Как образуется плазма. Плазма крови: составные элементы (вещества, белки), функции в организме, использование

– частично или полностью ионизованный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов (молекул) по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Если в газе не остается нейтральных частиц, плазма называется полностью ионизованной.

Между газом и плазмой нет резкой границы. Любое вещество, находящееся первоначально в твердом состоянии, по мере возрастания температуры начинает плавиться, а при дальнейшем нагревании испаряется, т.е. превращается в газ. Если это молекулярный газ (например, водород или азот), то с последующим повышением температуры происходит распад молекул газа на отдельные атомы (диссоциация). При еще более высокой температуре газ ионизуется, в нем появляются положительные ионы и свободные электроны. Свободно движущиеся электроны и ионы могут переносить электрический ток, поэтому одно из определений плазмы гласит: плазма – это проводящий газ. Нагревание вещества не является единственным способом получения плазмы.

Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Вместе с тем, поведение плазмы в ряде случаев, особенно при воздействии на нее электрических и магнитных полей, оказывается столь необычным, что о ней часто говорят как о новом четвертом состоянии вещества. В 1879 английский физик В.Крукс, изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». Древние философы считали, что основу мироздания составляют четыре стихии: земля, вода, воздух и огонь. В известном смысле это отвечает принятому ныне делению на агрегатные состояния вещества, причем четвертой стихии – огню и соответствует, очевидно, плазма.

Сам термин «плазма» применительно к квазинейтральному ионизованному газу был введен американскими физиками Лэнгмюроми Тонксом в 1923 при описании явлений в газовом разряде. До той поры слово «плазма» использовалось лишь физиологами и обозначало бесцветный жидкий компонент крови, молока или живых тканей, однако вскоре понятие «плазма» прочно вошло в международный физический словарь, получив самое широкое распространение.

Франк-Каменецкий Д.А. Плазма – четвертое состояние вещества . М., Атомиздат, 1963
Арцимович Л.А. Элементарная физика плазмы . М., Атомиздат, 1969
Смирнов Б.М. Введение в физику плазмы . М., Наука, 1975
Милантьев В.П., Темко С.В. Физика плазмы . М., Просвещение, 1983
Чен Ф. Введение в физику плазмы . М., Мир, 1987

Найти "ПЛАЗМА " на

Одно и тоже вещество в природе имеет возможность кардинальным образом варьировать свои свойства в зависимости от показателей температуры и давления. Прекрасным примером тому может служить вода, которая существует в виде твёрдого льда, жидкости и пара. Это три агрегатных состояния данной субстанции, имеющей химическую формулу Н 2 О. Другие вещества в естественных условиях способны менять свои характеристики аналогическим образом. Но кроме перечисленных, в природе существует и другое агрегатное состояние - плазма. Это достаточно редкая в земных условиях наделённая особыми качествами.

Молекулярное строение

От чего зависят 4 состояния вещества, в котором пребывает материя? От взаимодействия элементов атома и самих молекул, наделённых свойствами взаимного отталкивания и притяжения. Указанные силы самокомпенсируются в твёрдом состоянии, где атомы располагаются геометрически правильно, образуя кристаллическую решётку. При этом материальный объект способен сохранять обе упомянутые выше качественные характеристики: объём и форму.

Но стоит кинетической энергии молекул увеличится, хаотично двигаясь, они разрушают установленный порядок, превращаясь в жидкости. Они обладают текучестью и характеризуются отсутствием геометрических параметров. Но при этом данная субстанция сохраняет свою способность не менять общий объём. В газообразном состоянии взаимное притяжение между молекулами полностью отсутствует, поэтому газ не имеет формы и обладает возможностью неограниченного расширения. Но концентрация вещества при этом значительно падает. Сами молекулы в обычных условиях не меняются. В этом заключается основная особенность первых 3 из 4 состояний вещества.

Трансформация состояний

Процесс превращения твёрдого тела в другие формы возможно осуществить, постепенно увеличивая температуру и варьируя показатели давления. При этом переходы будут происходить скачкообразно: расстояние между молекулами заметно увеличится, разрушатся межмолекулярные связи с изменением плотности, энтропии, количества свободной энергии. Вероятна также трансформация твёрдого тела сразу в газообразную форму, минуя промежуточные этапы. Она носит название сублимации. Подобный процесс вполне возможен в обычных земных условиях.

Но когда показатели температуры и давления достигают критического уровня, образуется Внутренняя энергия вещества настолько увеличивается, что электроны, двигаясь с бешенной скоростью, покидают свои внутриатомные орбиты. При этом образуются положительные и отрицательные частицы, но плотность их в получившейся структуре остаётся практически одинаковой. Таким образом возникает плазма - агрегатное состояние вещества, представляющего, по сути, газ, полностью или частично ионизированный, элементы которого наделены способностью на больших расстояниях взаимодействовать между собой.

Высокотемпературная плазма космоса

Плазма, как правило, субстанция нейтральная, хотя и состоит из заряженных частиц, потому что положительные и отрицательные элементы в ней, будучи приблизительно равными по количеству, компенсируют друг друга. Это агрегатное состояние в обычных земных условиях встречается реже других, упомянутых ранее. Но несмотря на это, большинство космических тел состоит именно из природной плазмы.

Примером тому могут служить Солнце и прочие многочисленные звёзды Вселенной. Там показатели температуры фантастический высоки. Ведь на поверхности главного светила нашей планетарной системы они достигают 5 500°С. Это более чем в полсотни раз превышает те параметры, которые необходимы для того, чтобы закипела вода. В центре же огнедышащего шара температура составляет 15 000 000°С. Неудивительно, что газы (в основном это водород) там ионизируются, достигая агрегатного состояния плазмы.

Низкотемпературная плазма в природе

Межзвёздная среда, заполняющая галактическое пространство, также состоит из плазмы. Но она отличается от высокотемпературной её разновидности, описанной ранее. Подобная субстанция состоит из ионизированного вещества, возникающего вследствие излучения, испускаемого звёздами. Это низкотемпературная плазма. Таким же образом солнечные лучи, достигая пределов Земли, создают ионосферу и находящийся над ней радиационный пояс, состоящий из плазмы. Различия лишь в составе вещества. Хотя в подобном состоянии могут находится все элементы, представленные в таблице Менделеева.

Плазма в условиях лаборатории и её применение

Согласно законам легко получается в привычных для нас условиях. При проведения лабораторных опытов достаточно конденсатора, диода и сопротивления, подключённых последовательно. Подобная цепь на секунду подсоединяется к источнику тока. И если прикоснуться проводами к металлической поверхности, то частицы её самой, а также расположенные вблизи молекулы паров и воздуха ионизируются и оказываются в агрегатном состоянии плазмы. Аналогичные свойства материи используются при создании ксеноновых и неоновых экранов и сварочных аппаратов.

Плазма и природные явления

В естественных условиях плазму можно наблюдать в свете Северного сияния и во время грозы в виде шаровой молнии. Объяснение некоторым природным явлениям, которым ранее приписывались мистические свойства, ныне дала современная физика. Плазма, образующаяся и светящаяся на концах высоких и острых предметов (мачтах, башнях, огромных деревьях) при особом состоянии атмосферы, столетия назад принималась моряками за вестник удачи. Именно поэтому данное явление получило название «Огни святого Эльма».

Видя коронный разряд в облике светящихся кисточек или пучков во время грозы в шторм, путешественники принимали это за доброе предзнаменование, понимая, что избежали опасности. Неудивительно, ведь возвышающиеся над водой объекты, подходящие для «знаков святого», могли говорить о приближении судна к берегу или пророчить встречу с другими кораблями.

Неравновесная плазма

Приведённые выше примеры красноречиво свидетельствуют о том, что не обязательно нагревать вещество до фантастических температур, чтобы добиться состояния плазмы. Для ионизации достаточно использовать силу электромагнитного поля. При этом тяжёлые составные элементы материи (ионы) не приобретают значительную энергию, ведь температура при осуществлении этого процесса вполне может не превышать по Цельсию нескольких десятков градусов. В таких условиях лёгкие электроны, отрываясь от основного атома, движутся значительно быстрее более инертных частиц.

Подобная холодная плазма называется неравновесной. Кроме плазменных телевизоров и неоновых ламп, она используется также при очистке воды и продуктов питания, применяется для дезинфекции в медицинских целях. К тому же холодная плазма способна содействовать ускорению химических реакций.

Принципы использования

Прекрасным примером того, как применяется во благо человечества искусственно созданная плазма, является изготовление плазменных мониторов. Ячейки такого экрана наделены способностью излучать свет. Панель представляет собой некий «бутерброд» из стеклянных листов, близко расположенных друг к другу. Между ними размещаются коробочки со смесью инертных газов. Ими могут быть неон, ксенон, аргон. А на внутреннюю поверхность ячеек наносятся люминофоры синего, зелёного, красного цвета.

Снаружи ячеек подведены токопроводящие электроды, между которыми создаётся напряжение. В результате этого возникает электрическое поле и, как следствие, молекулы газа ионизируются. Образующаяся плазма испускает ультрафиолетовые лучи, поглощаемые люминофорами. Ввиду это возникает явление флуоресценции посредством испускаемых при этом фотонов. За счёт сложного соединения лучей в пространстве возникает яркое изображение самых разнообразных оттенков.

Плазменные ужасы

Смертоносный облик принимает эта форма материи во время ядерного взрыва. Плазма в больших объёмах образуется во время течения данного неуправляемого процесса с высвобождением огромного количества различных видов энергии. возникшая в результате запуска в действие детонатора, вырывается наружу и нагревает в первые секунды до гигантских температур окружающий воздух. На этом месте возникает смертоносный огненный шар, нарастающий с внушительной скоростью. Видимая область яркой сферы увеличивается за счёт ионизированного воздуха. Сгустки, клубы и струи плазмы взрыва формируют ударную волну.

Первое время светящийся шар, наступая, мгновенно поглощает всё на своём пути. В пыль превращаются не только кости и ткани человека, но и твёрдые скалы, разрушаются даже самые прочные искусственные сооружения и объекты. Не спасают бронированные двери в надёжные убежища, расплющиваются танки и другая боевая техника.

Плазма по своим свойствам напоминает газ тем, что не обладает определёнными формами и объёмом, в следствие этого она способна неограниченно расширяться. По данной причине многие физики высказывают мнение, что считать её отдельным агрегатным состоянием не следует. Однако существенные отличия её от просто горячего газа налицо. К ним относятся: возможность проводить электрические токи и подверженность влиянию магнитных полей, неустойчивость и способность составных частиц иметь разные показатели скоростей и температур, при этом коллективно взаимодействовать между собой.

Тысячелетия интенсивного развития, исследования жизни и природы привели человека к познанию четырёх состояний вещества. Плазма оказалась самым таинственным из них. С момента, когда человек впервые открыл для себя её существование, исследование плазмы и её практическое применение пошли семимильными шагами. Возникла и стала активно развиваться такая на сегодняшний день перспективная наука, как плазмохимия.

Еще во времена Древней Греции учёный Аристотель знал, что все тела состоят из четырёх низших элементов-стихий: земли, воды, воздуха и огня. Сегодня эти понятия изменили свои имена, но не смысл. Действительно, каждый знает, что вещество может находиться в четырёх состояниях: твёрдом, жидком, газообразном и плазменном.

Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году.

Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.

Плазма - это газ, состоящий из положительно и отрицательно заряженных частиц в таких отношениях, что общий их заряд равен нулю. Свободно движущиеся заряженные частицы могут переносить электрический ток, следовательно, плазма - это газ, обладающий электропроводностью. По сравнению с известными проводниками, в частности металлами - электролитами, плазма в тысячи раз легче.

Между газами и плазмой в некоторых отношениях нет различия. Плазма подчиняется газовым законам и во многих отношениях ведет себя, как газ.

Важная особенность плазмы - это хаотическое движение частиц, присущее газу, которое в плазме можно упорядочить. Под влиянием внешнего магнитного или электрического поля можно придать направление движению частиц плазмы. Следовательно, плазму можно представить как текучую среду, обладающую свойством проводить электрический ток.

Понятие плазмы, или плазменного состояния вещества, охватывает как горячие, так и холодные газы, обладающие свечением и электропроводностью. Различают два рода плазмы: изометрическая, возникающая при температуре газа, достаточно высокой для сильной термической ионизации, и газоразрядная, образующаяся при электрических разрядах в газах.

В изометрической плазме средняя кинетическая энергия частиц: электронов, ионов, нейтральных и возбужденных атомов и молекул - одинаковая. При тепловом равновесии с окружающей средой такая плазма может существовать неограниченно долго. Газоразрядная плазма устойчива только при наличии в газе электрического поля, ускоряющего электроны. Температура газоразрядной плазмы выше, чем температура нейтрального газа. Таким образом, плазменное состояние является неустойчивым, и при прекращении действия электрического поля газоразрядная плазма исчезает в течение доли секунды, а именно 10-5 и 10-7 сек, так как за этот период возникает деионизация газов. Следовательно, плазма представляет собой, с одной стороны, состояние газа и, с другой - смесь нескольких газов. Она состоит из нормальных молекул, свободных электронов, ионов и фотонов. Совокупность частиц каждого рода образует свой собственный газ, состоящий из нейтральных молекул, электронов, ионов и фотонов. Все эти газы, вместе взятые, и образуют то, что называется плазмой.

Плазма возникает в результате ионизации молекул: при столкновении двух частиц молекул с большой энергией, при столкновении молекул с электронами или ионами, при действии на молекулы фотонов. Все эти процессы обратимы, так как в плазме протекают процессы рекомбинации - восстановления нейтрального состояния. Практически плазма может образоваться при горении костра, при пропускании через газ электрического тока, при повышенных температурах и т. д.

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9%) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной. К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1% массы Солнечной системы, а объём - и того меньше: всего 10?15%. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов.

Плазма обладает различными свойствами. Основными из них являются:

  • 1. Электропроводность - это основное свойство плазмы. С электропроводностью связано другое свойство, а именно свечение, как результат возбуждения молекул. Внутренняя энергия плазмы равна для одноатомного газа 3 кал/град * моль, а для многоатомных молекул, например бензола, - 12 кал/град * моль. Для плазменного состояния теплоемкость равняется 100-200 кал/град - моль, т. е. в 40-50 раз больше, чем у газов. Большая теплоемкость объясняется тем, что при переходе вещества из обычного в плазменное состояние часть энергии тратится на ионизацию. Эта энергия, как мы видим, достаточно велика.
  • 2. Плазма обладает специфическим движением. Оно вызывается наличием большого количества зарядов, обусловливающих электропроводность плазмы, что приводит к новому движению плазмы, которого нет ни в одном из остальных агрегатных состояний. Как известно, у неионизированных систем оно происходит под действием силы тяжести, инерции, упругости, а здесь - под влиянием магнитных и электрических сил. Беспорядочное движение электронов и ионов приводит к тому, что плотность одинаково заряженных частиц на одних участках становится большей или меньшей, в результате чего интенсивность заряда на одних участках или увеличивается, или уменьшается, что вызывает движение положительно заряженных частиц в сторону более интенсивных зарядов отрицательных частиц. В результате этого движения возникают колебания типа маятника, так как перемещение отрицательно заряженного поля к положительному, в свою очередь, вызывает новые участки с различной плотностью зарядов одного знака, т. е. возникают волны положительного и отрицательного электричества.
  • 3. Одним из наиболее важных свойств плазмы является возможность возникновения электромагнитных колебаний в чрезвычайно широком диапазоне под влиянием движения, происходящего в самой плазме или под влиянием электрического тока, протекающего в плазме. При наличии внешнего сильного магнитного поля плазма начинает перемещаться в направлении перпендикулярном току, что позволяет, действуя электромагнитным полем, замкнуть движение плазмы по кругу.

Это свойство плазмы имеет очень важное значение для получения высоких температур.

Синтез ядер

Считается, что запасов химически топлива человечеству хватит на несколько десятков лет. Ограниченны и разведанные запасы ядерного горючего. Спасти человечество от энергетического голода и стать практически неисчерпаемым источником энергии могут управляемые термоядерные реакции в плазме.

В 1 л обычной воды содержится 0,15 мл воды тяжёлой (D2O). При слиянии ядер дейтерия из 0,15 мл D2O выделяется столько же энергии, сколько её образуется при сгорании 300 л бензина. Тритий в природе практически не существует, однако его можно получить, бомбардируя нейтронами n изотоп лития.

Ядро атома водорода не что иное как протон p. В ядре дейтерия содержится, кроме того, ещё один нейтрон, а в ядре трития - два нейтрона. Дейтерий и тритий могут реагировать друг с другом десятью разными способами. Но вероятности такой реакций различаются порой в сотни триллионов раз, а количество выделяющейся энергии - в 10-15 раз. Практический интерес представляют только три из них.

Если все ядра в каком-то объёме одновременно вступают в реакцию, энергия выделяется мгновенно. Происходит термоядерный взрыв. В реакторе же реакция синтеза должна протекать медленно.

Осуществить управляемый термоядерный синтез до сих пор не удалось, а преимущества он сулит немалые. Энергия, которая выделяется при термоядерных реакциях на единицу массы топлива, в миллионы раз превышает энергию химического топлива и, значит, в сотни раз дешевле. В термоядерной энергетике нет выброса продуктов сгорания в атмосферу и радиоактивных отходов. Наконец, на термоядерной электростанции исключен взрыв.

Во время синтеза основная часть энергии (более 75%) выделяется в виде кинетической энергии нейтронов или протонов. Если замедлить нейтроны в подходящем веществе, оно нагревается; полученную теплоту легко превратить в электрическую энергию. Кинетическая энергия заряженных частиц - протонов - преобразуется в электричество непосредственно.

В реакции синтеза ядра должны соединяться, но они заряжены положительно и, следовательно, по закону Кулона, отталкиваются. Чтобы преодолеть силы отталкивания, даже ядрам дейтерия и трития, имеющим наименьший заряд (Z. = 1), необходима энергия около 10 или 100 кэВ. Ей соответствует температура порядка 108-109 К. При таких температурах любое вещество находится в состоянии высокотемпературной плазмы.

С позиций классической физики реакция синтеза невозможна, но здесь на помощь приходит чисто квантовый - туннельный эффект. Вычислено, что температура зажигания, начиная с которой выделение энергии превосходит её потери, для реакции дейтерий- тритий (DТ) равна приблизительно 4,5х107 К, а для реакций дейтерий-дейтерий (DD) - около 4х108 К. Естественно, предпочтительнее реакция DТ. Нагревают плазму электрическим током, лазерным излучением, электромагнитными волнами и другими способами. Но важна не только высокая температура.

Чем выше концентрация, тем чаще сталкиваются друг с другом частицы, поэтому может показаться, что для осуществления термоядерных реакций лучше использовать плазму высокой плотности. Однако, если бы в 1 см 3 плазмы содержалось 1019 частиц (концентрация молекул в газе при нормальных условиях), давление в ней при температурах термоядерных реакций достигало бы порядка 106 атм. Такого давления не выдерживает ни одна конструкция, а потому плазма должна быть разрежённой (с концентрацией около 1015 частиц в 1 см 3). Соударения частиц в этом случае происходят реже, и для поддержания реакции необходимо увеличивать время пребывания их в реакторе, или время удержания. Значит, для осуществления термоядерной реакции необходимо рассматривать произведение концентрации частиц плазмы на время их удержания. Для реакций DD это произведение (так называемый критерий Лоусона) равно 1016 с/см 3 , а для реакции DТ - 1014 с/см 3 .

Плазма крови: составные элементы (вещества, белки), функции в организме, использование

Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.

Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.

Состав плазмы крови

Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови , в которой нет коагулируемого белка (фактора I), он ушел в сгусток. Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови , мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).

Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

плазма в общем составе крови

  • , которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны (до 50% от всех белков или 40 – 50 г/л), (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы – гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками ( , и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы ( , калий, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Таким образом, плазма – это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.

Вода – источник Н 2 О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство – изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

Видео: что такое плазма крови


Функции плазмы крови обеспечивают белки

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы, однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины – иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин – протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

белки плазмы крови

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Таблица 1. Основные белки плазмы крови

Основные белки плазмы Содержание в плазме (норма), г/л Главные представители и их функциональное назначение
Альбумины 35 - 55 «Строительный материал», катализатор иммунологических реакций, функции: транспорт, обезвреживание, регуляция, защита.
Альфа Глобулин α-1 1,4 – 3,0 α1-антитрипсин, α-кислый протеин, протромбин, транскортин, переносящий кортизол, тироксинсвязывающий белок, α1-липопротеин, транспортирующий жиры к органам.
Альфа Глобулин α-2 5,6 – 9,1 α-2-макроглобулин (главный в группе протеин) - участник иммунного ответа, гаптоглобин - образует комплекс со свободным гемоглобином, церулоплазмин – переносит медь, аполипопротеин В – транспортирует липопротеиды низкой плотности («плохой» холестерин»).
Бета Глобулины: β1+β2 5,4 – 9,1 Гемопексин (связывает гем гемоглобина, чем предотвращает удаление железа из организма), β-трансферрин (переносит Fe), компонент комплемента (участвует в иммунологических процессах), β-липопротеиды – «транспортное средство» для холестеринов и фосфолипидов.
Гамма глобулин γ 8,1 – 17,0 Естественные и приобретенные антитела (иммуноглобулины 5 классов – IgG, IgA, IgM, IgE, IgD), осуществляющие, главным образом, иммунную защиту на уровне гуморального иммунитета и создающие аллергостатус организма.
Фибриноген 2,0 – 4,0 Первый фактор свертывающей системы крови – FI.

Альбумины

Альбумины – это простые белки, которые по сравнению с другими протеинами:

структура альбумина

  • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
  • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
  • Не разрушаются при высушивании;
  • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков – участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:

  1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
  2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
  3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
  4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
  5. Перенос углеводов;
  6. Связывание и перенос свободных жирных кислот – ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
  7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
  8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
  9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
  10. Катализ иммунологических реакций (антиген→антитело);
  11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
  12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

Синтезируется альбумин в печени. Средний период полужизни данного белка составляет 2 – 2,5 недели, хотя одни «проживают» неделю, а другие – «работают» до 3 – 3,5 недель. Путем фракционирования белков из плазмы доноров получают ценнейший лечебный препарат (5%, 10% и 20% раствор), имеющий аналогичное название. Альбумин является последней фракцией в процессе, поэтому его производство требует немалых трудовых и материальных затрат, отсюда и стоимость лечебного средства.

Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

Глобулины

Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

разнообразие форм видов белков плазмы

В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

Глобулины – весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:

  • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
  • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
  • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
  • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
  • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
  • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
  • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

Гамма-глобулины

Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

Таблица 2. Классы иммуноглобулинов и их характеристика

Класс иммуноглобулинов (Ig) Содержание в плазме (сыворотке), % Основное функциональное назначение
G Ок. 75 Антитоксины, антитела, направленные против вирусов и грамположительных микробов;
A Ок. 13 Антиинсулярные АТ при сахарном диабете, антитела, направленные против капсульных микроорганизмов;
M Ок. 12 Направление – вирусы, грамотрицательные бактерии, форсмановские и вассермановские антитела.
E 0,0… Реагины, специфические АТ против различных (определенных) аллергенов.
D У эмбриона, у детей и взрослых, возможно, обнаружение следов Не учитываются, поскольку клинической значимости не имеют.

Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели – до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

IgM – 0,55 – 3,5 г/л;

IgA – 0,7 – 3,15 г/л;

IgG – 0,7 – 3,5 г/л;

Фибриноген

Первый фактор свертывания (FI – фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.

Белки плазмы в качестве лабораторных показателей

В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном .

Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).

Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe 3+ , как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

Исследование сыворотки с целью определения содержания (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, ).

Плазма крови – лечебное средство

Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.

Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении – здоровым, а его плазма должна иметь определенный титр антител (не менее 1: 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

Видео: о сборе и использовании плазмы крови


Фракционирование белков плазмы в промышленных масштабах

Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.

Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

  • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
  • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины ) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный , либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин . В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
  • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
  • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Тихоокеанский государственный экономический университет

Кафедра физики

Тема: Плазма - четвертое состояние вещества

Выполнила:

Агрега́тное состоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

Известно, что любое вещество может существовать только в одном из трех состояний: твердом, жидком или газообразном, классическим примером чему является вода, которая может быть в виде льда, жидкости и пара. Однако веществ, пре­бывающих в этих считающихся бесспорными и общераспространенными состояниях, если брать всю Вселенную в целом, очень мало. Они вряд ли пре­вышают то, что в химии считается ничтожно малыми следами. Все остальное вещество Вселенной пребывает в так называемом плазменном состоянии.

Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX

в. стали именовать бесцветную часть крови (без красных и белых телец) и

жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832-1919), изучавший электрический

разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных

трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё

состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1000000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически

заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

1.1. Наиболее типичные формы плазмы

Наиболее типичные формы плазмы

Искусственно созданная плазма Плазменная панель (телевизор, монитор) Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп Плазменные ракетные двигатели Газоразрядная корона озонового генератора Исследования управляемого термоядерного синтеза Электрическая дуга в дуговой лампе и в дуговой сварке Плазменная лампа (см. рисунок) Дуговой разряд от трансформатора Теслы Воздействие на вещество лазерным излучением Светящаяся сфера ядерного взрыва

Земная природная плазма Молния Огни святого Эльма Ионосфера Языки пламени (низкотемпературная плазма)

Космическая и астрофизическая плазма Солнце и другие звезды (те, которые существуют за счет термоядерных реакций) Солнечный ветер Космическое пространство (пространство между планетами, звездами игалактиками) Межзвездные туманности

Свойства и параметры плазмы

Плазма обладает следующими свойствами:

Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:

, где - концентрация заряженных частиц.

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания. Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

2.1. Классификация

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

2.2. Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

2.3. Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит оттемпературы. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешнимэлектромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni - концентрация ионов, а na - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne= ni, где - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).