Примеры пределов функций. Пределы онлайн

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Определение предела функции

Определение предела функции по Коши

Конечные пределы функции в конечных точках

Пусть функция определена в некоторой окрестности конечной точки за исключением, может быть, самой точки . в точке , если для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.
Предел функции обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Их часто обозначают так:
; ; .

Использование понятия окрестности точки

Если ввести понятие проколотой окрестности точки , то можно дать единое определение конечного предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Бесконечные пределы функции

Определение
Пусть функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Предел функции f(x) при x → x 0 равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число δ M > 0 , зависящее от M , что для всех x , принадлежащих проколотой δ M - окрестности точки : , выполняется неравенство:
.
Бесконечный предел обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности определение бесконечного предела функции можно записать так:
.

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Универсальное определение предела функции

Используя понятие окрестности точки, можно дать универсальное определение конечного и бесконечно предела функции, применимое как для конечных (двусторонних и односторонних), так и для бесконечно удаленных точек:
.

Определение предела функции по Гейне

Пусть функция определена на некотором множестве X : .
Число a называется пределом функции в точке :
,
если для любой последовательности , сходящейся к x 0 :
,
элементы которой принадлежат множеству X : ,
.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Если в качестве множества X взять левостороннюю окрестность точки x 0 , то получим определение левого предела. Если правостороннюю - то получим определение правого предела. Если в качестве множества X взять окрестность бесконечно удаленной точки, то получим определение предела функции на бесконечности.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства пределов функции ».

Арифметические свойства предела функции

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства пределов функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(t) при t → t 0 , и он равен x 0 :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(x) непрерывна в точке x 0 .
Тогда существует предел сложной функции f(g(t)) , и он равен f(x 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Первым замечательным пределом именуют следующее равенство:

\begin{equation}\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1 \end{equation}

Так как при $\alpha\to{0}$ имеем $\sin\alpha\to{0}$, то говорят, что первый замечательный предел раскрывает неопределённость вида $\frac{0}{0}$. Вообще говоря, в формуле (1) вместо переменной $\alpha$ под знаком синуса и в знаменателе может быть расположено любое выражение, - лишь бы выполнялись два условия:

  1. Выражения под знаком синуса и в знаменателе одновременно стремятся к нулю, т.е. присутствует неопределенность вида $\frac{0}{0}$.
  2. Выражения под знаком синуса и в знаменателе совпадают.

Часто используются также следствия из первого замечательного предела:

\begin{equation} \lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1 \end{equation}

На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти .

Замечу, что наличие тригонометрических функций вкупе с неопределённостью $\frac {0} {0}$ ещё не означает обязательное применение первого замечательного предела. Иногда бывает достаточно простых тригонометрических преобразований, - например, см. .

Пример №1

Доказать, что $\lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$.

а) Так как $\tg\alpha=\frac{\sin\alpha}{\cos\alpha}$, то:

$$ \lim_{\alpha\to{0}}\frac{\tg{\alpha}}{\alpha}=\left|\frac{0}{0}\right| =\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} $$

Так как $\lim_{\alpha\to{0}}\cos{0}=1$ и $\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1$, то:

$$ \lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} =\frac{\displaystyle\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha}}{\displaystyle\lim_{\alpha\to{0}}\cos{\alpha}} =\frac{1}{1} =1. $$

б) Сделаем замену $\alpha=\sin{y}$. Поскольку $\sin{0}=0$, то из условия $\alpha\to{0}$ имеем $y\to{0}$. Кроме того, существует окрестность нуля, в которой $\arcsin\alpha=\arcsin(\sin{y})=y$, поэтому:

$$ \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\sin{y}} =\lim_{y\to{0}}\frac{1}{\frac{\sin{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\sin{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$ доказано.

в) Сделаем замену $\alpha=\tg{y}$. Поскольку $\tg{0}=0$, то условия $\alpha\to{0}$ и $y\to{0}$ эквивалентны. Кроме того, существует окрестность нуля, в которой $\arctg\alpha=\arctg\tg{y})=y$, поэтому, опираясь на результаты пункта а), будем иметь:

$$ \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\tg{y}} =\lim_{y\to{0}}\frac{1}{\frac{\tg{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\tg{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$ доказано.

Равенства а), б), в) часто используются наряду с первым замечательным пределом.

Пример №2

Вычислить предел $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}$.

Так как $\lim_{x\to{2}}\frac{x^2-4}{x+7}=\frac{2^2-4}{2+7}=0$ и $\lim_{x\to{2}}\sin\left(\frac{x^2-4}{x+7}\right)=\sin{0}=0$, т.е. и числитель и знаменатель дроби одновременно стремятся к нулю, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Кроме того, видно, что выражения под знаком синуса и в знаменателе совпадают (т.е. выполнено и ):

Итак, оба условия, перечисленные в начале страницы, выполнены. Из этого следует, что применима формула , т.е. $\lim_{x\to{2}} \frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Ответ : $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Пример №3

Найти $\lim_{x\to{0}}\frac{\sin{9x}}{x}$.

Так как $\lim_{x\to{0}}\sin{9x}=0$ и $\lim_{x\to{0}}x=0$, то мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Однако выражения под знаком синуса и в знаменателе не совпадают. Здесь требуется подогнать выражение в знаменателе под нужную форму. Нам необходимо, чтобы в знаменателе расположилось выражение $9x$, - тогда станет истинным. По сути, нам не хватает множителя $9$ в знаменателе, который не так уж сложно ввести, - просто домножить выражение в знаменателе на $9$. Естественно, что для компенсации домножения на $9$ придётся тут же на $9$ и разделить:

$$ \lim_{x\to{0}}\frac{\sin{9x}}{x}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\sin{9x}}{9x\cdot\frac{1}{9}} =9\lim_{x\to{0}}\frac{\sin{9x}}{9x} $$

Теперь выражения в знаменателе и под знаком синуса совпали. Оба условия для предела $\lim_{x\to{0}}\frac{\sin{9x}}{9x}$ выполнены. Следовательно, $\lim_{x\to{0}}\frac{\sin{9x}}{9x}=1$. А это значит, что:

$$ 9\lim_{x\to{0}}\frac{\sin{9x}}{9x}=9\cdot{1}=9. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{9x}}{x}=9$.

Пример №4

Найти $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}$.

Так как $\lim_{x\to{0}}\sin{5x}=0$ и $\lim_{x\to{0}}\tg{8x}=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако форма первого замечательного предела нарушена. Числитель, содержащий $\sin{5x}$, требует наличия в знаменателе $5x$. В этой ситуации проще всего разделить числитель на $5x$, - и тут же на $5x$ домножить. Кроме того, проделаем аналогичную операцию и со знаменателем, домножив и разделив $\tg{8x}$ на $8x$:

$$\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}}$$

Сокращая на $x$ и вынося константу $\frac{5}{8}$ за знак предела, получим:

$$ \lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}} =\frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} $$

Обратите внимание, что $\lim_{x\to{0}}\frac{\sin{5x}}{5x}$ полностью удовлетворяет требованиям для первого замечательного предела. Для отыскания $\lim_{x\to{0}}\frac{\tg{8x}}{8x}$ применима формула :

$$ \frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{\displaystyle\lim_{x\to{0}}\frac{\sin{5x}}{5x}}{\displaystyle\lim_{x\to{0}}\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{1}{1} =\frac{5}{8}. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\frac{5}{8}$.

Пример №5

Найти $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}$.

Так как $\lim_{x\to{0}}(\cos{5x}-\cos^3{5x})=1-1=0$ (напомню, что $\cos{0}=1$) и $\lim_{x\to{0}}x^2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Однако чтобы применить первый замечательный предел следует избавиться от косинуса в числителе, перейдя к синусам (дабы потом применить формулу ) или тангенсам (чтобы потом применить формулу ). Сделать это можно таким преобразованием:

$$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)$$ $$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)=\cos{5x}\cdot\sin^2{5x}.$$

Вернемся к пределу:

$$ \lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\cos{5x}\cdot\sin^2{5x}}{x^2} =\lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) $$

Дробь $\frac{\sin^2{5x}}{x^2}$ уже близка к той форме, что требуется для первого замечательного предела. Немного поработаем с дробью $\frac{\sin^2{5x}}{x^2}$, подгоняя её под первый замечательный предел (учтите, что выражения в числителе и под синусом должны совпасть):

$$\frac{\sin^2{5x}}{x^2}=\frac{\sin^2{5x}}{25x^2\cdot\frac{1}{25}}=25\cdot\frac{\sin^2{5x}}{25x^2}=25\cdot\left(\frac{\sin{5x}}{5x}\right)^2$$

Вернемся к рассматриваемому пределу:

$$ \lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) =\lim_{x\to{0}}\left(25\cos{5x}\cdot\left(\frac{\sin{5x}}{5x}\right)^2\right)=\\ =25\cdot\lim_{x\to{0}}\cos{5x}\cdot\lim_{x\to{0}}\left(\frac{\sin{5x}}{5x}\right)^2 =25\cdot{1}\cdot{1^2} =25. $$

Ответ : $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=25$.

Пример №6

Найти предел $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}$.

Так как $\lim_{x\to{0}}(1-\cos{6x})=0$ и $\lim_{x\to{0}}(1-\cos{2x})=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. Раскроем ее с помощью первого замечательного предела. Для этого перейдем от косинусов к синусам. Так как $1-\cos{2\alpha}=2\sin^2{\alpha}$, то:

$$1-\cos{6x}=2\sin^2{3x};\;1-\cos{2x}=2\sin^2{x}.$$

Переходя в заданном пределе к синусам, будем иметь:

$$ \lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{2\sin^2{3x}}{2\sin^2{x}} =\lim_{x\to{0}}\frac{\sin^2{3x}}{\sin^2{x}}=\\ =\lim_{x\to{0}}\frac{\frac{\sin^2{3x}}{(3x)^2}\cdot(3x)^2}{\frac{\sin^2{x}}{x^2}\cdot{x^2}} =\lim_{x\to{0}}\frac{\left(\frac{\sin{3x}}{3x}\right)^2\cdot{9x^2}}{\left(\frac{\sin{x}}{x}\right)^2\cdot{x^2}} =9\cdot\frac{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{3x}}{3x}\right)^2}{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\right)^2} =9\cdot\frac{1^2}{1^2} =9. $$

Ответ : $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=9$.

Пример №7

Вычислить предел $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}$ при условии $\alpha\neq\beta$.

Подробные пояснения были даны ранее, здесь же просто отметим, что вновь наличествует неопределенность $\frac{0}{0}$. Перейдем от косинусов к синусам, используя формулу

$$\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}.$$

Используя указанную формулу, получим:

$$ \lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{-2\sin\frac{\alpha{x}+\beta{x}}{2}\cdot\sin\frac{\alpha{x}-\beta{x}}{2}}{x^2}=\\ =-2\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)\cdot\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x^2} =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x}\right)=\\ =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\frac{\alpha+\beta}{2}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}}\cdot\frac{\alpha-\beta}{2}\right)=\\ =-\frac{(\alpha+\beta)\cdot(\alpha-\beta)}{2}\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}} =-\frac{\alpha^2-\beta^2}{2}\cdot{1}\cdot{1} =\frac{\beta^2-\alpha^2}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\frac{\beta^2-\alpha^2}{2}$.

Пример №8

Найти предел $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}$.

Так как $\lim_{x\to{0}}(\tg{x}-\sin{x})=0$ (напомню, что $\sin{0}=\tg{0}=0$) и $\lim_{x\to{0}}x^3=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Раскроем её следующим образом:

$$ \lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{x}}{\cos{x}}-\sin{x}}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(\frac{1}{\cos{x}}-1\right)}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(1-\cos{x}\right)}{x^3\cdot\cos{x}}=\\ =\lim_{x\to{0}}\frac{\sin{x}\cdot{2}\sin^2\frac{x}{2}}{x^3\cdot\cos{x}} =\frac{1}{2}\cdot\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2\cdot\frac{1}{\cos{x}}\right) =\frac{1}{2}\cdot{1}\cdot{1^2}\cdot{1} =\frac{1}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\frac{1}{2}$.

Пример №9

Найти предел $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}$.

Так как $\lim_{x\to{3}}(1-\cos(x-3))=0$ и $\lim_{x\to{3}}(x-3)\tg\frac{x-3}{2}=0$, то наличествует неопределенность вида $\frac{0}{0}$. Перед тем, как переходить к её раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha \to 0$). Проще всего ввести переменную $t=x-3$. Однако ради удобства дальнейших преобразований (эту выгоду можно заметить по ходу приведённого ниже решения) стоит сделать такую замену: $t=\frac{x-3}{2}$. Отмечу, что обе замены применимы в данном случае, просто вторая замена позволит поменьше работать с дробями. Так как $x\to{3}$, то $t\to{0}$.

$$ \lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{x-3}{2};\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\cos{2t}}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{2\sin^2t}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\tg{t}}=\\ =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\frac{\sin{t}}{\cos{t}}} =\lim_{t\to{0}}\frac{\sin{t}\cos{t}}{t} =\lim_{t\to{0}}\left(\frac{\sin{t}}{t}\cdot\cos{t}\right) =\lim_{t\to{0}}\frac{\sin{t}}{t}\cdot\lim_{t\to{0}}\cos{t} =1\cdot{1} =1. $$

Ответ : $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=1$.

Пример №10

Найти предел $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}$.

Вновь мы имеем дело с неопределенностью $\frac{0}{0}$. Перед тем, как переходить к ее раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha\to{0}$). Проще всего ввести переменную $t=\frac{\pi}{2}-x$. Так как $x\to\frac{\pi}{2}$, то $t\to{0}$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2} =\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{\pi}{2}-x;\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\sin\left(\frac{\pi}{2}-t\right)}{t^2} =\lim_{t\to{0}}\frac{1-\cos{t}}{t^2}=\\ =\lim_{t\to{0}}\frac{2\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{\frac{t^2}{4}\cdot{4}} =\frac{1}{2}\cdot\lim_{t\to{0}}\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2 =\frac{1}{2}\cdot{1^2} =\frac{1}{2}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}=\frac{1}{2}$.

Пример №11

Найти пределы $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}$.

В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.

Так как $\lim_{x\to\frac{\pi}{2}}(1-\sin{x})=0$ (напомню, что $\sin\frac{\pi}{2}=1$) и $\lim_{x\to\frac{\pi}{2}}\cos^2x=0$ (напомню, что $\cos\frac{\pi}{2}=0$), то мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако это вовсе не означает, что нам потребуется использовать первый замечательный предел. Для раскрытия неопределенности достаточно учесть, что $\cos^2x=1-\sin^2x$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x} =\left|\frac{0}{0}\right| =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{1-\sin^2x} =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{(1-\sin{x})(1+\sin{x})} =\lim_{x\to\frac{\pi}{2}}\frac{1}{1+\sin{x}} =\frac{1}{1+1} =\frac{1}{2}. $$

Аналогичный способ решения есть и в решебнике Демидовича (№475) . Что же касается второго предела, то как и в предыдущих примерах этого раздела, мы имеем неопределённость вида $\frac{0}{0}$. Отчего она возникает? Она возникает потому, что $\tg\frac{2\pi}{3}=-\sqrt{3}$ и $2\cos\frac{2\pi}{3}=-1$. Используем эти значения с целью преобразования выражений в числителе и в знаменателе. Цель наших действий: записать сумму в числителе и знаменателе в виде произведения. Кстати сказать, зачастую в пределах аналогичного вида удобна замена переменной, сделанная с таким расчётом, чтобы новая переменная устремилась к нулю (см., например, примеры №9 или №10 на этой странице). Однако в данном примере в замене смысла нет, хотя при желании замену переменной $t=x-\frac{2\pi}{3}$ несложно осуществить.

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cdot\left(\cos{x}+\frac{1}{2}\right)} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}-\tg\frac{2\pi}{3}}{2\cdot\left(\cos{x}-\cos\frac{2\pi}{3}\right)}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{\frac{\sin\left(x-\frac{2\pi}{3}\right)}{\cos{x}\cos\frac{2\pi}{3}}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}} =\lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{2\sin\frac{x-\frac{2\pi}{3}}{2}\cos\frac{x-\frac{2\pi}{3}}{2}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}} =\lim_{x\to\frac{2\pi}{3}}\frac{\cos\frac{x-\frac{2\pi}{3}}{2}}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.

Каким будет решение с использованием первого замечательного предела? показать\скрыть

При использовании первого замечательного предела получим:

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\left(\frac{\sin\left(x-\frac{2\pi}{3}\right)}{x-\frac{2\pi}{3}}\cdot\frac{1}{\frac{\sin\frac{x-\frac{2\pi}{3}}{2}}{\frac{x-\frac{2\pi}{3}}{2}}}\cdot\frac{1}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}\right) =1\cdot{1}\cdot\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}=\frac{1}{2}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}=-\frac{4}{\sqrt{3}}$.

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который заложил основы математического анализа и дал строгие определения, определение предела, в частности. Надо сказать, этот самый Коши снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причем одна теорема отвратительнее другой. В этой связи мы не будем рассматривать строгое определение предела, а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Калькулятор пределов онлайн на сайт для полноценного закрепления студентами и школьниками пройденного материала и тренировки своих практических навыков. Как использовать калькулятор пределов онлайн на нашем ресурсе? Делается это даже очень запросто, нужно лишь всего-навсего вписать исходную функцию в имеющееся поле, выбрать из селектора необходимое предельное значение для переменной и нажать на кнопку "Решение". Если в некоторой точке нужно вычислить предельное значение, тогда Вам необходимо вписать значение этой самой точки - или числовое, или символьное. Калькулятор пределов онлайн поможет найти в заданной точке, предельной в интервале определения функции, значение предела, и эта величина, куда устремляется значение исследуемой функции при устремлении её аргумента к данной точке, есть решение предела. По онлайн калькулятору пределов на нашем ресурсе сайт можем сказать следующее - существует огромное количество аналогов в сети интернет, можно найти достойные из них, нужно с трудом этой поискать. Но тут столкнетесь с тем, что один сайт другому сайту - рознь. Многие из них совсем не предлагают калькулятор пределов онлайн, в отличие от нас. Если в любой известной поисковой системе, будь-то Яндекс или Google, вы будете искать сайты по фразе "Калькулятор пределов онлайн", то сайт окажется на первых строчках в поисковой выдаче. Это означает, что нам доверяют эти поисковики, и на нашем сайте только качественный контент, а главное полезный для учеников школ и вузов! Продолжим разговор о калькуляторах пределов и вообще о теории предельного перехода. Очень часто в определении предела функции формулируется понятие окрестностей. Здесь пределы от функций, а также решение этих пределов, Изучаются только в точках, являющихся предельными для области определения функций, ведая, что в каждой окрестности такой точки имеются точки из области определения этой функции. Это позволяет говорить о стремлении переменной функции к заданной точке. Если в некоторой точке области определения функции существует предел и калькулятор пределов онлайн выдает подробное предельное решение функции в данной точке, то функция оказывается непрерывной в этой точке. Пусть наш калькулятор пределов онлайн с решением даст какой-нибудь положительный результат, а мы проверим его на других сайтах. Этим самым можно доказать качество нашего ресурса, а оно, как известно уже многим, на высоте и заслуживает высочайшей оценки. Наряду с этим, есть возможность пределы онлайн калькулятор с подробным решением изучать и самостоятельно, но под пристальным контролем профессионального преподавателя. Зачастую такое действие приведет к ожидаемым результатам. Все студенты просто мечтают, чтобы калькулятор пределов онлайн с решением подробно расписал их сложную задачку, заданную преподавателем еще в начале семестра. Но не так все просто. Нужно сначала изучить теорию, а потом пользоваться бесплатным калькулятором. Как и пределы онлайн, калькулятор подробным образом выдаст нужные записи, и вы останетесь довольны результатом. Но предельная точка области определения может и не принадлежать этой самой области определения и это доказывается подробным вычислением калькулятором пределов онлайн. Пример: можно рассматривать предел функции на концах открытого отрезка, на котором определена наша функция. При этом сами границы отрезка в область определения и не входят. В этом смысле система окрестностей этой точки есть частный случай такой базы подмножеств. Калькулятор пределов онлайн с подробным решением производится в режиме реального времени и для него применяются формулы в заданном явном аналитическом виде. Предел функции с применением калькулятора пределов онлайн с подробным решением является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится. В общем то говоря, теория предельного перехода - это основное понятие всего математического анализа. Всё базируется именно на предельных переходах, то есть подробное решение пределов заложено в основу науки математического анализа, а калькулятор пределов онлайн закладывает базу в обучение студентов. Калькулятор пределов онлайн с подробным решением на сайте сайт - это уникальный сервис для получения точного и мгновенного ответа в режиме реального времени. Не редко, а точнее очень часто, у студентов сразу возникают сложности в решении пределов при начальном изучении математического анализа. Мы гарантируем, что решение калькулятором пределов онлайн на нашем сервисе - залог точности и получения качественного ответа.. Ответ на подробное решение предела калькулятором получите в считанные секунды, можно сказать даже мгновенно. Если вы укажете некорректные данные, то есть символы, недопустимые системой, - ничего страшного, сервис автоматически сообщит вам об ошибке. Исправите введённую ранее функцию (или предельную точку) и получите верное подробное решение калькулятором предела онлайн. Доверьтесь нам, и мы вас не подведем никогда. Вы сможете легко пользоваться сайтом и калькулятор пределов онлайн с решением подробно распишет пошаговые действия по вычислению задачи. Нужно всего лишь подождать несколько секунд и получите заветный ответ. Для решения пределов онлайн калькулятором с подробным решением применяются все возможные приёмы, особенно очень часто используется метод Лопиталя, так как он универсален и приводит к ответу быстрее, чем другие способы вычисления предела функции. Часто онлайн подробное решение калькулятором предела требуется для вычисления суммы числовой последовательности. Как известно, для нахождения суммы числовой последовательности, надо лишь верно выразить частичную сумму этой последовательности, а дальше всё просто, применяя наш бесплатный сервис сайт, так как вычисление предела с помощью нашего калькулятора пределов онлайн от частичной суммы это и будет итоговая сумма последовательности числовой. Подробное решение калькулятором пределов онлайн с помощью сервиса сайт представляет студентам видеть ход решения задач, что делает понимание теории пределов легким и доступным практически каждому. Будьте сосредоточены и не позвольте неверным действиям доставлять себе неприятности в виде неудовлетворительных оценок. Как всякое подробное решение калькулятором пределов онлайн сервисом, задача будет представлена в удобном и понятном виде, с подробным решением, с соблюдением всех норм и правил получения решения.. При этом вы сможете экономить время и деньги, так как мы не просим за это абсолютно ничего. На нашем сайте подробное решение калькуляторов пределов онлайн доступно двадцать четыре часа в сутки всегда. В сути все калькуляторы пределов онлайн с решением могут и не подробно выдавать ход поэтапного решения, об этом нужно не забывать и всем следить. Как только пределы онлайн калькулятор с подробным решением предлагает вам нажать на кнопку "Решение", то сначала будьте добры все проверьте. то есть проверьте введенную функцию, также предельное значение и только тогда продолжайте действие. Это избавит вас от мучительных переживаний за неуспешные вычисления. И затем пределы онлайн калькулятор подробным законом выдаст правильное факторное представление пошагового действия. Если же подробное решение калькулятор пределов онлайн вдруг не выдал, то может быть несколько причин этому. Во-первых, проверьте записанное функциональное выражение. Оно должно содержать переменную "x", иначе вся функция будет воспринята системой как константа. Дальше проверьте предельное значение, если указали заданную точку или символьное значение. Оно также должно содержать только латинские буквы - это важно! Затем можно заново попробовать найти подробное решение пределов онлайн на нашем великолепном сервисе, и воспользоваться полученным результатом. Как только говорят, что пределы решение онлайн подробно это очень сложно - не верьте, а главное не паникуйте, всё разрешаемо в рамках учебного курса. Рекомендуем Вам без паники уделить всего несколько минут нашему сервису и проверить заданное упражнение. Если все-таки пределы решение онлайн подробно невозможно решить, значит, вы допустили опечатку, так как в противном случае сайт решает практически любую задачу без особых сложностей. Но не нужно думать, что без труда и без вложенных усилий сможете получить желаемый результат сразу. По любому нужно уделить достаточно времени на изучение материала. Можно каждый калькулятор пределов онлайн с решением подробно выдаться на этапе построения выставленного решения и предположить обратное. Но не суть как это выразить, так как нас беспокоит сам процесс научного подхода. В итоге покажем, как калькулятор пределов с решением онлайн подробно базируется на фундаментальном аспекте математики как науке. Выделить пять основных принципов, и начать дальнейшие действия. Вас спросят о том, что доступно ли решение калькулятором пределов онлайн с подробным решением каждому, и вы ответите - да, это так и есть! Возможно, в этом смысле нет особой нацеленности на результат, однако в предел онлайн подробно заложен немного иной смысл, чем может казаться на первых порах изучения дисциплины. При взвешенном подходе, с должной расстановкой сил, можно в кратчайший срок предел онлайн подробно вывести самому.! В реальности будет так, что калькулятор пределов онлайн с решением подробно начнет быстрее пропорционально представлять все шаги пошагового вычисления.

Предел функции на бесконечности:
|f(x) - a| < ε при |x| > N

Определение предела по Коши
Пусть функция f(x) определена в некоторой окрестности бесконечно удаленной точки, при |x| > Число a называется пределом функции f(x) при x стремящемся к бесконечности (), если для любого, сколь угодно малого положительного числа ε > 0 , существует такое число N ε > K , зависящее от ε , что для всех x, |x| > N ε , значения функции принадлежат ε - окрестности точки a :
|f(x) - a| < ε .
Предел функции на бесконечности обозначается так:
.
Или при .

Также часто используется следующее обозначение:
.

Запишем это определение, используя логические символы существования и всеобщности:
.
Здесь подразумевается, что значения принадлежат области определения функции.

Односторонние пределы

Левый предел функции на бесконечности:
|f(x) - a| < ε при x < -N

Часто встречаются случаи, когда функция определена только для положительных или отрицательных значений переменной x (точнее в окрестности точки или ). Также пределы на бесконечности для положительных и отрицательных значений x могут иметь различные значения. Тогда используют односторонние пределы.

Левый предел в бесконечно удаленной точке или предел при x стремящемся к минус бесконечности () определяется так:
.
Правый предел в бесконечно удаленной точке или предел при x стремящемся к плюс бесконечности () :
.
Односторонние пределы на бесконечности часто обозначают так:
; .

Бесконечный предел функции на бесконечности

Бесконечный предел функции на бесконечности:
|f(x)| > M при |x| > N

Определение бесконечного предела по Коши
Пусть функция f(x) определена в некоторой окрестности бесконечно удаленной точки, при |x| > K , где K - положительное число. Предел функции f(x) при x стремящемся к бесконечности (), равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число N M > K , зависящее от M , что для всех x, |x| > N M , значения функции принадлежат окрестности бесконечно удаленной точки:
|f(x) | > M .
Бесконечный предел при x стремящемся к бесконечности обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности, определение бесконечного предела функции можно записать так:
.

Аналогично вводятся определения бесконечных пределов определенных знаков, равных и :
.
.

Определения односторонних пределов на бесконечности.
Левые пределы.
.
.
.
Правые пределы.
.
.
.

Определение предела функции по Гейне

Пусть функция f(x) определена на некоторой окрестности бесконечно удаленной точки x 0 , где или или .
Число a (конечное или бесконечно удаленное) называется пределом функции f(x) в точке x 0 :
,
если для любой последовательности { x n } , сходящейся к x 0 : ,
элементы которой принадлежат окрестности , последовательность { f(x n )} сходится к a :
.

Если в качестве окрестности взять окрестность бесконечно удаленной точки без знака: , то получим определение предела функции при x стремящемся к бесконечности, . Если взять левостороннюю или правостороннюю окрестность бесконечно удаленной точки x 0 : или , то получим определение предела при x стремящемся к минус бесконечности и плюс бесконечности, соответственно.

Определения предела по Гейне и Коши эквивалентны .

Примеры

Пример 1

Используя определение Коши показать, что
.

Введем обозначения:
.
Найдем область определения функции . Поскольку числитель и знаменатель дроби являются многочленами, то функция определена для всех x кроме точек, в которых знаменатель обращается в нуль. Найдем эти точки. Решаем квадратное уравнение . ;
.
Корни уравнения:
; .
Поскольку , то и .
Поэтому функция определена при . Это мы будем использовать в дальнейшем.

Выпишем определение конечного предела функции на бесконечности по Коши:
.
Преобразуем разность:
.
Разделим числитель и знаменатель на и умножим на -1 :
.

Пусть .
Тогда
;
;
;
.

Итак, мы нашли, что при ,
.
.
Отсюда следует, что
при , и .

Поскольку всегда можно увеличить, то возьмем . Тогда для любого ,
при .
Это означает, что .

Пример 2

Пусть .
Используя определение предела по Коши показать, что:
1) ;
2) .

1) Решение при x стремящемся к минус бесконечности

Поскольку , то функция определена для всех x .
Выпишем определение предела функции при , равного минус бесконечности:
.

Пусть . Тогда
;
.

Итак, мы нашли, что при ,
.
Вводим положительные числа и :
.
Отсюда следует, что для любого положительного числа M , имеется число , так что при ,
.

Это означает, что .

2) Решение при x стремящемся к плюс бесконечности

Преобразуем исходную функцию. Умножим числитель и знаменатель дроби на и применим формулу разности квадратов:
.
Имеем:

.
Выпишем определение правого предела функции при :
.

Введем обозначение: .
Преобразуем разность:
.
Умножим числитель и знаменатель на :
.

Пусть
.
Тогда
;
.

Итак, мы нашли, что при ,
.
Вводим положительные числа и :
.
Отсюда следует, что
при и .

Поскольку это выполняется для любого положительного числа , то
.

Использованная литература:
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.