Решение уравнений с помощью комплексных чисел. Решение задач с комплексными числами

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Для наглядности решим такое задание:

Вычислить \[ (z_1\cdot z_2)^{10},\] если \

В первую очередь обратим внимание на то, что одно число представлено в алгебраической, другое - в тригонометрической форме. Его необходимо упростить и привести к следующему виду

\[ z_2 = \frac{1}{4} (\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}).\]

Выражение \ говорит о том, что в первую очередь делаем умножение и возведение в 10-ю степень по формуле Муавра. Эта формула сформулирована для тригонометрической формы комплексного числа. Получим:

\[\begin{vmatrix} z_1 \end{vmatrix}=\sqrt {(-1)^2+(\sqrt 3)^2}=\sqrt 4=2\]

\[\varphi_1=\pi+\arctan\frac{\sqrt 3}{-1}=\pi\arctan\sqrt 3=\pi-\frac{\pi}{3}=\frac{2\pi}{3}\]

Придерживаясь правил умножения комплексных чисел в тригонометрической форме, сделаем следующее:

В нашем случае:

\[(z_1+z_2)^{10}=(\frac{1}{2})^{10}\cdot(\cos (10\cdot\frac{5\pi}{6})+i\sin\cdot\frac{5\pi}{6}))=\frac{1}{2^{10}}\cdot\cos \frac{25\pi}{3}+i\sin\frac{25\pi}{3}.\]

Делая дробь \[\frac{25}{3}=8\frac{1}{3}\] правильной, приходим к выводу, что можно "скрутить" 4 оборота \[(8\pi рад.):\]

\[ (z_1+z_2)^{10}=\frac{1}{2^{10}}\cdot(\cos \frac{\pi}{3}+i\sin\frac{\pi}{3})\]

Ответ: \[(z_1+z_2)^{10}=\frac{1}{2^{10}}\cdot(\cos \frac{\pi}{3}+i\sin\frac{\pi}{3})\]

Данное уравнение можно решить еще одним способом, который сводится к тому, чтобы привести 2 -е число в алгебраическую форму, после чего выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и применить формулу Муавра:

Где можно решить систему уравнений с комплексными числами онлайн?

Решить систему уравнений вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Для решения задач с комплексными числами необходимо разобраться с основными определениями. Главная задача данной обзорной статьи - объяснить, что же такое комплексные числа, и предъявить методы решения основных задач с комплексными числами. Итак, комплексным числом будем называть число вида z = a + bi , где a, b — вещественные числа, которые называют действительной и мнимой частью комплексного числа соответственно и обозначают a = Re(z), b=Im(z) .
i называется мнимой единицей. i 2 = -1 . В частности, любое вещественное число можно считать комплексным: a = a + 0i , где a — вещественное. Если же a = 0 и b ≠ 0 , то число принято называть чисто мнимым.

Теперь введем операции над комплексными числами.
Рассмотрим два комплексных числа z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i .

Рассмотрим z = a + bi .

Множество комплексных чисел расширяет множество вещественных чисел, которое в свою очередь расширяет множество рациональных чисел и т.д. Эту цепочку вложений можно рассмотреть на рисунке: N – натуральные числа, Z - целые, Q – рациональные, R – вещественные, C – комплексные.


Представление комплексных чисел

Алгебраическая форма записи.

Рассмотрим комплексное число z = a + bi , такая форма записи комплексного числа называется алгебраической . Эту форму записи мы уже подробно разобрали в предыдущем разделе. Довольно часто используют следующий наглядный рисунок


Тригонометрическая форма.

Из рисунка видно, что число z = a + bi можно записать иначе. Очевидно, что a = rcos(φ) , b = rsin(φ) , r=|z| , следовательно z = rcos(φ) + rsin(φ)i , φ ∈ (-π; π) называется аргументом комплексного числа. Такое представление комплексного числа называется тригонометрической формой . Тригонометрическая форма записи порой очень удобна. Например, ее удобно использовать для возведения комплексного числа в целую степень, а именно, если z = rcos(φ) + rsin(φ)i , то z n = r n cos(nφ) + r n sin(nφ)i , эта формула называется формулой Муавра .

Показательная форма.

Рассмотрим z = rcos(φ) + rsin(φ)i — комплексное число в тригонометрической форме, запишем в другом виде z = r(cos(φ) + sin(φ)i) = re iφ , последнее равенство следует из формулы Эйлера, таким образом мы получили новую форму записи комплексного числа: z = re iφ , которая называется показательной . Такая форма записи так же очень удобна для возведения комплексного числа в степень: z n = r n e inφ , здесь n не обязательно целое, а может быть произвольным вещественным числом. Такая форма записи довольно часто используется для решения задач.

Основная теорема высшей алгебры

Представим, что у нас есть квадратное уравнение x 2 + x + 1 = 0 . Очевидно, что дискриминант этого уравнения отрицателен и вещественных корней оно не имеет, но оказывается, что это уравнение имеет два различных комплексных корня. Так вот, основная теорема высшей алгебры утверждает, что любой многочлен степени n имеет хотя бы один комплексный корень. Из этого следует, что любой многочлен степени n имеет ровно n комплексных корней с учетом их кратности. Эта теорема является очень важным результатом в математике и широко применяется. Простым следствием из этой теоремы является такой результат: существует ровно n различных корней степени n из единицы.

Основные типы задач

В этом разделе будут рассмотрены основные типы простых задач на комплексные числа. Условно задачи на комплексные числа можно разбить на следующие категории.

  • Выполнение простейших арифметических операций над комплексными числами.
  • Нахождение корней многочленов в комплексных числах.
  • Возведение комплексных чисел в степень.
  • Извлечение корней из комплексных чисел.
  • Применение комплексных чисел для решения прочих задач.

Теперь рассмотрим общие методики решения этих задач.

Выполнение простейших арифметических операций с комплексными числами происходит по правилам описанным в первом разделе, если же комплексные числа представлены в тригонометрической или показательной формах, то в этом случае можно перевести их в алгебраическую форму и производить операции по известным правилам.

Нахождение корней многочленов как правило сводится к нахождению корней квадратного уравнения. Предположим, что у нас есть квадратное уравнение, если его дискриминант неотрицателен, то его корни будут вещественными и находятся по известной формуле. Если же дискриминант отрицателен, то есть D = -1∙a 2 , где a — некоторое число, то можно представить дискриминант в виде D = (ia) 2 , следовательно √D = i|a| , а дальше можно воспользоваться уже известной формулой для корней квадратного уравнения.

Пример . Вернемся к упомянутому выше квадратному уравнению x 2 + x + 1 = 0 .
Дискриминант — D = 1 — 4 ∙ 1 = -3 = -1(√3) 2 = (i√3) 2 .
Теперь с легкостью найдем корни:

Возведение комплексных чисел в степень можно выполнять несколькими способами. Если требуется возвести комплексное число в алгебраической форме в небольшую степень (2 или 3), то можно сделать это непосредственным перемножением, но если степень больше (в задачах она часто бывает гораздо больше), то нужно записать это число в тригонометрической или показательной формах и воспользоваться уже известными методами.

Пример . Рассмотрим z = 1 + i и возведем в десятую степень.
Запишем z в показательной форме: z = √2 e iπ/4 .
Тогда z 10 = (√2 e iπ/4) 10 = 32 e 10iπ/4 .
Вернемся к алгебраической форме: z 10 = -32i .

Извлечение корней из комплексных чисел является обратной операцией по отношению к операции возведения в степень, поэтому производится аналогичным образом. Для извлечения корней довольно часто используется показательная форма записи числа.

Пример . Найдем все корни степени 3 из единицы. Для этого найдем все корни уравнения z 3 = 1 , корни будем искать в показательной форме.
Подставим в уравнение: r 3 e 3iφ = 1 или r 3 e 3iφ = e 0 .
Отсюда: r = 1 , 3φ = 0 + 2πk , следовательно φ = 2πk/3 .
Различные корни получаются при φ = 0, 2π/3, 4π/3 .
Следовательно 1 , e i2π/3 , e i4π/3 — корни.
Или в алгебраической форме:

Последний тип задач включается в себя огромное множество задач и нет общих методов их решения. Приведем простой пример такой задачи:

Найти сумму sin(x) + sin(2x) + sin(2x) + … + sin(nx) .

Хоть в формулировке этой задачи и не идет речь о комплексных числах, но с их помощью ее можно легко решить. Для ее решения используются следующие представления:


Если теперь подставить это представление в сумму, то задача сводится к суммированию обычной геометрической прогрессии.

Заключение

Комплексные числа широко применяются в математике, в этой обзорной статье были рассмотрены основные операции над комплексным числами, описаны несколько типов стандартных задач и кратко описаны общие методы их решения, для более подробного изучения возможностей комплексных чисел рекомендуется использовать специализированную литературу.

Литература

Выражения, уравнения и системы уравнений
с комплексными числами

Сегодня на занятии мы отработаем типовые действия с комплексными числами, а также освоим технику решения выражений, уравнений и систем уравнений, которые эти числа содержат. Данный практикум является продолжением урока , и поэтому если вы неважно ориентируетесь в теме, то, пожалуйста, пройдите по указанной выше ссылке. Ну а более подготовленным читателям предлагаю сразу же разогреться:

Пример 1

Упростить выражение , если . Представить результат в тригонометрической форме и изобразить его на комплексной плоскости.

Решение : итак, требуется подставить в «страшную» дробь, провести упрощения, и перевести полученное комплексное число в тригонометрическую форму . Плюс чертёж.

Как лучше оформить решение? С «навороченным» алгебраическим выражением выгоднее разбираться поэтапно. Во-первых, меньше рассеивается внимание, и, во-вторых, если таки задание не зачтут, то будет намного проще отыскать ошибку.

1) Сначала упростим числитель. Подставим в него значение , раскроем скобки и поправим причёску:

…Да, такой вот Квазимодо от комплексных чисел получился…

Напоминаю, что в ходе преобразований используются совершенно бесхитростные вещи – правило умножения многочленов и уже ставшее банальным равенство . Главное, быть внимательным и не запутаться в знаках.

2) Теперь на очереди знаменатель. Если , то:

Заметьте, в какой непривычной интерпретации использована формула квадрата суммы . Как вариант, здесь можно выполнить перестановку подформулу . Результаты, естественно, совпадут.

3) И, наконец, всё выражение. Если , то:

Чтобы избавиться от дроби, умножим числитель и знаменатель на сопряженное знаменателю выражение. При этом в целях применения формулы разности квадратов следует предварительно (и уже обязательно!) поставить отрицательную действительную часть на 2-е место:

А сейчас ключевое правило:

НИ В КОЕМ СЛУЧАЕ НЕ ТОРОПИМСЯ ! Лучше перестраховаться и прописать лишний шаг.
В выражениях, уравнениях и системах с комплексными числами самонадеянныеустные вычисления чреваты, как никогда !

На завершающем шаге произошло хорошее сокращение и это просто отличный признак.

Примечание : строго говоря, здесь произошло деление комплексного числа на комплексное число 50 (вспоминаем, что ). Об этом нюансе я умалчивал до сих пор и о нём мы ещё поговорим чуть позже.

Обозначим наше достижение буквой

Представим полученный результат в тригонометрической форме. Вообще говоря, здесь можно обойтись без чертежа, но коль скоро, требуется – несколько рациональнее выполнить его прямо сейчас:

Вычислим модуль комплексного числа:

Если выполнять чертёж в масштабе 1 ед. = 1 см (2 тетрадные клетки), то полученное значение легко проверить с помощью обычной линейки.

Найдём аргумент. Так как число расположено во 2-й координатной четверти , то:

Угол элементарно проверяется транспортиром. Вот в чём состоит несомненный плюс чертежа.

Таким образом: – искомое число в тригонометрической форме.

Выполним проверку:
, в чём и требовалось убедиться.

Незнакомые значения синуса и косинуса удобно находить по тригонометрической таблице .

Ответ :

Аналогичный пример для самостоятельного решения:

Пример 2

Упростить выражение , где . Изобразить полученное число на комплексной плоскости и записать его в показательной форме.

Постарайтесь не пропускать учебные примеры. Кажутся-то они, может быть, и простыми, но без тренировки «сесть в лужу» не просто легко, а очень легко. Поэтому «набиваем руку».

Нередко задача допускает не единственный путь решения:

Пример 3

Вычислить , если ,

Решение : прежде всего, обратим внимание на оригинальное условие – одно число представлено в алгебраической, а другое – в тригонометрической форме, да ещё и с градусами. Давайте сразу перепишем его в более привычном виде: .

В какой форме проводить вычисления? Выражение , очевидно, предполагает первоочередное умножение и дальнейшее возведение в 10-ю степень по формуле Муавра , которая сформулирована для тригонометрической формы комплексного числа. Таким образом, представляется более логичным преобразовать первое число. Найдём его модуль и аргумент:

Используем правило умножения комплексных чисел в тригонометрической форме:
если , то

Делая дробь правильной, приходим к выводу, что можно «скрутить» 4 оборота ( рад.) :

Второй способ решения состоит в том, чтобы перевести 2-е число в алгебраическую форму , выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и воспользоваться формулой Муавра.

Как видите, одно «лишнее» действие. Желающие могут довести решение до конца и убедиться, что результаты совпадают.

В условии ничего не сказано о форме итогового комплексного числа, поэтому:

Ответ :

Но «для красоты» либо по требованию результат нетрудно представить и в алгебраической форме:

Самостоятельно:

Пример 4

Упростить выражение

Здесь нужно вспомнить действия со степенями , хотя одного полезного правила в методичке нет, вот оно: .

И ещё одно важное замечание: пример можно решить в двух стилях. Первый вариант – работать с двумя числами и мириться с дробями. Второй вариант – представить каждое число в виде частного двух чисел : и избавиться от четырёхэтажности . С формальной точки зрения без разницы, как решать, но содержательное отличие есть! Пожалуйста, хорошо осмыслите:
– это комплексное число;
– это частное двух комплексных чисел ( и ), однако в зависимости от контекста можно сказать и так: число , представленное в виде частного двух комплексных чисел.

Краткое решение и ответ в конце урока.

Выражения – хорошо, а уравнения – лучше:

Уравнения с комплексными коэффициентами

Чем они отличаются от «обычных» уравнений ? Коэффициентами =)

В свете вышеприведённого замечания начнём с этого примера:

Пример 5

Решить уравнение

И незамедлительная преамбула по «горячим следам»: изначально правая часть уравнения позиционируется, как частное двух комплексных чисел ( и 13), и поэтому будет нехорошим тоном переписать условие с числом (хотя это и не повлечёт ошибки) . Более явственно данное различие, кстати, просматривается в дроби – если, условно говоря, , то это значение в первую очередь понимается как «полноценный» комплексный корень уравнения , а не как делитель числа , и тем более – не как часть числа !

Решение , в принципе, тоже можно оформить пошагово, но в данном случае овчинка выделки не стОит. Первоначальная задача состоит в том, чтобы упростить всё, что не содержит неизвестной «зет», в результате чего уравнение сведётся к виду :

Уверенно упрощаем среднюю дробь:

Результат переносим в правую часть и находим разность:

Примечание : и вновь обращаю ваше внимание на содержательный момент – здесь мы не вычли из числа число, а подвели дроби к общему знаменателю! Следует отметить, что уже в ХОДЕ решения не возбраняется работать и с числами: , правда, в рассматриваемом примере такой стиль скорее вреден, чем полезен =)

По правилу пропорции выражаем «зет»:

Теперь можно снова разделить и умножить на сопряжённое выражение, но подозрительно похожие числа числителя и знаменателя подсказывают следующий ход:

Ответ :

В целях проверки подставим полученное значение в левую часть исходного уравнения и проведём упрощения:

– получена правая часть исходного уравнения, таким образом, корень найден верно.

…Сейчас-сейчас… подберу для вас что-нибудь поинтереснее… держите:

Пример 6

Решить уравнение

Данное уравнение сводится к виду , а значит, является линейным. Намёк, думаю, понятен – дерзайте!

Конечно же… как можно без него прожить:

Квадратное уравнение с комплексными коэффициентами

На уроке Комплексные числа для чайников мы узнали, что квадратное уравнение с действительными коэффициентами может иметь сопряжённые комплексные корни, после чего возникает закономерный вопрос: а почему, собственно, сами коэффициенты не могут быть комплексными? Сформулирую общий случай:

Квадратное уравнение с произвольными комплексными коэффициентами (1 или 2 из которых либо все три могут быть, в частности, и действительными) имеет два и только два комплексных корня (возможно один из которых либо оба действительны) . При этом корни (как действительные, так и с ненулевой мнимой частью) могут совпадать (быть кратными).

Квадратное уравнение с комплексными коэффициентами решается по такой же схеме, что и «школьное» уравнение , с некоторыми отличиями в технике вычислений:

Пример 7

Найти корни квадратного уравнения

Решение : на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на ) , однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:

Не теряем «минус» у свободного члена! …Может быть не всем понятно – перепишу уравнение в стандартном виде :

Вычислим дискриминант:

А вот и главное препятствие:

Применение общей формулы извлечения корня (см. последний параграф статьи Комплексные числа для чайников ) осложняется серьёзными затруднениями, связанными с аргументом подкоренного комплексного числа (убедитесь сами) . Но существует и другой, «алгебраический» путь! Корень будем искать в виде:

Возведём обе части в квадрат:

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:

Систему проще решить подбором (более основательный путь – выразить из 2-го уравнения – подставить в 1-е, получить и решить биквадратное уравнение) . Предполагая, что автор задачи не изверг, выдвигаем гипотезу, что и – целые числа. Из 1-го уравнения следуют, что «икс» по модулю больше, чем «игрек». Кроме того, положительное произведение сообщает нам, что неизвестные одного знака. Исходя из вышесказанного, и ориентируясь на 2-е уравнение, запишем все подходящие ему пары:

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:

Не помешает промежуточная проверка:

что и требовалось проверить.

В качестве «рабочего» корня можно выбрать любое значение. Понятно, что лучше взять версию без «минусов»:

Находим корни, не забывая, кстати, что :

Ответ :

Проверим, удовлетворяют ли найденные корни уравнению :

1) Подставим :

верное равенство.

2) Подставим :

верное равенство.

Таким образом, решение найдено правильно.

По мотивам только что разобранной задачи:

Пример 8

Найти корни уравнения

Следует отметить, что квадратный корень из чисто комплексного числа прекрасно извлекается и с помощью общей формулы , где , поэтому в образце приведены оба способа. Второе полезное замечание касается того, что предварительное извлечение корня из константы ничуть не упрощает решение.

А теперь можно расслабиться – в этом примере вы отделаетесь лёгким испугом:)

Пример 9

Решить уравнение и выполнить проверку

Решения и ответы в конце урока.

Заключительный параграф статьи посвящён

системе уравнений с комплексными числами

Расслабились и… не напрягаемся =) Рассмотрим простейший случай – систему двух линейных уравнений с двумя неизвестными:

Пример 10

Решить систему уравнений. Ответ представить в алгебраической и показательной формах, изобразить корни на чертеже.

Решение : уже само условие подсказывает, что система имеет единственное решение, то есть, нам нужно найти два числа , которые удовлетворяют каждому уравнению системы.

Систему реально решить «детским» способом (выразить одну переменную через другую ) , однако гораздо удобнее использовать формулы Крамера . Вычислим главный определитель системы:

, значит, система имеет единственное решение.

Повторюсь, что лучше не торопиться и прописывать шаги максимально подробно:

Домножаем числитель и знаменатель на мнимую единицу и получаем 1-й корень:

Аналогично:

Получены соответствующие правые части, ч.т.п.

Выполним чертёж:

Представим корни в показательной форме. Для этого нужно найти их модули и аргументы:

1) – арктангенс «двойки» вычисляется «плохо», поэтому так и оставляем: