта. Так, например, максимально допустимое перемещение в поперечном направлении не должно превышать 30% номинальной величины; как при испытаниях на ударную устойчивость, так и при испытаниях на ударную прочность изделие должно иметь возможность устанавливаться в трех взаимно перпендикулярных положениях с воспроизведением необходимого количества ударных импульсов. Разовые характеристики измерительного и регистрирующего оборудования должны быть идентичными в широком диапазоне частот, что гарантирует правильную регистрацию соотношений различных частотных составляющих измеряемого импульса.

Вследствие разнообразия передаточных функций различных механических систем один и тот же ударный спектр может быть вызван ударным импульсом различной формы. Это означает, что не существует однозначного соответствия некоторой временной функции ускорения и ударного спектра. Поэтому с технической точки зрения более правильно задавать технические условия на ударные испытания, содержащие требования к ударному спектру, а не к временной характеристике ускорения. В первую очередь это относится к механизму усталостного разрушения материалов вследствие накопления циклов нагружений, которые могут быть различными от испытаний к испытанию, хотя пиковые значения ускорения и напряжения будут оставаться постоянными.

При моделировании ударных процессов системы определяющих параметров целесообразно составлять по выявленным факторам, необходимых для достаточно полного определения искомой величины, которую иногда можно найти только экспериментальным путем.

Рассматривая удар массивного, свободно движущегося жесткого тела по деформируемому элементу относительно малого размера (например, по тормозному устройству стенда), закрепленному на жестком основании, требуется определить параметры ударного процесса и установить условия, при которых такие процессы будут подобными друг другу. В общем случае пространственного движения тела можно составить шесть уравнений, три из которых дает закон сохранения количества движения, два — законы сохранения массы и энергии, шестым является уравнение состояния. В указанные уравнения входят следующие величины: три компоненты скорости Vx Vy \ Vz> плотность р, Давление р и энтропия. Пренебрегая диссипативными силами и считая состояние деформируемого объема изоэнтропическим, можно исключить из числа определяющих параметров энтропию. Так как рассматривается только движение центра масс тела, то можно не включать в число определяющих параметров компоненты скоростей Vx, Vy; Vz и координаты точек Л", Y, Z внутри деформируемого объекта. Состояние деформируемого объема будет характеризоваться следующими определяющими параметрами:

  • плотностью материала р;
  • давлением р, которое целесообразней учитывать через величину максимальной местной деформации и Otmax, рассматривая ее как обобщенный параметр силовой характеристики в зоне контакта;
  • начальной скоростью удара V0, которая направлена по нормали к поверхности, на которой установлен деформируемый элемент;
  • текущим временем t;
  • массой тела т;
  • ускорением свободного падения g;
  • модулем упругости материалов Е, так как напряженное состояние тела при ударе (за исключением зоны контакта) считается упругим;
  • характерным геометрическим параметром тела (или деформируемого элемента) D.

В соответствии с тс-теоремой, из восьми параметров, среди которых три имеют независимые размерности, можно составить пять независимых безразмерных комплексов:

Безразмерные комплексы, составленные из определяемых параметров ударного процесса, будут некоторыми функциями независимы] безразмерных комплексов П1 — П5.

К числу определяемых параметров относятся:

  • текущая местная деформация а;
  • скорость тела V;
  • контактная сила Р;
  • напряжение внутри тела а.

Следовательно, можно записать функциональные соотношения:

Вид функций /1, /2, /э, /4 может быть установлен экспериментально, с учетом большого количества определяющих параметров.

Если при ударе в сечениях тела за пределами зоны контакта не появляются остаточные деформации, то деформация будет иметь местный характер, и, следовательно, комплекс Я5 = рУ^/Е можно исключить.

Комплекс Jl2 = Pttjjjax) ~ Cm называется коэффициентом относительной массы тела.

Коэффициент силы сопротивления пластическому деформированию Cp связан непосредственно с показателем силовой характеристики N (коэффициентом податливости материала, зависящим от формы соударяющихся тел) следующей зависимостью:

где р — приведенная плотность материалов в зоне контакта; Cm = т/(ра?) — приведенная относительная масса соударяющихся тел, характеризующая отношение их приведенной массы M к приведенной массе деформируемого объема в зоне контакта; xV — безразмерный параметр, характеризующий относительную работу деформирования.

Функцией Cp - /з(Я1(Яг, Я3, Я4) можно воспользоваться для определения перегрузок:

Если обеспечить равенство числовых значений безразмерных комплексов IJlt Я2, Я3, Я4 для двух ударных процессов, то эти условия, т.е.

будут представлять собой критерии подобия данных процессов.

При выполнении указанных условий одинаковыми будут и числовые значения функций /ь/г./з» Л» те- в сходственные моменты времени -V CtZoimax- const; ^r= const; Cp = const, что и позволяет определять параметры одного ударного процесса простым пересчетом параметров другого процесса. Необходимые и достаточные требования физического моделирования ударных процессов можно сформулировать следующим образом:

  1. Рабочие части модели и натурного объекта должны быть геометрически подобными.
  2. Безразмерные комплексы, составленные из определяющих пара, метров, должны удовлетворять условию (2.68). Вводя масштабные коэффициенты.

Необходимо иметь в виду, что при моделировании только параметров ударного процесса напряженные состояния тел (натуры и модели) будут обязательно различными.

Явление, при котором за ничтожно малый промежуток времени скорости точек изменяются на конечную величину, называется ударом .

Конечное изменение количества движения за ничтожно малый промежуток времени удара происходит потому, что модули сил, развиваемых при ударе, весьма велики, из-за чего импульсы этих сил за время удара являются конечными величинами. Такие силы называются мгновенными или ударными.

Пусть на движущуюся под действием приложенных сил с равнодействующей Р к МТ М в некоторое мгновение действует ударная сила Р , прекратившая свое действие в момент времени t 2 = t 1 + t , где t - время удара.

По теореме изменения количества движения МТ

m u 2 - m u 1 = S + S к, (а)

где S , S к - соответственно, импульсы сил Р и Р к.

Импульс равнодействующей за малый промежуток времени имеет порядок малости, что и t , а импульс S ударной силы P является конечной величиной. Поэтому S к можно пренебречь. Тогда уравнение (а) примет вид

m u 2 - m u 1 = S (16-1)

u 2 - u 1 = S/ m. (16-2)

Т.к. продолжительность удара мала, а скорость точки за это время конечна, то перемещение точки за время удара мало, и им можно пренебречь.

В положении В, где точка получает удар, конечное изменение скорости составляет

D u = u 1 - u 2 .

Поэтому в положении В происходит резкое изменение траектории точки ABD (рис.16.1).

После прекращения действий силы Р точка снова движется под действием равнодействующей Р к.

Следовательно:

1) действием немгновенных сил за время удара можно пренебречь;

2) перемещение МТ за время удара можно не учитывать;

3) результат действия ударной силы за время удара на МТ выражается в конечном изменении вектора ее скорости, определяемом уравнением (16-2).

Пусть к точкам механической системы одновременно приложены ударные импульсы. На основании предыдущего действием конечных сил за время удара будем пренебрегать. Разделим ударные силы на внутренние и внешние. Тогда для каждой точки можно записать

m i (u i - u i) = S E i + S J i (i=1,2….n).

После суммирования

Sm i u i - Sm i u i = S S E i + S S J i .

Здесь Sm i u i =К - количество движения механической системы в момент окончания действия ударных сил; Sm i u i = К 0 - количество движения механической системы в момент начала действия ударных сил.

Т.к. сумма внутренних сил равна нулю, то

К - К 0 = S S E i . (16-3)

Это уравнение выражает теорему:

Изменение количества движения механической системы за время удара равно геометрической сумме всех внешних ударных импульсов, приложенных к точкам системы .

Уравнению (16-3) соответствуют три уравнения в проекциях на оси координат.

К x К x0 = SS E ix ; К y К y0 = SS E iy ; К z К z0 = SS E iz . (16-4)

Изменение проекции количества движения системы на любую ось равна сумме проекций на ту же ось внешних ударных импульсов, приложенных к системе .

Количество движения можно выразить через массу всей системы

K = mu C , K 0 = m u C .

mu C - m u C = S S E i . (16-5)

Этому,аналогично предыдущему, можно написать три уравнения в проекциях на оси координат.

При отсутствии внешних ударных импульсов

S E i =0; К=К 0 ; u C =u C .

От внутренних ударных импульсов количество движения системы не изменяется .

16.2. Удар шара о неподвижную поверхность .

Пусть шар массой m движется поступательно и скорость его центра u направлена по нормали к неподвижной поверхности в некоторой ее точке А (рис.16.2)

В мгновение t , когда шар достигает этой поверхности, происходит удар, называемый прямым.

Различают две фазы удара. В первой шар деформируется до тех пор, пока скорость его не станет равной нулю. Эта деформация происходит за ничтожно малый промежуток времени t 1 . Во время этой фазы кинетическая энергия шара переходит в потенциальную энергию сил упругости деформированного тела и частично расходуется на нагревание тела.

В течение второй фазы удара под действием сил упругости шар частично восстанавливает свою первоначальную форму. Этот промежуток времени обозначим t 2 .

Из-за остаточных деформаций и нагревания шара первоначальная кинетическая энергия шара полностью не восстанавливается. Поэтому шар отделяется от поверхности со скоростью u , модуль которой меньше модуля его скорости до удараu .

Отношение модулей этих скоростей называют коэффициентом восстановления при ударе

k=|u|/|u|. (16-6)

Значения коэффициента восстановления для различных материалов определяются опытным путем. В расчетах обычно принимают коэффициент восстановления зависящим лишь от материала соударяющихся тел. Однако опыты показывают, что этот коэффициент зависит и от формы тел, от соотношения их масс и от скорости соударения.

Коэффициент восстановления для стального шарика можно определить по высоте отскока шарика.

Применяя к движению шарика под действием силы тяжести теорему об изменении кинетической энергии, можно определить скорость в начале удара

u= (2gh 1) 1/2 .

По той же теореме для участка отскока получим

u=(2gh 2) 1/2 .

Тогда коэффициент восстановления будет

k= u/u= (h 2 /h 1) 1/2 . (16-7)

В случае неупругого удара явление удара заканчивается первой фазой. Здесь u=0, k=0.

Если обозначить переменную ударную реакцию в первой фазе N 1 , а N 11 - вовторой фазе, то модули импульсов этой силы, соответственно будут

S 1 = ; S 2 = .

Применим теорему об изменении количества движения МТ в проекциях на нормаль к поверхности, направленную вертикально вверх (рис. 16.3), учитывая, что скорость шарика в конце первой и начале второй фаз равна нулю:

Рис. 16.3 Рис. 16.4

0- mu n = S 1n ; mu n - 0= S 11n .

Представив значения проекций в виде u n =-u; u n = -u, S 1 n = S 1 ; S 11 n = S 11 ,

mu = S 1 ; mu = S 11 .

Отношения модулей импульсов

S 1 / S 11 = mu / mu = u / u = k. (16-8)

Т.о., отношение модулей импульсов ударной реакции гладкой поверхности за вторую и первую фазу удара равно коэффициенту восстановления при ударе.

Рассмотрим случай, когда падение происходит под углом a к нормали. Для этого положим, что векторы взаимодействия лежат в плоскости чертежа (рис. 16.4).

Спроектируем вектор скорости u на нормаль и касательную в этой плоскости. При отсутствии трения реакция поверхности направлена по нормали и ее проекция на касательную Аt равна нулю. На основании теоремы о проекции количества движения

mu t - mu t = 0 или u t = u t .

Изменение нормальной составляющей скорости при ударе происходит согласно формуле (16-6). Поэтому

|u n |= k|u n |, (16-9)

где |u n |, |u n | - абсолютные значения проекций скоростей u и u на нормаль.

Модуль скорости u центра шара после удара

u= (u t 2 +u n 2) 1/2 =(u t 2 +ku n 2) 1/2 =[(usin a) 2 +(kucos a) 2 ] 1/2 =

= u(sin 2 a+ k 2 cos 2 a) 1/2 . (16-10)

Угол падения

tg a= u t /|u n |; tg b= u t /|u n |= u t /(k|u n |)=k -1 tga. (16-11)

Поскольку k<1, то

tg b>tga и b> a ,

т.е. угол отражения больше угла падения.

В случае абсолютно твердого тела угол отражения равен углу падения.

16.3. Прямой центральный удар двух тел .

Пусть при поступательном прямолинейном движении двух тел массами m 1 , m 2 с центрами тяжести С 1 и С 2 движутся вдоль одной и той же прямой со скоростями u 1 и u 2 . Если второе тело находится впереди и u 1 > u 2 , то в некоторый момент времени первое тело нагонит второе и произойдет удар тел.

На рис. 16.5,а изображен такой удар двух шаров, при котором скорости тел в начале удара направлены по общей нормали к поверхностям в точке соприкосновения.

Такой удар называется прямым центральным ударом двух тел .

Определим, пользуясь теоремой импульсов, скорости этих тел после удара. От мгновения t соприкосновения тел происходит их смятие до тех пор, пока скорости не сравняются. Общую скорость в момент наибольшей деформации t 1 = t+ t 1 обозначим u . Если тела совершенно неупругие, то удар неупругий, и с этого мгновения оба тела будут двигаться как одно целое.

Удар упругих тел не заканчивается в мгновение, когда скорости тел сравняются. Начиная с этого мгновения, происходит восстановление первоначальной формы тел за счет накопившейся в них потенциальной энергии упругой деформации.

В некоторое мгновение t 1 = t+ t 1 тела отделяются, имея разные скорости u 1 , u 2 , направленные также как и скорости до соударения по общей нормали к поверхностям касания в точке.

В течение 1-й фазы продолжительностью t 1 к телам приложены взаимные ударные реакции, равные по модулю и направленные по оси х , проведенной по общей нормали, в противоположные стороны (рис.16.5,б).

Импульс ударной реакции, действующей на 1-е тело, S 1 направлен в сторону, обратную направлению оси х , а импульс реакции, приложенной ко 2-му телу S’ 1 , имеет направление оси х . Модули импульсов равны.

Силы взаимодействия соударяющихся тел являются для рассматриваемой системы внутренними силами. Поэтому, согласно уравнению (16-3) количество движения системы при ударе не изменяется.

Приравниваем значения проекций на ось х количества движения системы тел в начале удара и в момент наибольшей деформации

m 1 u 1 + m 2 u 2 = (m 1 + m 2)u.

u= (m 1 u 1 + m 2 u 2)/ (m 1 + m 2). (16-12)

Для определения импульсов ударных сил взаимодействия воспользуемся уравнением (16-5), учитывая, что для каждого тела в отдельности эти импульсы являются внешними:

Для 1-го тела

m 1 (u- u 1)= - S 1 ,

для 2-го тела (16-13)

m 2 (u- u 2)= S’ 1 .

Подставив в первое равенство (16-12), найдем модули ударных импульсов первой фазы:

S 1 = m 2 [(m 1 u 1 + m 2 u 2)/ (m 1 + m 2)-u 2 ]= m 1 m 2 (u 1 - u 2)/(m 1 + m 2). (16-14)

Обратимся ко 2-й фазе упругого удара от момента наибольшей деформации t+ t 1 до момента t+ t 1 + t 2 полного или частичного восстановления и отделения тел друг от друга. Обозначим S 11 , S’ 11 импульсы ударных реакций соударяющихся тел за время t 2 . Их направления совпадают с направлениями соответствующих ударных импульсов 1-й фазы удара. Проекции u 1 , u 2 скоростей тел в конце удара на ось определим по уравнению (16-5) для 2-й фазы удара

m 1 (u 1 - u)= - S 11 ,

m 2 (u 2 - u)= S’ 11 . (16-15)

Разделим 1-е уравнение на 1-е уравнение системы (16-13), а второе уравнение на 2-е уравнение (16-13)

(u 1 - u)/ (u- u 1)= k ; (u 2 - u)/ (u- u 2)= k.

u 1 =u+ k(u- u 1)=u(1+k)- ku 1 ;

u 2 =u+ k(u- u 2)=u(1+k)- ku 2 . (16-16)

Подставляя значения u, окончательно получим

u 1 =u 1 - (1+k)m 2 (u 1 -u 2)/(m 1 +m 2),

u 2 =u 2 + (1+k)m 1 (u 1 -u 2)/(m 1 +m 2). (16-17)

Поскольку внутренние силы не изменяют количества движения системы, то за время удара оно остается неизменным, т.е.

m 1 u 1 + m 2 u 2 = m 1 u 1 + m 2 u 2 . (16-18)

Из формул (16-16)

(u 2 - u)= k (u 1 - u 2) .

k =(u 2 - u)/ (u 1 - u 2). (16-19)

Коэффициент восстановления при ударе двух тел равен отношению модулей относительной скорости тел после удара и до него .

Определим модуль ударного импульса, приложенного к каждому телу, за весь период упругого удара:

S= S 1 + S 11 .

Подставим значения импульсов из вторых уравнений (16-13), (16-15)

S= S’= m 2 (u 2 - u 2)= m 2 =

= m 2 (1-k)(u-u 2)= (1+k)S 1 .

Применим формулу (16-14)

S= (1+k)m 1 m 2 (u 1 -u 2)/(m 1 +m 2). (16-20)

На основании установленных здесь общих формул получим формулы для определения скоростей тел после удара и ударных импульсов в случае неупругого и абсолютно упругого ударов.

При неупругом ударе k =0. Удар имеет только первую фазу. В этом случае после удара тела движутся совместно со скоростью

u= (m 1 u 1 + m 2 u 2)/(m 1 + m 2).

Модуль ударного импульса

S 1 = S’ 1 = m 1 m 2 (u 1 -u 2)/(m 1 +m 2).

При абсолютно упругом ударе k =1. В этом случае формулы (16-16), определяющие скорости тел после удара, принимают вид

u 1 = 2u- u 1 = 2 (m 1 u 1 + m 2 u 2)/(m 1 + m 2)- u 1 = u 1 - 2m 2 (u 1 -u 2)/(m 1 +m 2);

u 2 = 2u- u 2 = 2 (m 1 u 1 + m 2 u 2)/(m 1 + m 2)- u 2 = u 2 - 2m 1 (u 1 -u 2)/(m 1 +m 2). (16-17)

Формула (16-20) за весь период абсолютно упругого удара будет

S=S’ = 2m 1 m 2 (u 1 -u 2)/(m 1 +m 2). (16-21)

Из формул (16-16), (16-20) следует, что при абсолютно упругом ударе ударный импульс вдвое больше, чем при неупругом ударе .

Это объясняется тем, что при абсолютно упругом ударе к импульсу фазы деформации добавляется импульс фазы восстановления такого же модуля.