Теплоемкость решетки. Модель Дебая, температура Дебая

СВОЙСТВА ФОНОНОВ, КАК ОСНОВА ДЛЯ ПОНИМАНИЯ ТЕПЛОФИЗИЧЕСКИХ И ТРАНСПОРТНЫХ СВОЙСТВ ТВЕРДЫХ ТЕЛ

    Статистика фононов и теплоемкость решетки

Мы располагаем сведениями о дисперсионных кривых и плотности мод как функции от к и 𝜔 , для получения зависимости колебательной энергии кристалла от температуры удобно воспользоваться представлениями о квантованных частицах - фононах. Пусть U - полная колебательная энергия кристалла (в расчете на килограмм, кубический метр или моль). Теплоемкость при постоянном объеме равна Cv=(dU/dT)v . В реальных кспериментах гораздо удобнее измерять теплоемкость при постоянном давлении Ср , но, к счастью, разность (Cp-Cv) для твердых тел очень мала, поскольку ничтожно малы затраты энергии на тепловое расширение.

      Классическая модель для вычисления энергии решетки

Предположим, что атом кристаллической решетки массой m совершает гармонические колебания с амплитудой x m и угловой частотой 𝜔 . Постоянная возвращающей силы равна μ .

Если в любой момент времени отклонение атома от

положения равновесия равно х , то его скорость , а ускорение.

Тогда полная энергия, связанная с таким движением, равна:

Е = (кинетическая энергия) + (потенц. энергия)= (1)

После усреднения по больцмановскому распределению получаем классическое математическое среднее значение энергии осциллятора:

(2)

Подставляя выражение (1) в (2), легко получить

следующий результат:

=kT. (3)

Если решетка состоит из N атомов, каждый из которых имеет 3 классические степени свободы, т.е. 3 N осцилляторов , то полная внутренняя энергия решетки равна

U =3 NkT (4)

Что соответствует закону Дюлонга и Пти.

Видно, что внутренняя энергия не должна зависеть от температуры, но это не так.

Объяснение того, почему теплоемкость в действительности уменьшается при охлаждении, должно сводиться к объяснению причин, в силу которых средняя энергия, связанная с колебательной модой, зависит от температуры и ее частоты 𝜔 .

      Модель Дебая

Дебай, как и Эйнштейн, постулировал, что N атомов

кристалла должны иметь 3N колебательных мод, причем каждая мода обладает энергией, описываемой выражением для средней энергии квантового осциллятора, определяемой согласно распределению Больцмана

(5),

и числом заполнения, т.е. средним числом фононов, соответствующих при температурах Т колебаниям решетки с угловой частотой 𝜔 :

(Напомню: если функция распределения для величины E – есть f (E ), то среднее – пояснение к ф-ле (5 ). Пояснение к формуле (6 ) – Фононы являются бозонами поэтому (6) можно рассматривать как распределение Бозе Эйнштейна)

Дебай заметил, что угловая частота 𝜔 моды должна зависеть от ее волнового вектора к , причем должна существовать максимальная частота 𝜔 m , такая,

что полное число различимых мод равно

. (7)

Эта же частота является верхним пределом интеграла, описывающего полную колебательную энергию:

(8).

Определить истинную плотность состояний g (𝜔 ) реального кристалла довольно сложно. Дебай предположил, что можно получить полезные результаты, если выразить g (𝜔 ) через фазовую скорость
положив ее равной соответствующим образом выбранной скорости звукаv o для всех колебательных мод. Тогда необходимо выбрать верхний предел интегрирования 𝜔 D =𝜔 m в выражениях (7), (8) таким образом, чтобы правая часть выражения (7) равнялась 3N. Это приводит к неправильному учету высокочастотных мод, но в силу квантовых ограничений при низких температурах таким модам, не подчиняющимся классическим законам, соответствует очень малое количество фононов. Таким образом, результат не должен существенным образом зависеть от выбора g(𝜔 ) вблизи верхнего края спектра.

Дебаевская модель плотности состояний может быть использована для описания реального или воображаемого кристалла любой размерности.

В m -мерном кристалле температурная зависимость теплоемкости при низких температурах в этой модели подчиняется закону

. (9)

Это согласуется с тем фактом, что во многих реальных (трехмерных ) кристаллах при низких температурах она пропорциональна T 3 .

Важными параметрами в модели Дебая является скорость звука V o и максимальная частота 𝜔 D .

В окончательные выражения обычно вместо 𝜔 D входит характеристическая температура Дебая

и через нее выражается Cv .

В трехмерной модели Дебая в выражение (8) подставляется соответствующая величина g(𝜔 ), а в качестве верхнего предела - величина, удовлетворяющая равенству (7). Напомним, что, согласно выражению

для продольных колебательных мод g (k) = (k 2 /2 π 2 ), а для поперечных мод g(k) имеет вдвое большую величину. Можно показать, что g(𝜔 ) преобразуется к виду

Мы получили плотность состояний как функцию частоты для акустических колебаний в длинноволновом пределе (в предположении, что продольные и поперечные волны распространяются с различными скоростями 𝜐 L и 𝜐 T , соответственно). В дебаевской модели принимается, что

для всех колебательных мод. Скорость звука 𝜐 0 в выражении (12) и предел интегрирования 𝜔 D связаны определенным соотношением, поскольку в кристалле с N атомами в объеме V в единице объема должно содержаться 3N/V мод. Таким образом,

(13)

Искусственно введенный верхний предел можно выразить через дебаевскую характеристическую температуру

В дебаевской модели оказывается удобнее оперировать с параметром θ D , имеющим размерность температуры, а не с предельной частотой 𝜔 D или максимальным значением k D = 𝜔 D / 𝜐 0 в обратном пространстве. Чтобы лучше понять модель Дебая, вспомним, что сфера радиусом k D занимает такой же объем в k -пространстве, как и настоящая зона Бриллюэна. Таким образом, фононы, волновой вектор которых сравним с k D (частота сравнима с 𝜔 D , энергия - с k θ D , расположены вблизи границ зоны. При всех температурах, кроме высоких, число фононов с такой большой энергией и волновым вектором довольно мало.

На рис. 1 очень сложная функция g(𝜔 ) для меди сравнивается с более простой, квадратично возрастающей с 𝜔 вплоть до некоторого искусственно введенного предела. Заметим, что использование грубого приближения для высокочастотной части спектра не сильно отражается на результатах. Большой интерес представляет тот факт, что функция g(𝜔 ), полученная из экспериментов по рассеянию нейтронов, на начальном участке спектра возрастает быстрее, чем это следует из модели Дебая.

Кривая, отвечающая на рис. 1 модели Дебая, построена для некоторой температуры Дебая θ D и соответствующих ей значений 𝜔 D , 𝜐 0 и g(𝜔 ), которая вычислялась по результатам исследования теплоемкости меди. Необходимо помнить, что θ D играет роль подгоночного параметра, который обеспечивает наилучшее согласие между экспериментальными и теоретическими значениями теплоемкости.

Рис. 1. Плотность состояний фононов в меди. Сплошная кривая построена по результатам экспериментального исследования рассеяния нейтронов. Эта же экспериментальная зависимость приведена на рис. 2.7-5.

Штриховая кривая соответствует трехмерной модели Дебая и проведена таким образом, что площади под этими двумя кривыми одинаковы. При этом 𝜔 D =4,5 10 13 рад/с, а характеристическая температура Дебая θ D =344 К.

В методе Дебая плотность состояний g(𝜔), определяемую формулой (12), следует подставить в выражение (8). Тогда для результирующей энергии колебаний решетки на единицу объема получаем

(15)

Переходя к безразмерной переменной
можно записать

(16)

Изохорная теплоемкость равна температурной производной внутренней энергии . Дифференцируя(16) по температуре, получаем выражение для теплоемкости (график см.рис. 2)

Рис. 2. Температурная зависимость молярной теплоемкости твердого тела, построенная по трехмерной модели Дебая. Экспериментальные точки получены для образца иттрия . Температура на оси абсцисс нормирована на температуру Дебая θ D = 2OO К. (При самых низких температурах наилучшее согласие может быть достигнуто для несколько большего значения температуры Дебая.) То, что при высоких температурах экспериментальные точки лежат выше теоретической кривой, объясняется тем, что в действительности измеряется Ср, а не С V .

Выражения для величин U и Cv записываются через интегралы, которые выражаются в аналитическом виде только в пределе высоких и низких температур. Однако численно Cv можно определить для любой температуры. Сопоставление экспериментальных величин и теоретической кривой длдя теплоемкости, полученной по модели Дебая для типичного случая, приведено на рис. 2.

Как и следовало ожидать, для температур T >> θ D интеграл в выражении (16) равен 1/3(θ D /T) 3 , так что для энергии и теплоемкости получаем классические формулы

Более интересна область низких температур T << θ D ,

в которой, согласно эксперименту, Cv убывает не по экспоненциальному закону, как предсказывает модель Эйнштейна, а имеет более слабую зависимость от температуры.

Если для температур, меньших (θ D /10), в качестве пределов интегрирования в выражениях (16) и (17) взять нуль и бесконечность, то это не приведет к большой ошибке. Тогда интеграл в уравнении (16) будет равен (π 4 /15) и

(18)

(19)

Согласно выражению (19) при T << θ D Cv характеризуется кубической зависимостью от температуры, что часто и наблюдается на практике для кристаллов при низких температурах. Модель Эйнштейна не может объяснить такую зависимость. При промежуточных температурах зависимость Cv от Т с довольно хорошей точностью описывается или моделью Эйнштейна, или моделью Дебая.

Если при низких температурах Cv описывается выражением (19), измерения при одной температуре позволяют определить θ D и предсказать величину Cv при других температурах. Иллюстрацией может служить рис. 3, где представлены данные для металла и для диэлектрика. Для кристалла КСl зависимость Cv/T от Т 2 линейна и проходит через начало координат. Таким образом, закономерность Cv~ T 3 , предсказываемая моделью Дебая, выполняется и величину θ D можно определить по наклону экспериментальной прямой.

Для хорошего диэлектрика KCl, у которого нет свободных электронов, при T<<θ D получаем

С V = B * T 3 , (20)

т.е. теплоемкость диэлектрика при низких температурах определяется только решеточной теплоемкостью, т.е. только фононами.

Рис. 3. Температурная зависимость теплоемкости КС l и С u при очень низких температурах. Линейный ход в этих координатах указывает на то, что в Cv содержится член, пропорциональный T 3 .

В случае К Cl этот член является единственным – график проходит через начало координатю

В случае меди имеется еще один член, который линейно зависит от температуры; этот член обусловлен электронным вкладом в теплоемкость – график не проходит через нуль.

Данные для КС l взяты из работы: Keesom P. Н., Pearlman N.- Phys. Rev., 91, 1354 (1953), а для меди из работы : Rosenberg Н . М . Low Temperature Solid State Physics, Oxford University Press, 1963.

(Обращаю Ваше внимание: чтобы график был линейным по оси абсцисс отложили T 2 , а по оси ординат Cv / T .)

Как видно из рис. 3, для меди тоже наблюдается линейная зависимость (Cv/T) от Т 2 , но соответствующая прямая отсекает на вертикальной оси некоторый отрезок. Это означает, что для хорошего металла – меди, в котором есть свободные электроны

(21)

где второй член справа отвечает теплоемкости решетки (закон Дебая), а первый член соответствует теплоемкости газа свободных электронов. Таким образом, необходимо принимать во внимание теплоемкость газа свободных электронов, если они существуют в кристалле.

        Уточнения модели Дебая

В модели Дебая используется существенное упрощение реальной функции g(𝜔 ). Поэтому можно ожидать, что величина θ D , полученная путем подгонки при некоторой определенной температуре экспериментального значения Cv к теоретическому, не обязательно будет оптимальной для всех других температур. Однако для любой пары измеряемых величин (Cv и Т) можно получить свой параметр θ D . Совокупность таких измерений позволяет построить зависимость θ D от Т . Обычно всегда имеет место некоторый разброс θ D при изменении температуры, хотя для большинства кристаллов этот разброс менее выражен, чем в случае, приведенном на рис. 4.

Рис. 4. Температурная зависимость характеристической температуры Дебая θ D (по измерениям теплоемкости) для металлического индия. Теплоемкость кристаллической решетки, необходимая для определения температуры Дебая, получена вычитанием электронного вклада из измеренной полной теплоемкости. [Из работы: Clement J . R ., Quinnell E . #.- Phys , Rev ., 92, 258 (1953).] Ясно, что при определенииθ D из низкотемпературных измерений теплоемкости получим значение θ D =108 K (см. график)

        Температура Дебая

Как это ни удивительно, но понятие температуры Дебая θ D используется во многих задачах физики твердого тела, в том числе и не связанных с теплоемкостью. Из того, что до сих пор говорилось о модели Дебая, могло сложиться впечатление, что эта модель не учитывает периодичности кристаллической решетки и ограничений на физически реализуемые интервалы значений волнового вектора и частоты, связанных с существованием границ зоны Бриллюэна. Однако это не так, поскольку величина 𝜔 D в модели Дебая, естественно, оказывается сравнимой с угловыми частотами фононов, волновые векторы которых близки к границам зоны. Эти фононы составляют большинство при температурах T > θ D .

При T << θ D возбуждаются только фононы, волновые

векторы к которых очень близки к центру зоны Бриллюэна, и лежат достаточно далеко от ее границ (K~0).

Поэтому такие явления, как теплопроводность (определяемая ангармоническим взаимодействием фононов друг с другом) и электропроводность (определяемая рассеянием электронов на фононах), существенно различны при температурах выше и ниже температуры Дебая.

При T > θ D у большей части фононов длина волны имеет порядок нескольких межатомных расстояний.

При T << θ D наиболее вероятная длина волны фонона имеет порядок a(θ D /T). Эта длина волны при достаточно низких температурах может иметь порядок нескольких сотен и даже тысяч межатомных расстояний a .

Температура Дебая зависит от констант упругости, и, следовательно, от них зависит и температура, при которой будет выполняться сильное неравенство T << θ D . Кристаллы с сильным межатомным взаимодействием (алмаз, сапфир) характеризуются высоким значением θ D . В таких кристаллах даже при небольшом охлаждении вымерзают все фононы, за исключением тех, длины волн которых очень велики по сравнению с размерами элементарной ячейки.

Температуры Дебая для наиболее характерных кристаллов приведены в последнем столбце табл. 1. Все эти величины были получены из данных по решеточной компоненте теплоемкости при низких температурах. Как можно видеть из таблицы, значения характеристической температуры, вычисленные по упругим постоянным, могут быть как больше, так и меньше «тепловой» температуры Дебая.

Таблица 1. Значения характеристической температуры Дебая для некоторых типичных твердых тел, определенные по результатам измерений упругих постоянных и теплоемкости

      Модель Эйнштейна

Эта модель была разработана Эйнштейном до модели Дебая. Для простоты Эйнштейн предположил, что кристалл с N атомами обладает 3N модами колебаний с одинаковой угловой частотой 𝜔 E .

Он использовал эту частоту в качестве подгоночного параметра для согласования своей модели теплоемкости с экспериментальными данными для твердых тел. Каждой колебательной моде соответствует одна и та же энергия , определяемая как средняя энергия квантового осциллятора

Общая колебательная энергия решетки равна по модели Эйнштейна

(23)

(В (23) отсутствует энергии нулевых колебаний, которая в модели Эйнштейна не учитывалась).

Соответствующая теплоемкость при постоянном объеме равна

где F E - функция Эйнштейна, равная

Функция Эйнштейна стремится к единице при высоких температурах, что приводит к классическому результату, т. е. при высоких температурах по модели Эйнштейна

Это хорошо известный закон Дюлонга и Пти

Однако при температурах значительно ниже характеристической температуры Эйнштейна, T <<Т E = ħ 𝜔 / k , теплоемкость убывает экспоненциально:

Модель Эйнштейна слишком упрощена. Частоты атомов осцилляторов выбраны одинаковыми. При низких температурах расходится с экспериментом. Эксперименту более соответствует модель Дебая.

    Теплопроводность

Корпускулярный или фононный подход к рассмотрению колебаний решетки особенно удобен при изучении процессов с преобразованием энергии. Эти процессы включают процессы рождения и уничтожения фононов. Теплопроводность удобнее всего описывать на языке рассеяния фононов на других фононах, статических несовершенствах решетки или на электронах.

      Решеточная теплопроводность и длина свободного пробега фононов

Тепловая энергия может передаваться в кристалле фононами, фотонами, свободными электронами (или свободными дырками), электронно-дырочными парами, экситонами (связанными электронно-дырочными парами).

Электронная компонента теплопроводности в металлах обычно является доминирующей. Однако в неметаллических кристаллах большая часть теплового потока переносится колебаниями решетки (фононами); лишь при самых высоких температурах преобладающим процессом может стать передача энергии фотонами. Рассмотрим поток фононов, который возникает при наличии в кристалле градиента температур.

Вспомним, что, согласно выражению (6), при температуре Т количество возбуждаемых фононов с волновым вектором к и угловой частотой 𝜔 равно

что соответствует статистике Бозе-Эйнштейна.

В условиях теплового равновесия, если нет температурных градиентов, < n k > = - k >, т. е. существует полное равенство скоростей фононных потоков в любых двух взаимно противоположных направлениях. Таким образом, общий тепловой поток равен нулю.

Когда имеется температурный градиент теплопроводностьможно выразить черези скорость потока энергии - через единичную площадку, перпендикулярную градиенту температуры:

(29)

Эту теплопроводность можно выразить через микроскопические характеристики фононов, воспользовавшись аналогией между проводимостью фононного газа и обычного молекулярного газа. Выражение для теплопроводности в рамках кинетической теории газов для простейшего случая, когда все частицы имеют одинаковые скорости (что справедливо для фононов при температурах много ниже температуры Дебая), записывается в виде

(30)

Здесь Cv - теплоемкость решетки для единицы объема, которая является мерой плотности фононов, v 0 - скорость фононов (скорость звука), а Λ - средняя длина свободного пробега фононов.

Длина пути, проходимого фононом с момента его рождения до момента уничтожения или иного превращения, часто сильно зависит от его энергии. Она может быть довольно большой для фононов малых энергий, но становится весьма малой для фононов, энергия которых превышает пороговую энергию процессов переброса k θ u (о которой мы скажем ниже). Тем не менее, для любого распределения фононов всегда можно определить среднюю длину свободного пробега Λ с помощью выражения (30).

Для температур вблизи точки плавления Λ может уменьшаться до 6-10 межатомных расстояний. При очень низких температурах Λ может достигать 1 мм. Общий вид температурной зависимости Λ и соответствующая зависимость показанына рис. 5. Мы должны установить, как ведет себя Λ(T ) , чтобы понять поведение теплопроводности.

В табл. 2 приведены значения теплопроводности и длины свободного пробега для трех неметаллических твердых тел при трех различных температурах. Значения длины свободного пробега фононов вычислены по формуле (30) с использованием данных по скорости звука (см. табл. 1) и теплоемкости. Последняя определялась по температурам Дебая, приведенным в табл. 1. Из табл. 2 видно, в каком широком интервале возможно изменение длины свободного пробега фононов.

Таблица 2. Теплопроводность решетки и средняя длина свободного пробега фонона в неметаллических кристаллах

Рис. 5. Типичные кривые зависимости средней длины Λ свободного пробега фонона и фононной теплопроводности от температуры в двойном логарифмическом масштабе. Увеличение средней длины свободного пробега при понижении температуры, связанное с уменьшением вероятности процессов переброса (U -процессов), прекращается, когда существенным становится рассеяние фононов на дефектах кристаллической решетки и поверхности кристалла.

С позиции классической теории теплоемкости нельзя объяснить не только этот вопрос, но и сам факт изменения теплоемкости с температурой. Для объяснения этого факта необходимо принять модель твердого тела, предложенную Дебаем.

Исходя из этой модели, можно сделать вывод, что теплоемкость твердого тела должна существенно уменьшаться при понижении температуры кристалла ниже его характеристической (дебаевской) температуры. То есть когда энергия, приходящаяся на одну степень свободы, становится недостаточной для возбуждения высокочастотных фононов. Следовательно, температура, при которой выполняется закон Дюлонга и Пти, должна быть выше характеристической температуры Q данного вещества. Значения характеристических температур для некоторых веществ приводятся в таблице 8.3.

О том, что дебаевская температура не является абстракцией, введенной для пояснения квантовых представлений в модели твердого тела Дебая, а характеризует реально существующий параметр твердого тела, можно судить по рисунку 8.2.

Рисунок 8.2 График зависимости теплоемкости некоторых кристаллических тел от относительной температуры

Исследуя вопрос о внутренней энергии кристаллов, Дебай нашел, что при температурах, близких к абсолютному нулю, внутренняя энергия твердого тела пропорциональна четвертой степени абсолютной температуры U = aT 4 , где а – постоянный множитель, зависящий от природы кристалла.

Из этого соотношения можно найти выражение для теплоемкости

Следовательно, вблизи абсолютного нуля теплоемкость твердого тела пропорциональна кубу абсолютной температуры. Эта закономерность носит название закона кубов Дебая.

Область применения закона кубов лежит ниже температуры, равной Q/50. При более высоких температурах от Q/50 до Q находится промежуточная область, для которой количественная связь между теплоемкостью и температурой определяется для каждого конкретного вещества отдельно. Выше характеристической температуры Q, как указывалось ранее, теплоемкость твердого тела не зависит от температуры (закон Дюлонга и Пти).

Опытные исследования теплоемкостей различных кристаллических тел при низких температурах показали, что закон кубов Дебая оправдывается не для всех кристаллов, а только для таких, для которых атомы в кристаллической решетке связаны со своими соседями примерно одинаково прочно во всех трех направлениях. Для слоистых кристаллов типа графита, в которых силы связи между соседними атомами внутри слоя значительно больше сил связи между ближайшими атомами из двух соседних слоев, теплоемкость при температурах, близких к абсолютному нулю, оказывается пропорциональной квадрату абсолютной температуры. Обнаружены и такие кристаллы, для которых теплоемкость около абсолютного нуля пропорциональна первой степени температуры. Такие кристаллы имеют нитевидное строение. Силы связи внутри нити намного больше, чем между соседними нитями.

Теория Дебая приводит к выводам, которые хорошо совпадают с экспериментальными данными в широком интервале температур, но и она не свободна от недостатков. Трудно, например, согласиться с тем, что энергия кристалла отождествляется с энергией стоячих волн. В стоячей волне узлы и пучности закономерно распределены в пространстве, поэтому исключается возможность тепловых флуктуаций, совершенно неизбежных при тепловом движении.

Дебаевская модель твердого тела является упрощенным представлением твердого тела в виде изотропной упругой среды, способной совершать колебания в конечном интервале частот. Поэтому и выводы этой теории (например, зависимость теплоемкости от температуры) хорошо совпадают с экспериментальными данными только для кристаллов с простыми решетками. К телам сложной структуры теория Дебая неприменима, так как энергетический спектр колебаний таких тел оказывается чрезвычайно сложным. В молекулярных кристаллах, например, кроме поступательно-колебательного движения молекулы как целого, приходится учитывать ее вращательные колебания и колебания атомов или групп атомов внутри молекулы.

Температура Дебая - температура, при которой возбуждаются все моды колебаний в данном твёрдом теле. Дальнейшее увеличение температуры не приводит к появлению новых мод колебаний, а лишь ведет к увеличению амплитуд уже существующих, т.е. средняя энергия колебаний с ростом температуры растёт. Температура Дебая - физическая константа вещества, характеризующая многие свойства твёрдых тел - теплоёмкость, электропроводность, теплопроводность, уширение линий рентгеновских спектров, упругие свойства и т. п. Введена впервые П. Дебаем в его теории теплоёмкости.

– характеристика для твердых тел, которая имеет размерность температуры и определяет характер температурной зависимости теплоемкости твердого тела. Установленная Дебай в рамках разработанной им модели теплопроводности твердых тел.
При температурах ниже температуры Дебая теплоемкость кристаллической решетки определяется в основном акустическими колебаниями и по закону Дебая пропорциональна кубу температуры.
При температурах намного превышающих температуру Дебая справедлив закон Дюлонга-Пти, согласно которому теплоемкость стала и равна , Где N количество элементарных ячеек в теле, r – число атомов в элементарной ячейке, k B – постоянная Больцмана.
При промежуточных температурах теплоемкость кристаллической решетки зависит от других факторов, таких как дисперсия акустических и оптических фононов, количества атомов в элементарной ячейке и т.д. Вклад от акустических фононов, в частности, дается формулой

Где? D – температура Дебая, а функция

Называется функцией Дебая.
При температурах намного ниже температуры Дебая, как отмечалось выше, теплоемкость пропорциональна кубу температуры

.

Формула Дебая для определения теплоемкости кристаллической решетки выводится с использованием определенных приближений, а именно линейного закона дисперсии акустических фононов, пренебрежением оптических фононов и замены зоны Бриллюэна сферой с равным объемом. Если q D радиус такой сферы, то? D = q D s, где s скорость звука называется частотой Дебая. Температура Дебая определяется из соотношения

.

Значение температура Дебая для некоторых веществ приведены в таблице.

Уже существующих, то есть средняя энергия колебаний с ростом температуры растёт.

Температура Дебая - физическая константа вещества , характеризующая многие свойства твёрдых тел - теплоёмкость , электропроводность , теплопроводность , уширение линий рентгеновских спектров , упругие свойства и т. п. Введена впервые П. Дебаем в его теории теплоёмкости.

Температура Дебая определяется следующей формулой:

texvc не найден; См. math/README - справку по настройке.): \Theta_D = \frac {h \nu_D}{k_B},

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): h - постоянная Планка , Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \nu_D - максимальная частота колебаний атомов твёрдого тела, Невозможно разобрать выражение (Выполняемый файл texvc - постоянная Больцмана .

Температура Дебая приближённо указывает температурную границу, ниже которой начинают сказываться квантовые эффекты .

Физическая интерпретация

При температурах ниже температуры Дебая теплоёмкость кристаллической решётки определяется в основном акустическими колебаниями и, согласно закону Дебая , пропорциональна кубу температуры.

При температурах намного выше температуры Дебая справедлив закон Дюлонга-Пти , согласно которому теплоёмкость постоянна и равна Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 3Nrk_B , где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): N количество элементарных ячеек в теле, Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): r - количество атомов в элементарной ячейке , Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k_B - постоянная Больцмана .

При промежуточных температурах теплоёмкость кристаллической решётки зависит от других факторов, таких как дисперсия акустических и оптических фононов , количества атомов в элементарной ячейке и т. д. Вклад акустических фононов, в частности, даётся формулой

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): C_V(T) = 3Nk_B f_D(\theta_D/T) ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \theta_D - температура Дебая, а функция

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): f_D(x) = \frac{3}{x^3} \int_0^x \frac{t^4 e^t}{(e^t-1)^2}\textrm{d}t

называется функцией Дебая .

При температурах намного ниже температуры Дебая, как указывалось выше, теплоёмкость пропорциональна кубу температуры

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): C_V(T) = \frac{12 \pi^4}{5} Nk_B (T/\theta_D)^3 .

Оценка температуры Дебая

При выводе формулы Дебая для определения теплоёмкости кристаллической решётки принимаются некоторые допущения, а именно принимают линейным закон дисперсии акустических фононов, пренебрегают наличием оптических фононов и заменяют зону Бриллюэна сферой такого же объёма. Если Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): q_D радиус такой сферы, то Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \omega_D = q_D s , где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): s скорость звука , называется частотой Дебая . Температура Дебая определяется из соотношения

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \hbar \omega_D = k_B\theta_D .

Значения температуры Дебая для некоторых веществ приведено в таблице.

Серебро 225 K
Тантал 240 K
Олово (белое) 195 K
Титан 420 K
Вольфрам 405 K
Цинк 300 K
Алмаз 2200 K

См. также

Напишите отзыв о статье "Температура Дебая"

Примечания

Источники

  • Температура Дебая - статья из Большой советской энциклопедии .

Отрывок, характеризующий Температура Дебая

Север искренне удивился.
– Нет, Изидора, это неправда. Катары не «верили» в Христа, они обращались к нему, говорили с ним. Он был их Учителем. Но не Богом. Слепо верить можно только лишь в Бога. Хотя я так до сих пор и не понял, как может быть нужна человеку слепая вера? Это церковь в очередной раз переврала смысл чужого учения... Катары верили в ЗНАНИЕ. В честность и помощь другим, менее удачливым людям. Они верили в Добро и Любовь. Но никогда не верили в одного человека. Они любили и уважали Радомира. И обожали учившую их Золотую Марию. Но никогда не делали из них Бога или Богиню. Они были для них символами Ума и Чести, Знания и Любви. Но они всё же были ЛЮДЬМИ, правда, полностью дарившими себя другим.
Смотри, Изидора, как глупо церковники перевирали даже собственные свои теории... Они утверждали, что Катары не верили в Христа-человека. Что Катары, якобы, верили в его космическую Божественную сущность, которая не была материальной. И в то же время, говорит церковь, Катары признавали Марию Магдалину супругою Христа, и принимали её детей. Тогда, каким же образом у нематериального существа могли рождаться дети?.. Не принимая во внимание, конечно же, чушь про «непорочное» зачатие Марии?.. Нет, Изидора, ничего правдивого не осталось об учении Катар, к сожалению... Всё, что люди знают, полностью извращено «святейшей» церковью, чтобы показать это учение глупым и ничего не стоящим. А ведь Катары учили тому, чему учили наши предки. Чему учим мы. Но для церковников именно это и являлось самым опасным. Они не могли допустить, чтобы люди узнали правду. Церковь обязана была уничтожить даже малейшие воспоминания о Катарах, иначе, как могла бы она объяснить то, что с ними творила?.. После зверского и поголовного уничтожения целого народа, КАК бы она объяснила своим верующим, зачем и кому нужно было такое страшное преступление? Вот поэтому и не осталось ничего от учения Катар... А спустя столетия, думаю, будет и того хуже.
– А как насчёт Иоанна? Я где-то прочла, что якобы Катары «верили» в Иоанна? И даже, как святыню, хранили его рукописи... Является ли что-то из этого правдой?
– Только лишь то, что они, и правда, глубоко чтили Иоанна, несмотря на то, что никогда не встречали его. – Север улыбнулся. – Ну и ещё то, что, после смерти Радомира и Магдалины, у Катар действительно остались настоящие «Откровения» Христа и дневники Иоанна, которые во что бы то ни стало пыталась найти и уничтожить Римская церковь. Слуги Папы вовсю старались доискаться, где же проклятые Катары прятали своё опаснейшее сокровище?!. Ибо, появись всё это открыто – и история католической церкви потерпела бы полное поражение. Но, как бы ни старались церковные ищейки, счастье так и не улыбнулось им... Ничего так и не удалось найти, кроме как нескольких рукописей очевидцев.
Вот почему единственной возможностью для церкви как-то спасти свою репутацию в случае с Катарами и было лишь извратить их веру и учение так сильно, чтобы уже никто на свете не мог отличить правду от лжи… Как они легко это сделали с жизнью Радомира и Магдалины.
Ещё церковь утверждала, что Катары поклонялись Иоанну даже более, чем самому Иисусу Радомиру. Только вот под Иоанном они подразумевали «своего» Иоанна, с его фальшивыми христианскими евангелиями и такими же фальшивыми рукописями... Настоящего же Иоанна Катары, и правда, чтили, но он, как ты знаешь, не имел ничего общего с церковным Иоанном-«крестителем».