Какие зависимости можно установить между величинами. Величины и их взаимосвязь

Величинами являются количественные значения предметов, длин отрезков, времени, углов и т.д.

Определение. Величина - результат измерения, представленный числом и наименованием единицы измерения.

Например: 1 км; 5 ч. 60 км/ч; 15 кг; 180 °.

Величины могут быть независимыми или зависимыми одна от другой. Связь величин может быть жестко установлена (как. например, 1 дм = 10 см) или может отражать зависимость между величинами, выраженную формулой для определения конкретного численного значения (так, например, путь зависит от скорости и продолжительности движения; площадь квадрата — от длины его стороны и т. д.).

Основа метрической системы мер длины - метр - была введена в России в начале XIX века, а до этого для измерения длин использовались: аршин (= 71 см), верста (= 1067 м), косая сажень (= 2 м 13 см), маховая сажень (= 1 м 76 см), простая сажень (= 1 м 52 см), четверть (= 18 см), локоть (приблизительно от 35 см до 46 см), пядь (от 18 см до 23 см).

Как видим, было много величин для измерения длины. С вводом метрической системы мер жестко закреплена зависимость величин длины:

  • 1 км = 1 000 м; 1 м = 100 см;
  • 1 дм = 10 см; 1 см = 10 мм.

В метрической системе мер определены единицы измерения времени, длины, массы, объема, площади и скорости.

Между двумя и более величинами или системами мер тоже можно устанавливать зависимость, она зафиксирована в формулах, а формулы выведены опытным путем.

Определение. Две взаимно зависимые величины называются пропорциональными , если отношение их значений остается неизменным.

Неизменное отношение двух величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой величины. Если коэффициенты равны. То и отношения равны.

Расстояние есть произведение скорости и времени движения: отсюда вывели основную формулу движении:

где S - путь; V - скорость; t - время.

Основная формула движения — это зависимость расстояния от скорости и времени движения. Такая зависимость называется пряно пропорциональной .

Определение. Две переменные величины прямо пропорциональны, если с увеличением (или уменьшением) в несколько раз одной величины другая величина увеличивается (или уменьшается) во столько же раз; т.е. отношение соответствующих значений таких величин является величиной постоянной.

При неизменном расстоянии скорость и время связаны другой зависимостью, которая называется обратно пропорциональной .

Правило. Две переменные величины обратно пропорциональны, если с увеличением (или уменьшением) одной величины в несколько раз другая величина уменьшается (или увеличивается) во столько же раз; т.е. произведение соответствующих значений таких величин является величиной постоянной.

Из формулы движения можно вывести еще два соотношения, выражающих прямую и обратную зависимости входящих в них величин:

t = S: V - время движения прямо пропорционально пройденному пути и обратно пропорционально скорости движении (для одинаковых отрезков пути чем больше скорость, тем меньше времени требуется для преодоления расстояния).

V = S: t - скорость движения прямо пропорциональна пройденному пути и обратно пропорциональна времени движения (для одинаковых отрезков пути чем больше
времени движется предмет, тем меньшая скорость требуется для преодоления расстояний).

Все три формулы движения равносильны и используются для решения задач.

Разработка урока математики в 6 классе

Тема урока «Зависимость между величинами».

Цели урока:

1.Дать понятие зависимости между величинами, выяснить способы их задания.

2.Развивать способность учащихся анализировать и синтезировать учебный материал.

3.Воспитывать творческое отношение к учебному труду.

4.Преподнести учебный материал через эмоционально - переживательную сферу ученика.

А теперь опишем по технологию построения учителем методики урока по технологии деятельностного метода.

1. Этап самоопределения нормы N

На этом этапе определяется тема и обучающая цель урока: «На уроке мы рассмотрим зависимость между различными величинами», то есть объявляется операция без уточнения условий ее применения.

2. Этап актуализации знаний и фиксация затруднения в деятельности.

На этом этапе учитель предлагает список заданий, выполнение которых предполагает выполнение известной ранее нормы.

Как найти:

Площадь прямоугольника?

Периметр прямоугольника?

Объем прямоугольного параллелепипеда?

Скорость по течению?

Скорость против течения?

Последним вопросом на этапе актуализации знаний должен быть вопрос, который фиксирует затруднения в деятельности учащихся, то есть, ранее изученных знаний не хватает, возникает учебная проблема. В данном случае это вопрос: «Для чего нужны эти правила и соответствующие формулы?».

3. Этап постановки учебной задачи.

Учитель ставит перед учащимися проблему: Как измерить площадь участка прямоугольной формы, если мы не знаем формулу S =ав? Можно разбить участок на прямоугольники размером в 1 кв. метр и сосчитать их количество. Удобно ли это?

Учащиеся отвечают, что это возможно, но неудобно. Значит, формулы нужны для вычисления величин, измерение которых затруднительно.

Учитель ставит еще более убедительную проблему: как измерить расстояние от Земли до Солнца? Итак, налицо кризис ранее известной нормы N .

4. Этап построения проекта выхода из затруднения.

Ученые установили, что расстояние от Земли до Солнца 150 млн. км. А как они узнали об этом? Совместно с детьми выясняется формула вычисления расстояния от Земли до Солнца s = ct , где с=300000км, t =8 мин, время, за которое свет доходит до Земли. Вычисления показывают, что s =2400000 км. Почему у нас получилось расхождение с известным фактом?

Вывод: Формулу можно применить только в том случае, когда единицы измерения входящих в нее величин согласованы между собой.

На этом этапе уместно воздействие на эмоционально – переживательную сферу ученика с помощью небольшой воспитательной беседы. « Свет от Земли до Солнца идет в течение 8 минут, значит, мы видим Солнце таким, каким оно было 8 минут назад. Есть звезды, свет от которых идет до нас миллионы лет: звезда может уже погасла, а свет от нее идет до сих пор. Так же бывают и люди: человека уже нет с нами, а его тепло, свет согревают нас всю жизнь. Таким человеком был народный поэт Башкортостана Мустай Карим, день памяти которого мы отмечаем сегодня. Его духовная энергия, тепло его сердца будет нам служить нравственным ориентиром многие годы».

На данном этапе урока учащимся предлагаются различные способы задания зависимостей между величинами: табличный, графический и с помощью формулы.

Дети на этом этапе включаются в ситуацию выбора метода решения учебной задачи: они сравнивают различные способы задания зависимостей между величинами. Результаты сравнения фиксируются на опорно – узловой матрице.

1 2

Способы задания Формула график таблица

1-универсальность, 2-точность, 3-наглядность;

(Условные обозначения «Д»- да, «Н»- нет)

На основе анализа опорно – узловой матрицы учащиеся делают вывод о том, что наиболее лучшим является задание зависимости между величинами с помощью формулы, потому что он обладает свойством универсальности: из формулы можно получить таблицу зависимости и построить график зависимости между величинами.

5. Этап первичного закрепления во внешней речи.

Разбирается задача №90

По одной формуле зависимости ширины прямоугольника от его длины при постоянной площади: b =12/а составить таблицу этой зависимости и построить её график.

1 ,5

1,5

График зависимости длины прямоугольника от ширины

Итак, мы связали 3 способа задания зависимостей между величинами:

С помощью формулы,

Графический,

Табличный.

6. Этап самостоятельной работы с самопроверкой по эталону.

Учащиеся самостоятельно решают задания на новый способ действий, выполняют самопроверку по эталону и сами оценивают свои результаты. Создаётся ситуация успеха, снова задействована эмоционально-переживательная сфера ученика. На одном этапе учащимся предлагают задания №133, №140. Для реализации принципа минимакса деятельностной технологии обучения учащимся предлагают задания двух уровней: М, А и В.

Уровень М: №133, А: №140. Уровень В: № 145

7. Включение новых знаний в знаний.

На данном этапе учащиеся убеждаются, что вновь приобретённые знания имеют ценность для дальнейшего обучения. Выполняя упражнение №139, они устанавливают зависимость между

Объёмом V куба и его ребром а;

Площадью S прямоугольного треугольника и катетами а и b

Диаметром D и радиусом R этой окружности;

Длиной стороны а прямоугольника, его периметром Р и площадью S ;

S куба и его ребром а

Площадью полной поверхности S прямоугольного параллелепипеда и его измерениями а, b и с.

8. Рефлексия деятельности (итог урока)

Учащиеся выполняют самооценку собственной деятельности (что нового узнали, какой метод использовали, успешность выполненных шагов). Происходит фиксация успешности деятельности и вывод о следующих шагах. Выявляются ученики, выполнившие задания уровня А и В.

Примечание.

Урок проведён по учебнику Г.В.Дорофеева, Л.Г.Петерсон. Математика, учебник для 6 класса. Часть 2. Ювента. 2011г

Предмет: математика
Класс: 4
Тема урока: Зависимости между скоростью, длиной пройденного пути и временем
движения.
Цель: выявить и обосновать зависимости между величинами: скорость, время,
расстояние;
Задачи: способствовать развитию нестандартного мышления, умение делать выводы,
рассуждать; содействовать воспитанию познавательной активности.
Оборудование: индивидуальные карточки разных цветов, критерии оценивания,
карточка для рефлексии, круги двух цветов.
Ход урока.
1. Орг.момент.
Карточка двух цветов: желтая и синяя. Показать с помощью карточки свое настроение
в начале и конце урока.
Заполнение карточки на начало урока (Приложение 1.)
№ Утверждение
Конец урока
Начало урока
Да
Нет
Не знаю Да
Нет Не
знаю
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
2. Повторение.
­ Как найти скорость? Время? Расстояние?
­ Назовите единицы измерения величины скорости, расстояние, время.
3. Сообщение темы урока.
­ Чему будем учиться на уроке?
4. Работа в группе.
­ Соединить объекты движения (Приложение 2)
Пешеход 70км/ч
Лыжник 5км/ч

Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Проверка работ.
5. Математическая головоломка(самостоятельная работа)
­ Во сколько скорость велосипедиста меньше скорости поезда?
­ На сколько км скорость лыжника больше скорости пешехода?
­ Во сколько раз скорость автомобиля меньше скорости реактивного самолета?
­ Найди общую скорость самого скоростного движущегося средства и самого
медленного.
­ Найди общую скорость поезда велосипедиста и лыжника.
6. Самопроверка работ по критериям.
7. Физминутка.
Красный цвет квадрата­ стоим
Зеленый – идем
Желтый – хлопаем 1 раз в ладоши
8. Работа в группе. (Карточка желтого цвета) (метод Джегсо)
Задача.
Две бабы­яги поспорили, что быстроходнее ступа или помело? Одну и ту же
дистанцию в 228км баба­яга в ступе пролетела за 4ч, а баба­яга на помеле за 3ч. Что
больше, скорость ступы или помела?
9. Работа в паре «Эксперимент».
Придумать задачу на движение, используя величины: 18км/ч, 4ч, 24 км, 3ч.
Проверка работ.
10. Тест.
1.Записать формулу нахождения скорости.
2. Записать формулу нахождения времени.
3. Как найти расстояние? Запиши формулу.
4. Запиши 8 км/мин в км/ч
5. Найди время, за которое пройдет пешеход 42 км, двигаясь со скоростью 5км/ч.
6. Какое расстояние пройдет пешеход, двигаясь со скоростью 5км/ч в течение 6 часов?
11. Итог урока.
Заполнить таблицу, с какими результатами мы пришли к концу урока.
Показать карточку, которая соответствует вашему настроению.

Начало урока
Да
Нет
Приложение 1.
Конец урока
Не знаю Да
№ Утверждение
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
Соединить объекты движения.
Пешеход 70км/ч
Лыжник 5км/ч
Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Нет Не
знаю
Приложение 2.

Зависимость одной случайной величины от значений, которые прини- мает другая случайная величина (физическая характеристика), в статистике принято называть регрессией. В случае если этой зависимости придан аналитический вид, то такую форму представления изображают уравнением регрессии.

Процедура поиска предполагаемой зависимости между различными числовыми совокупностями обычно включает следующие этапы:

установление значимости связи между ними;

возможность представления этой зависимости в форме математиче- ского выражения (уравнения регрессии).

Первый этап в указанном статистическом анализе касается выявления так называемой корреляции, или корреляционной зависимости. Корреляция рассматривается как признак, указывающий на взаимосвязь ряда числовых последовательностей. Иначе говоря, корреляция характеризует силу взаимосвязи в данных. В случае если это касается взаимосвязи двух числовых массивов xi и yi, то такую корреляцию называют парной.

При поиске корреляционной зависимости обычно выявляется вероятная связь одной измеренной величины x (для какого-то ограниченного диапазона ее изменения, к примеру от x1 до xn) с другой измеренной величиной y (также изменяющейся в каком-то интервале y1 … yn). В таком случае мы будем иметь дело с двумя числовыми последовательностями, между которыми и надлежит установить наличие статистической (корреляционной) связи. На этом этапе пока не ставится задача определить, является ли одна из этих случайных величин функцией, а другая – аргументом. Отыскание количественной зависимости между ними в форме конкретного аналитического выражения y = f(x) - это задача уже другого анализа, регрессионного.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, корреляционный анализ позволяет сделать вывод о силе взаимосвязи между парами данных х и у, а регрессионный анализ используется для прогнозирования одной переменной (у) на основании другой (х). Иными словами, в этом случае пытаются выявить причинно-следственную связь между анализируемыми совокупностями.

Строго говоря, принято различать два вида связи между числовыми совокупностями - ϶ᴛᴏ может быть функциональная зависимость или же статистическая (случайная). При наличии функциональной связи каждому значению воздействующего фактора (аргумента) соответствует строго определœенная величина другого показателя (функции), ᴛ.ᴇ. изменение результативного признака всœецело обусловлено действием факторного признака.

Аналитически функциональная зависимость представляется в следую-щем виде: y = f(x).

В случае статистической связи значению одного фактора соответствует какое-то приближенное значение исследуемого параметра, его точная величина является непредсказуемой, непрогнозируемой, в связи с этим получаемые показатели оказываются случайными величинами. Это значит, что изме-нение результативного признака у обусловлено влиянием факторного признака х лишь частично, т.к. возможно воздействие и иных факторов, вклад которых обозначен как є: y = ф(x) + є.

По своему характеру корреляционные связи - ϶ᴛᴏ соотносительные связи. Примером корреляционной связи показателœей коммерческой деятельности является, к примеру, зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака х (объема товарооборота) на результативный признак у (сумму издержек обращения) влияют и другие факторы, в том числе и неучтенные, порождающие вклад є.

Для количественной оценки существования связи между изучаемыми совокупностями случайных величин используется специальный статистический показатель – коэффициент корреляции r.

В случае если предполагается, что эту связь можно описать линœейным уравне- нием типа y=a+bx (где a и b - константы), то принято говорить о существовании линœейной корреляции.

Коэффициент r - это безразмерная величина, она может меняться от 0 до ±1. Чем ближе значение коэффициента к единице (неважно, с каким знаком), тем с большей уверенностью можно утверждать, что между двумя рассматриваемыми совокупностями переменных существует линœейная связь. Иными словами, значение какой-то одной из этих случайных величин (y) существенным образом зависит от того, какое значение принимает другая (x).

В случае если окажется, что r = 1 (или -1), то имеет место классический случай чисто функциональной зависимости (ᴛ.ᴇ. реализуется идеальная взаимосвязь).

При анализе двумерной диаграммы рассеяния можно обнаружить различные взаимосвязи. Простейшим вариантом является линœейная взаимосвязь, которая выражается в том, что точки размещаются случайным образом вдоль прямой линии. Диаграмма свидетельствует об отсутствии взаимосвязи, если точки расположены случайно, и при перемещении слева направо невозможно обнаружить какой-либо уклон (ни вверх, ни вниз).

В случае если точки на ней группируются вдоль кривой линии, то диаграмма рассеяния характеризуется нелинœейной взаимосвязью. Такие ситуации вполне возможны

Регрессионного анализа

Обработка результатов эксперимента методом

При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.

В математическом анализе зависимость, например, между двумя величинами выражается понятием функции

где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной .

Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической , или вероятностной . При этом величину изменения случайного фактора Y , соответствующую изменению величины Х , можно разбить на два компонента. Первый связан с зависимостью Y от X , а второй с влиянием "собственных" случайных составляющих величин Y и X . Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X .

Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.

где – математические ожидания случайных величин X и Y .

– средние квадратические отклонения случайных величин X и Y .


Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,

y=b 0 +b 1 x 1 ,

то коэффициент корреляции будет равен ; причем знак соответствует знаку коэффициента b 1 .Если величины X и Y связаны произвольной стохастической зависимостью, то коэффициент корреляции будет изменяться в пределах

Следует подчеркнуть, что для независимых случайных величин коэффициент корреляции равен нулю. Однако коэффициент корреляции как показатель зависимости между случайными величинами обладает серьезными недостатками. Во-первых, из равенства r = 0 не следует независимость случайных величин X и Y (за исключением случайных величин, подчиненных нормальному закону распределения, для которых r = 0 означает одновременно и отсутствие всякой зависимости). Во- вторых, крайние значения также не очень полезны, так как соответствуют не всякой функциональной зависимости, а только строго линейной.



Полное описание зависимости Y от X , и притом выраженное в точных функциональных соотношениях, можно получить, зная условную функцию распределения .

Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y , мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y . Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X , которое имело место на самом деле.

Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y , так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y .

Таким образом, мы приходим к необходимости отыскания только двух функций:

(3.2)

Зависимость условной дисперсии D от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.

Зависимость условного математического ожидания M от X носит название регрессии , она дает истинную зависимость величин Х и У , лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.