Определение синуса, косинуса, тангенса и котангенса. Cинус, косинус, тангенс и котангенс - все, что нужно знать на ОГЭ и ЕГЭ

Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение




|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

Тангенс

Где n - целое.

В западной литературе тангенс обозначается так:
.
;
;
.

График функции тангенс, y = tg x


Котангенс

Где n - целое.

В западной литературе котангенс обозначается так:
.
Также приняты следующие обозначения:
;
;
.

График функции котангенс, y = ctg x


Свойства тангенса и котангенса

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π .

Четность

Функции тангенс и котангенс - нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

y = tg x y = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание -
Убывание -
Экстремумы - -
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 -

Формулы

Выражения через синус и косинус

; ;
; ;
;

Формулы тангенса и котангенс от суммы и разности



Остальные формулы легко получить, например

Произведение тангенсов

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Выражения через комплексные числа

Выражения через гиперболические функции

;
;

Производные

; .


.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > > ; для котангенса > > >

Интегралы

Разложения в ряды

Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При .

при .
где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где .
Либо по формуле Лапласа:


Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арктангенс, arctg


, где n - целое.

Арккотангенс, arcctg


, где n - целое.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Примеры:

\(\cos{⁡30^°}=\)\(\frac{\sqrt{3}}{2}\)
\(\cos⁡\)\(\frac{π}{3}\) \(=\)\(\frac{1}{2}\)
\(\cos⁡2=-0,416…\)

Аргумент и значение

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению прилежащего катета к гипотенузе.

Пример :

1) Пусть дан угол и нужно определить косинус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.


3) Измерив, нужные стороны, можем вычислить косинус.


Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с : \(\frac{π}{2}\) , \(\frac{3π}{4}\) , \(-2π\).

Например, для числа \(\frac{π}{6}\) - косинус будет равен \(\frac{\sqrt{3}}{2}\) . А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Косинус для других часто встречающихся в практике чисел смотри в .

Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС ) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).


Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.

Как вы могли заменить, и косинус числа, и косинус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по числовой (тригонометрической) окружности:

Там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
- там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).


Связь с другими тригонометрическими функциями:

- того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
- того же угла (или числа): формулой \(1+tg^2⁡x=\)\(\frac{1}{\cos^2⁡x}\)
- и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sin⁡x}\)
Другие наиболее часто применяемые формулы смотри .

Решение уравнения \(\cos⁡x=a\)

Решение уравнения \(\cos⁡x=a\), где \(a\) – число не большее \(1\) и не меньшее \(-1\) т.е. \(a∈[-1;1]\):

\(\cos ⁡x=a\) \(⇔\) \(x=±\arccos⁡a+2πk, k∈Z\)


Если \(a>1\) или \(a<-1\), то решений у уравнения нет.

Пример . Решите тригонометрическое уравнение \(\cos⁡x=\)\(\frac{1}{2}\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси косинусов (оси \(y\)) отметим точку \(\frac{1}{2}\) .
4) Проведем перпендикуляр к оси косинусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: \(\frac{π}{3}\) ,\(-\)\(\frac{π}{3}\) .
7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
\(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\);


Ответ: \(x=±\frac{π}{3}+2πk\) \(k∈Z\)

Функция \(y=\cos{x}\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения косинуса, мы получим следующий график:


График данной называется и обладает следующими свойствами:

Область определения – любое значение икса: \(D(\cos{⁡x})=R\)
- область значений – от \(-1\) до \(1\) включительно: \(E(\cos{x})=[-1;1]\)
- четная: \(\cos⁡(-x)=\cos{x}\)
- периодическая с периодом \(2π\): \(\cos⁡(x+2π)=\cos{x}\)
- точки пересечения с осями координат:
ось абсцисс: \((\)\(\frac{π}{2}\) \(+πn\),\(;0)\), где \(n ϵ Z\)
ось ординат: \((0;1)\)
- промежутки знакопостоянства:
функция положительна на интервалах: \((-\)\(\frac{π}{2}\) \(+2πn;\) \(\frac{π}{2}\) \(+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((\)\(\frac{π}{2}\) \(+2πn;\)\(\frac{3π}{2}\) \(+2πn)\), где \(n ϵ Z\)
- промежутки возрастания и убывания:
функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
- максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).

Я думаю, вы заслуживаете больше, чем это. Вот мой ключ к тригонометрии:

  • Нарисуйте купол, стену и потолок
  • Тригонометрические функции - это не что иное, как процентное отношение этих трех форм.

Метафора для синуса и косинуса: купол

Вместо того, чтобы просто смотреть на сами треугольники, представьте их в действии, найдя какой-то частный пример из жизни.

Представьте, будто вы находитесь посередине купола и хотите подвесить экран для кинопроектора. Вы указываете пальцем на купол под неким углом “x”, и к этой точке должен быть подвешен экран.

Угол, на который вы указываете, определяет:

  • синус(x) = sin(x) = высота экрана (от пола до точки крепления на куполе)
  • косинус(x) = cos(x) = расстояние от вас до экрана (по полу)
  • гипотенуза, расстояние от вас к верхушке экрана, всегда одинаковое, равно радиусу купола

Хотите, чтобы экран был максимально большой? Повесьте его прямо над собой.

Хотите, чтобы экран висел на максимально большом расстоянии от вас? Вешайте его прямо перпендикулярно. У экрана будет нулевая высота в этом положении, и он будет висеть наиболее отдаленно, как вы и просили.

Высота и расстояние от экрана обратно пропорциональны: чем ближе висит экран, тем его высота будет больше.

Синус и косинус - это проценты

Никто в годы моей учебы, увы, не объяснил мне, что тригонометрические функции синус и косинус - это не что иное, как проценты. Их значения варьируются от +100% до 0 и до -100%, или от положительного максимума до нуля и до отрицательного максимума.

Скажем, я заплатил налог 14 рублей. Вы не знаете, насколько это много. Но если сказать, что я заплатил 95% в качестве налога, вы поймете, что меня просто ободрали, как липку.

Абсолютная высота ни о чем не говорит. Но если значение синуса составляет 0.95, то я понимаю, что телевизор висит почти на верхушке вашего купола. Очень скоро он достигнет максимальной высоты по центру купола, а затем начнет снова снижаться.

Как мы можем вычислить этот процент? Очень просто: поделите текущее значение высоты экрана на максимально возможное (радиус купола, который также называют гипотенузой).

Вот почему нам говорят, что “косинус = противоположный катет / гипотенуза”. Это всё для того, чтобы получить процент! Лучше всего определить синус как “процент текущей высоты от максимально возможной”. (Синус становится отрицательным, если ваш угол указывает “под землю”. Косинус становится отрицательным, если угол указывает на точку купола позади вас).

Давайте упростим расчеты, предположив, что мы находимся в центре единичной окружности (радиус = 1). Мы можем пропустить деление и просто взять синус, равный высоте.

Каждая окружность, по сути, является единичной, увеличенной или уменьшенной в масштабе до нужного размера. Поэтому определите связи наединичной окружности и примените результаты к вашему конкретному размеру окружности.

Поэкспериментируйте: возьмите любой угол и посмотрите, какое процентное соотношение высоты к ширине он отображает:

График роста значения синуса - не просто прямая линия. Первые 45 градусов покрывают 70% высоты, а последние 10 градусов (с 80°до 90°) покрывают всего 2%.

Так вам станет понятнее: если идти по кругу, при 0° вы подымаетесь почти вертикально, но по мере подхода к верхушке купола, высота изменяется всё меньше и меньше.

Тангенс и секанс. Стена

Однажды сосед построил стену прямо впритык к вашему куполу. Плакали ваш вид из окна и хорошая цена для перепродажи!

Но можно ли как-то выиграть в этой ситуации?

Конечно, да. А что, если мы повесим киноэкран прямо на соседскую стену? Вы нацеливаетесь на угол (х) и получаете:

  • тангенс(x) = tan(x) = высота экрана на стене
  • расстояние от вас до стены: 1 (это радиус вашего купола, стена никуда не двигается от вас, верно?)
  • секанс(x) = sec(x) = “длина лестницы” от вас, стоящего в центре купола, до верхушки подвешенного экрана

Давайте уточним пару моментов касательно тангенса, или высоты экрана.

  • он начинается на 0, и может подниматься бесконечно высоко. Вы можете растягивать экран все выше и выше на стене, чтобы получить просто бесконечное полотно для просмотра любимого фильма! (На такой огромный, конечно, придется прилично потратиться).
  • тангенс - это просто увеличенная версия синуса! И пока прирост синуса замедляется по мере продвижения к верхушке купола, тангенс продолжает расти!

Секансу тоже есть, чем похвастаться:

  • cеканс начинается с 1 (лестница лежит на полу, от вас к стене) и начинает подниматься оттуда
  • cеканс всегда длиннее тангенса. Наклоненная лестница, с помощью которой вы вешаете свой экран, должна быть длиннее, чем сам экран, верно? (При нереальных размерах, когда экран оооочень длинный, и лестницу нужно ставить практически вертикально, их размеры почти одинаковы. Но даже тогда секанс будет чуточку длиннее).

Помните, значения являются процентами . Если вы решили повесить экран под углом 50 градусов, tan(50)=1.19. Ваш экран на 19% больше, чем расстояние к стене (радиус купола).

(Введите x=0 и проверьте свою интуицию - tan(0) = 0, а sec(0) = 1.)

Котангенс и косеканс. Потолок

Невероятно, но ваш сосед теперь решил возвести перекрытие над вашим куполом. (Что с ним такое? Он, видимо, не хочет, чтобы вы за ним подглядывали, пока он разгуливает по двору голышом…)

Ну что ж, настало время построить выход на крышу и поговорить с соседом. Вы выбираете угол наклона, и начинаете строительство:

  • вертикальное расстояние между выходом на крыше и полом всегда равно 1 (радиусу купола)
  • котангенс(x) = cot(x) = расстояние между верхушкой купола и местом выхода
  • косеканс(x) = csc(x) = длина вашего пути на крышу

Тангенс и секанс описывает стену, а КОтангенс и КОсеканс описывает перекрытие.

Наши интуитивные умозаключения в этот раз похожи на предыдущие:

  • eсли вы возьмете угол, равный 0°, ваш выход на крышу будет длиться бесконечно, так как никогда не достигнет перекрытия. Проблемка.
  • cамый короткий “трап” на крышу получится, если строить его под углом 90 градусов к полу. Котангенс будет равен 0 (мы вообще не передвигаемся вдоль крыши, выходим строго перпендикулярно), а косеканс равен 1 (“длина трапа” будет минимальной).

Визуализируйте связи

Если все три случая нарисовать в комбинации купол-стена-перекрытие, получится следующее:

Ну надо же, это всё один тот же треугольник, увеличенный в размере, чтобы достать до стены и до перекрытия. У нас есть вертикальные стороны (синус, тангенс), горизонтальные стороны (косинус, котангенс) и “гипотенузы” (секанс, косеканс). (По стрелкам вы можете видеть, докуда доходит каждый элемент. Косеканс - это полное расстояние от вас до крыши).

Немного волшебства. Все треугольники объединяют одни и те же равенства:

Из теоремы Пифагора (a 2 + b 2 = c 2) мы видим, как связаны стороны каждого треугольника. Кроме того, соотношения типа “высота к ширине” должны быть также одинаковыми для всех треугольников. (Просто отступите от самого большого треугольника к меньшему. Да, размер изменился, но пропорции сторон останутся прежними).

Зная, какая сторона в каждом треугольнике равна 1 (радиусу купола), мы легко вычислим, что “sin/cos = tan/1”.

Я всегда пытался запомнить эти факты путем простой визуализации. На картинке ты четко видишь эти зависимости, и понимаешь, откуда они берутся. Этот прием гораздо лучше заучивания сухих формул.

Не стоит забывать о других углах

Тсс… Не нужно зацикливаться на одном графике, думая, что тангенс всегда меньше 1. Если увеличить угол, можно дойти до потолка, не достигнув стены:

Связи Пифагора всегда работают, но относительные размеры могут быть разными.

(Вы, наверное, заметили, что соотношение синус и косинус всегда самые маленькие, потому что они заключены внутри купола).

Подытожим: что нам нужно запомнить?

Для большинства из нас, я бы сказал, что этого будет достаточно:

  • тригонометрия поясняет анатомию математических объектов, таких как окружности и повторяющиеся интервалы
  • аналогия купол/стена/крыша показывает связь между различными тригонометрическими функциями
  • результатом тригонометрических функций являются проценты, которые мы применяем к нашему сценарию.

Вам не нужно запоминать формулы, типа 1 2 + cot 2 = csc 2 . Они годятся разве что для глупых тестов, в которых знание факта выдаётся за его понимание. Потратьте минутку, чтобы нарисовать полуокружность в виде купола, стену и крышу, подпишите элементы, и все формулы сами напросятся вам на бумагу.

Приложение: обратные функции

Любая тригонометрическая функция использует в качестве входного параметра угол и возвращает результат в виде процента. sin(30) = 0.5. Это означает, что угол в 30 градусов занимает 50% от максимальной высоты.

Обратная тригонометрическая функция записывается как sin -1 или arcsin (“арксинус”). Также часто пишут asin в различных языках программирования.

Если наша высота составляет 25% от высоты купола, каков наш угол?

В нашей табличке пропорций можно найти соотношение, где секанс делится на 1. Например, секанс на 1 (гипотенуза к горизонтали) будет равно 1 поделить на косинус:

Допустим, наш секанс равен 3.5, т.е. 350% от радиуса единичной окружности. Какому углу наклона к стене это значение соответствует?

Приложение: Несколько примеров

Пример: Найти синус угла x.

Скучная задачка. Давайте усложним банальное “найти синус” до “Какая высота в процентах от максимума (гипотенузы)?”.

Во-первых, заметьте, что треугольник повернут. В этом нет ничего страшного. Всё также у треугольника есть высота, она на рисунке указана зеленым.

А чему равна гипотенуза? По теореме Пифагора, мы знаем, что:

3 2 + 4 2 = гипотенуза 2 25 = гипотенуза 2 5 = гипотенуза

Хорошо! Синус - это процент высоты от самой длинной стороны треугольника, или гипотенузы. В нашем примере синус равен 3/5 или 0.60.

Конечно, мы можем пойти несколькими путями. Теперь мы знаем, что синус равен 0.60, и мы можем просто найти арксинус:

Asin(0.6)=36.9

А вот еще один подход. Заметьте, что треугольник стоит “лицом к лицу к стене”, так что вместо синуса мы можем использовать тангенс. Высота равна 3, расстояние стене - 4, так что тангенс равен ¾ или 75%. Мы можем использовать арктангенс, чтобы из процентного значения вернуться обратно в угол:

Tan = 3/4 = 0.75 atan(0.75) = 36.9 Пример: А доплывете ли вы до берега?

Вы в лодке, и у вас есть достаточно топлива, чтобы проплыть 2 км. Сейчас вы находитесь в 0.25 км от берега. Под каким максимальным углом к берегу вы можете доплыть до него так, чтобы хватило топлива? Дополнение к условию задачи: у нас в наличии есть только таблица значений арккосинусов.

Что мы имеем? Береговую линию можно представить как “стену” в нашем знаменитом треугольнике, а “длину лестницы”, приставленной к стене - максимально возможным преодолимым расстоянием на лодке к берегу (2 км). Вырисовывается секанс.

Сначала, нужно перейти на проценты. У нас есть 2 / 0.25 = 8, то есть мы можем проплыть расстояние, в 8 раз больше прямой дистанции до берега (или до стены).

Возникает вопрос “Чему равен секанс 8?”. Но мы не можем дать на него ответ, так как у нас есть только арккосинусы.

Мы используем наши ранее выведенные зависимости, чтобы привязать секанс к косинусу: “sec/1 = 1/cos”

Секанс 8 равен косинусу ⅛. Угол, косинус которого ⅛ равен acos(1/8) = 82.8. И это самый большой угол, который мы можем себе позволить на лодке с указанным количеством горючего.

Неплохо, правда? Без аналогии с куполом-стеной-потолком, я бы запутался в куче формул и вычислений. Визуализация задачи сильно упрощает поиск решения, к тому же, интересно увидеть, какая тригонометрическая функция в итоге поможет.

При решении каждой задачи думайте следующим образом: меня интересует купол (sin/cos), стена (tan/sec) или потолок (cot/csc)?

И тригонометрия станет куда приятнее. Легких вам вычислений!

Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.

\sin \alpha = \frac{a}{c}

Косинус острого угла прямоугольного треугольника

Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.

\cos \alpha = \frac{b}{c}

Тангенс острого угла прямоугольного треугольника

Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.

tg \alpha = \frac{a}{b}

Котангенс острого угла прямоугольного треугольника

Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.

ctg \alpha = \frac{b}{a}

Синус произвольного угла

Ордината точки на единичной окружности , которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha .

\sin \alpha=y

Косинус произвольного угла

Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha .

\cos \alpha=x

Тангенс произвольного угла

Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha .

tg \alpha = y_{A}

tg \alpha = \frac{\sin \alpha}{\cos \alpha}

Котангенс произвольного угла

Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha .

ctg \alpha =x_{A}

ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

Пример нахождения произвольного угла

Если \alpha — некоторый угол AOM , где M — точка единичной окружности, то

\sin \alpha=y_{M} , \cos \alpha=x_{M} , tg \alpha=\frac{y_{M}}{x_{M}} , ctg \alpha=\frac{x_{M}}{y_{M}} .

Например, если \angle AOM = -\frac{\pi}{4} , то: ордината точки M равна -\frac{\sqrt{2}}{2} , абсцисса равна \frac{\sqrt{2}}{2} и потому

\sin \left (-\frac{\pi}{4} \right)=-\frac{\sqrt{2}}{2} ;

\cos \left (\frac{\pi}{4} \right)=\frac{\sqrt{2}}{2} ;

tg ;

ctg \left (-\frac{\pi}{4} \right)=-1 .

Таблица значений синусов косинусов тангенсов котангенсов

Значения основных часто встречающихся углов приведены в таблице:

0^{\circ} (0) 30^{\circ}\left(\frac{\pi}{6}\right) 45^{\circ}\left(\frac{\pi}{4}\right) 60^{\circ}\left(\frac{\pi}{3}\right) 90^{\circ}\left(\frac{\pi}{2}\right) 180^{\circ}\left(\pi\right) 270^{\circ}\left(\frac{3\pi}{2}\right) 360^{\circ}\left(2\pi\right)
\sin\alpha 0 \frac12 \frac{\sqrt 2}{2} \frac{\sqrt 3}{2} 1 0 −1 0
\cos\alpha 1 \frac{\sqrt 3}{2} \frac{\sqrt 2}{2} \frac12 0 −1 0 1
tg \alpha 0 \frac{\sqrt 3}{3} 1 \sqrt3 0 0
ctg \alpha \sqrt3 1 \frac{\sqrt 3}{3} 0 0

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a; sin gx = b; tg kx = c; ctg tx = d.

Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg 2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin 3 x;

cos 3x = 4 cos 3 x – 3 cos x;

tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

tg 2 x = (1 – cos x)/(1 + cos x);

ctg 2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2), cos y = a/v(a 2 + b 2), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = (tg a + tg b)/(1 – tg a tg b);

tg (a – b) = (tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

sin a = 2 tg (a/2)/(1 + (tg 2 (a/2));

cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

tg a = 2 tg a/2/(1 – tg 2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx 2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a 2 + b 2 + c 2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

Рассмотрим примеры:

1. Решить уравнение: sin x + cos 2 х = 1/4.

Решение : Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

sin x + 1 – sin 2 x = 1/4

4 sin 2 x – 4 sin x – 3 = 0

sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,

Ответ : (-1) к+1 /6 + k, k€z.

2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

решим способом разложения на множители

2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,

2 cos x (tg x – 1) – (tg x – 1) = 0

(2 cos x – 1) (tg x – 1) = 0

2 cos x – 1 = 0 или tg x – 1 = 0

cos x = 1/2, tgx = 1,

т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.

Ответ : ± /3 + 2k, k€z, /4 + m, m€z.

3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

Решение : sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

tg 2 x – 3 tg x + 2 = 0,

tg x = 1 и tg x = 2,

откуда х = /4 + m, m€z,

х = arctg 2 + k, k€z.

Ответ : /4 + m, m€z, arctg 2 + k, k€z.

4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.

Решение : Метод введения новой переменной

Пусть 5х + 6 = у, тогда cos 2у + 4 2 sin у = 4

1 – 2 sin 2 у + 4 2 sin у – 4 = 0

sin у = t, где t€[-1;1]

2t 2 – 4 2t + 3 = 0

t = 2/2 и t = 3 2/2 (не удовлетворяет условию t€[-1;1])

sin (5x + 6) = 2/2,

5x + 6 = (-1) к /4 + k, k€z,

х = (-1) к /20 – 6/5 + k/5, k€z.

Ответ : (-1) к?/20 – 6/5 + ?k/5, k€z.

5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.

Ответ : (0; /2 + k) k€z.

6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

(sin 2 х – 2 sin х +1) + cos 4 х = 0;

(sin х – 1) 2 + cos 4 х = 0; это возможно если

(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

sin х – 1 = 0, и cos х = 0,

sin х = 1, и cos х = 0, следовательно

х = /2 + k, k€z

Ответ : /2 + k, k€z.

7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

– 1 sin 5х 1, и -1 sin х 1

0 + 2 2 + cos 2 х 1 + 2

2 2 + cos 2 х 3

sin 5х + sin х 2, и 2 + cos 2 х 2

2 sin 5х + sin х 2, т.е.

sin 5х + sin х 2,

имеем левая часть 2, а правая часть 2,

равенство возможно если, они оба равны 2.

cos 2 х = 0, и sin 5х + sin х = 2, следовательно

х = /2 + k, k€z (обязательно проверить).

Ответ : /2 + k, k€z.

8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

Решение : Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

cos х/2 (cos 3/2х + cos 7/2х) = 0,

2 cos 5/2х cos х/2 cos х = 0,

Возникают три случая:

Ответ : + 2k, /5 + 2/5k, /2 + k, k€z.

Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х 1 = /5 + 2/5k, х 2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.

Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

(cos 3х + 1) (2 sin х – 1) = 0.

Получаем два уравнения:

cos 3х + 1 = 0, х = /3 + 2/3k.

Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х < 2 (один раз “обойти” круг), затем к найденным значениям прибавить 2k.

Неравенству 0 х < 2 удовлетворяют три числа: /3, 5/3.

Первое не подходит, поскольку sin 2/3 = 3/2, знаменатель обращается в нуль.

Ответ для первого случая: х 1 = + 2k, х 2 = 5/3 + 2k (можно х 2 = – /3 + 2k), k€z.

Найдём решение этого уравнения, удовлетворяющие условию 0 х < 2. Их два: /6, 5/6. Подходит второе значение.

Ответ : + 2k, 5/3 + 2k, 5/6 + 2k, k€z.

10. Найти корни уравнений: v(cos 2х + sin 3х) = v2 cos х.

Решение этого уравнения распадается на два этапа:

1) решение уравнения, получающегося из данного возведением в квадрат обеих его частей;

2) отбор тех корней, которые удовлетворяют условию cos х 0. При этом (как и в случае алгебраических уравнений) заботиться об условии cos 2х + sin 3х 0 нет необходимости. Все значения k, удовлетворяющие возведённому в квадрат уравнению, этому условию удовлетворяют.

Первый шаг приводит нас к уравнению sin 3х = 1, откуда х 1 = /6 + 2/3k.

Теперь надо определить, при каких k будет иметь место cos (/6 + 2/3k) 0. Для этого достаточно для k рассмотреть значения 0, 1, 2, т.е. как обычно “обойти один раз круг”, поскольку дальше значения косинуса будут отличаться от уже рассмотренных на величину, кратную 2.

Ответ : /6 + 2k, 3/2/3 + 2k, 5/6 + 2k, k€z.

11. Решить уравнение: sin 8 х – cos 5 х = 1.

Решение этого уравнения основывается на следующем простом соображении: если 0 < a < 1 то a t убывает с ростом t.

Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;

Сложив почленно эти неравенства, будем иметь:

sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.

Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

sin 8 х = sin 2 х, cos 5 х = cos 2 х,

т.е. sin х может принимать значения -1, 0

Ответ : /2 + k, + 2k, k€z.

Для полноты картины рассмотрим ещё пример.

12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

Решение : Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

Пусть D – дискриминант этого трёхчлена:

1/4 D = 4 (cos 4 3х – cos 2 3х).

Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.

Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.

Эти значения х удовлетворяют уравнению.

Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.

Ответ : /2 + k, /3 + 2k, k€z.

13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

Решение : Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

1-1/2 sin 2 2х = 7/4 sin 2х.

обозначив sin 2х = t, -1 t 1,

получим квадратное уравнение 2t 2 + 7t – 4 = 0,

решая которое, находим t 1 = 1/2, t 2 = – 4

уравнение sin 2х = 1/2

2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .