Типы дисперсных систем таблица. Дисперсные системы: определение, классификации

Изучив тему урока, вы узнаете:

  • что такое дисперсные системы?
  • какими бывают дисперсные системы?
  • какими свойствами обладают дисперсные системы?
  • значение дисперсных систем.

Чистые вещества в природе встречаются очень редко. Кристаллы чистых веществ – сахара или поваренной соли, например, можно получить разного размера – крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещество внутреннюю структуру – молекулярную или ионную кристаллическую решетку.

В природе чаще всего встречаются смеси различных веществ. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Такие системы мы будем называть дисперсными.

Дисперсной называется система, состоящая из двух или более веществ, причем одно из них в виде очень маленьких частиц равномерно распределено в объеме другого.

Вещество распадается на ионы, молекулы, атомы, значит “дробится” на мельчайшие частицы. “Дробление” > диспергирование, т.е. вещества диспергируют до разных размеров частиц видимых и невидимых.

Вещество, которое присутствует в меньшем количестве, диспергирует и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называются гетерогенными (неоднородными).

И дисперсную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях – твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсной среды и дисперсной фазы можно выделить 9 видов таких систем.

Таблица
Примеры дисперсных систем

Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем
Газ Газ Всегда гомогенная смесь (воздух, природный газ)
Жидкость Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли
Твердое вещество Пыли в воздухе, дымы, смог, самумы (пыльные и песчаные бури), аэрозоли
Жидкость Газ Шипучие напитки, пены
Жидкость Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)
Твердое вещество Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы
Твердое вещество Газ Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки
Жидкость Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)
Твердое вещество Горные породы, цветные стекла, некоторые сплавы

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делятся на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система – раствор . Она однородна, поверхности раздела между частицами и средой нет.

Дисперсные системы и растворы очень важны в повседневной жизни и в природе. Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета – наш общий дом – Земля; без клеток не было бы живых организмов и т.д.

ВЗВЕСИ

Взвеси – это дисперсные системы, в которых размер частицы фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсная среда легко разделяются отстаиванием, фильтрованием. Такие системы разделяются на:

  1. Эмульсии (и среда, и фаза – нерастворимые друг в друге жидкости). Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т.д.
  2. Суспензии (среда – жидкость, фаза – нерастворимое в ней твердое вещество).Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость и хорошо взболтать. Со временем частица выпадут на дно сосуда. Очевидно, чем меньше частицы, тем дольше будет сохраняться суспензия. Это строительные растворы, взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде – планктон, которым питаются гиганты – киты, и т.д.
  3. Аэрозоли взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различаются пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний – взвесь капелек жидкости в газе. Например: туман, грозовые тучи – взвесь в воздухе капелек воды, дым – мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига – клинкера. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающих изо рта больного гриппом, также вредные аэролози. Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопление облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, лечение дыхательных путей (ингаляция) – примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли – туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

КОЛЛОИДНЫЕ СИСТЕМЫ

Коллоидные системы (в переводе с греческого “колла” – клей, “еидос” вид клееподобные) это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсная среда в таких системах отстаиванием разделяются с трудом.

Из курса общей биологии вам известно, что частицы такого размера можно обнаружить при помощи ультрамикроскопа, в котором используется принцип рассеивания света. Благодаря этому коллоидная частица в нем кажется яркой точкой на темном фоне.

Их подразделят на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок – кариоплазма, содержимое органоидов и вакуолей). И живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки и т.д.) Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия (“растворимого стекла”) с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде.

Характерное свойство коллоидных растворов – их прозрачность. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся “светящейся дорожке” – конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в лесу и в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Пропускание луча света через растворы;

а – истинный раствор хлорида натрия;
б – коллоидный раствор гидроксида железа (III).

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Это объясняется тем, что вещества в коллоидном, т.е., в мелкораздробленном, состоянии обладают большой поверхностью. На этой поверхности адсорбируются либо положительно, либо отрицательно заряженные ионы. Например, кремниевая кислота адсорбирует отрицательные ионы SiO 3 2- , которых в растворе много вследствие диссоциации силиката натрия:

Частицы же с одноименными зарядами взаимно отталкиваются и поэтому не слипаются.

Но при определенных условиях может происходить процесс коагуляции. При кипячении некоторых коллоидных растворов происходит десорбция заряженных ионов, т.е. коллоидные частицы теряют заряд. Начинают укрупняться и оседают. Тоже самое наблюдается при приливании какого-либо электролита. В этом случае коллоидная частица притягивает к себе противоположно заряженный ион и ее заряд нейтрализуется.

Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок – наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, мармелад, торт “Птичье молоко”) и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т.д. Историю развития на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода. Это явление называют синерезисом.

Выполните лабораторные опыты по теме (групповая работа, в группе по 4 человека).

Вам выдан образец дисперсной системы. Ваша задача: определить какая дисперсная система вам выдана.

Выдано учащимся: раствор сахара, раствор хлорода железа (III), смесь воды и речного песка, желатин, раствор хлорида алюминия, раствор поваренной соли, смесь воды и растительного масла.

Инструкция по выполнению лабораторного опыта

  1. Рассмотрите внимательно выданный вам образец (внешнее описание). Заполните графу № 1 таблицы.
  2. Перемешайте дисперсную систему. Понаблюдайте за способностью осаждаться.

Осаждается или расслаивается в течении несколько минут или с трудом в течении продолжительного времени, или не осаждаются. Заполните графу № 2 таблицы.

Если вы не наблюдаете осаждение частиц, исследуйте его на процесс коагуляции. Отлейте немного раствора в две пробирки и добавьте в одну 2–3 капли желтой кровяной соли и в другую 3–5 капель щелочи, что наблюдаете?

  1. Пропустите дисперсную систему через фильтр. Что наблюдаете? Заполните графу № 3 таблицы. (Отфильтруйте немного в пробирку).
  2. Пропустите через раствор луч света фонарика на фоне темной бумаги. Что наблюдаете? (можно наблюдать эффект Тиндаля)
  3. Сделайте вывод: что это за дисперсная система? Что является дисперсной средой? Что является дисперсной фазой? Каковы размеры частиц в нем? (графа №5).
Синквейн ("синквейн" – от фр. слова, означающего "пять") – это стихотворение из 5 строк по определенной теме. Для сочинения синквейна дается 5 минут, после чего написанные стихотворения можно озвучить и обсудить в парах, группах или на всю аудиторию.

Правила написания синквейна :

  1. В первой строчке одним словом (обычно существительным) называется тема.
  2. Вторая строчка – это описание этой темы двумя прилагательными.
  3. Третья строчка – это три глагола (или глагольные формы), называющие самые характерные действия предмета.
  4. Четвертая строчка – это фраза из четырех слов, показывающая личное отношение к теме.
  5. Последняя строка – это синоним темы, подчеркивающий её суть.

Лето 2008 г. Вена. Шенбрунн.

Лето 2008 г. Нижегородская область.

Облака и их роль в жизни человека

Вся окружающая нас природа – организмы животных и растений, гидросфера и атмосфера, земная кора и недра представляют собой сложную совокупность множества разнообразных и разнотипных грубодисперсных и коллоидных систем.
Развитие коллоидной химии связано с актуальными проблемами различных областей естествознания и техники.
На представленной картинке представлены облака – один из видов аэрозолей коллоидных дисперсных систем. В изучении атмосферных осадков метеорология опирается на учение об аэродисперсных системах.
Облака нашей планеты представляют собой такие же живые сущности, как вся природа, которая нас окружает. Они имеют огромное значение для Земли, так как являются информационными каналами. Ведь облака состоят из капиллярной субстанции воды, а вода, как известно, очень хороший накопитель информации. Круговорот воды в природе приводит к тому, что информация о состоянии планеты и настроении людей накапливается в атмосфере, и вместе с облаками передвигается по всему пространству Земли.
Облака – удивительное творение природы, которое доставляет человеку радость, эстетическое удовольствие.

Краснова Мария,
11-й «Б» класс

Р.S.
Огромное спасибо Першиной О.Г., учителю химии МОУ гимназия “Дмитров”, на уроке работали с найденной презентацией, и она дополнялась нашими примерами.

Дисперсными называют системы, состоящие из множества малых частиц, распре­деленных в жидкой, твердой или газообразной среде.

Понятие «дисперсный» происходит от лат. dispersus - раздробленный, рассеянный.

Для всех дисперсных систем характерны два основных признака: высокая раздробленность (дисперсность) и гетерогенность.

Гетерогенность дисперсных систем проявляется в том, что эти системы состоят из двух (или более) фаз: дисперсной фазы и диспер­сионной среды. Дисперсная фаза - это раздробленная фаза. Она состоит из частиц нерастворимого тонкоизмельченного вещества, распределенных по всему объему дисперсионной среды.

Высокая дисперсность придает веществам новые качественные признаки: повышенную реакционную способность и растворимость, интенсив­ность окраски, светорассеяние и т. п. Большая поверхность раздела создает в этих системах боль­шой запас поверхностной энергии, которая делает их термодинамически неустойчивыми, чрезвычайно реакционноспособными. В них легко протекают самопроиз­вольные процессы, приводящие к снижению запаса поверхностной энергии: адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы - гегетрогенность и высокая дисперсность - полностью определяют свойства и поведе­ние этих систем.

Классификацию дисперсных систем проводят на основе различных признаков, а именно: по размеру частиц, по агрегатному состоянию дисперсной фазы и дисперсионной среды, по характеру взаимо­действия частиц дисперсной фазы между собой и со средой.

2.2. Классификация дисперсных систем

Классификация по размеру частиц (дисперсности)

Дисперсность D является основной характеристикой дисперс­ной системы и мерой раздробленности вещества. Математически дисперсность определяют как величину, обратную размеру частицы:

D = 1/а ,

где а - размер частицы (диаметр или длина ребра), м -1 .

С другой стороны, для характеристики степени раздроблен­ности служит величина удельной поверхности S уд . Удельную поверх­ность находят как отношение поверхности S частицы к ее объему V или массе т: S уд = S / V или S уд = S / m . Если удельную поверх­ность определяют по отношению к массе частицы раздробленного вещества, то ее размерность м 2 /кг, если же по отношению к объему, то размерность совпадает с размерностью дисперсности (м -1).

Физический смысл понятия «удельная поверхность» заключа­ется в том, что это суммарная поверхность всех частиц, общий объем которых составляет 1м 3 или общая масса которых равна 1 кг.

По дисперсности системы подразделяют на типы:

1) грубо-дисперсные (грубые взвеси, суспензии, эмульсии, порошки) с радиусом частиц 10 -4 - 10 -7 м;

2) коллоидно-дисперсные (золи) с размером частиц 10 -7 - 10 -9 м;

3) молекулярные и ионные растворы с размером частиц менее 10 -9 м.

В коллоидных системах дости­гается высшая степень раздробления вещества, при которой еще сохраняются понятия «фаза» и «гетерогенность». Уменьшение раз­мера частиц еще на порядок переводит системы в гомогенные моле­кулярные или ионные растворы.

Дисперсность влияет на все основные свойства дисперсных систем: кинетические, оптические, каталитические и т. д.

Свойства дисперсных систем сопоставлены в табл. 1.2.

Т а б л и ц а 1.2.Свойства дисперсных систем разных типов

Грубодисперсные

Коллоидно-дисперсные

Молекулярные и ионные (истинные) растворы

Непрозрачные - отражают свет

Прозрачные опалесцирующие - рассеивают свет, да­ют конус Тиндаля

Прозрачные неопалесцирующие, конус Тиндаля не на­блюдается

Частицы не проходят че­рез фильтр

Частицы проходят через бу­мажный фильтр

Частицы проходят через бу­мажный фильтр

Частицы задерживаются ультрафильтрами

Частицы проходят через льтрафильтры

Гетерогенные

Гетерогенные

Гомогенные

Неустойчивы кинетически и термодинамически

Относительно устойчивы ки­нетически

Устойчивы кинет. и термодинамич.ки

Стареют во времени

Стареют во времени

Не стареют

Частицы видны в оптиче­ский микроскоп

Частицы видны в электрон. Микроскоп и ультрамикроскоп

Частицы не видны в совре­менные микроскопы

Помимо размера частиц большое значение для свойств дисперсных систем имеет геометрическая форма частиц. В зависимости от условий дробления вещества форма частиц дисперсной фазы может быть очень разнообразной. Один м 3 исходного вещества принципиаль­но возможно раздробить на кубики с длиной ребра l = 10 -8 м, вы­тянуть в нить с сечением 10 -8 х 10 -8 м или расплющить в пластину (пленку) толщиной 10 -8 м. В каждом из этих случаев система будет дисперсной со всеми присущими признаками.

Удельная поверхность частиц кубической формы возрастает от исходного значения в 6 м 2 до значения, определяемого по формуле

S уд = S / V = 6l 2 / l 3 = 6 . 10 8 м -1

Для нитей S уд = 4-10 8 м -1 ; для пленки S уд = 2 . 10 8 м -1 .

Частицы кубической, шарообразной или близкой к ним непра­вильной формы характерны для многих коллоидных растворов - золей и более грубодисперсных систем – эмульсий.

Классификация по агрегатному состоянию фаз

Наиболее распространена классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды. Каждая из этих фаз может быть в трех агрегатных состояниях: газообразном, жидком и твердом. Поэтому возможно существо­вание восьми типов коллоидных систем (табл. 1.3). Система «газ в газе» не входит в это число, так как является гомогенной молекуляр­ной, в ней отсутствуют границы раздела. Высокодисперсные коллоидные растворы, относящиеся к типу систем т/ж, носят название золей (от лат. solutio - раствор). Золи, у которых дисперсионной средой является вода, называют гидрозо­лями. Если дисперсионной средой служит органическая жидкость, коллоидный раствор носит название органозоля. Эти последние, в свою очередь, подразделяют на алкозоли, бензозоли, этерозоли и т.п., в которых дисперсионной средой являются соответственно спирт, бензол, эфир и т. д. В зависимости от агрегатного состояния дисперсионной среды различают лиозоли - золи с жидкой дисперсионной средой (от греч. lios - жидкость), аэрозоли - золи с газообразной дисперсионной средой, твердые золи - системы типа т/т. Грубодисперсные системы типа т/ж называют суспензиями, типа ж/ж – эмульсиями.

Таблица 2..2. Основные типы дисперсных систем

Дисп фаза

Дисп.среда

Не существ.

Жидкость

Туман, облака, аэрозоли жидких лекарств

Твердое тело

Дым, пыль, порошки, аэрозоли твердых лекарств

Жидкость

Пены, газовые эмульсии

Жидкость

Эмульсии (молоко, лекарственные эмульсии)

Твердое тело

Суспензии, коллоидные растворы

Твердое тело

Твердые пены, хлеб, пемза, силикагель, активные угли

Жидкость

Жемчуг, капиллярные системы, цементный камень, гели

Твердое тело

Цветные стекла, минералы, сплавы

Классификация по отсутствию или наличию взаимодей­ствия между частицами дисперсной фазы

По кинетическим свойствам дисперсной фазы все дисперсные системы можно подразделить на два класса: свободно-дисперсные, в которых частицы дисперсной фазы не связаны между собой и мо­гут свободно перемещаться (лиозоли, аэрозоли, суспензии, эмуль­сии), и связно-дисперсные, в которых одна из фаз структурно закре­плена и не может перемещаться свободно. К этому классу относят гели и студни, пены, капиллярно-пористые тела (диафрагмы), твердые растворы и др.

Классификация по степени взаимодействия дисперсной фазы с дисперсионной средой

Для характеристики взаимодействия между веществом дисперс­ной фазы и жидкой дисперсионной средой служат понятия «лиофильность» и «лиофобность». Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации), т. е. образова­ние сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Системы, в которых сильно выражено взаимодействие частиц дисперсной фазы с растворителем, называют лиофильными (по отношению к воде - гидрофильными). Если частицы дисперсной фазы состоят из вещества, слабо взаимо­действующего со средой, системы являются лиофобными (по отно­шению к воде - гидрофобными) . Термин «лиофильный» происходит от греч. 1уо - растворяю и philia - любовь; «лиофобный» от 1уо - растворяю и phobia - ненависть, что означает «не любящий растворения». Хорошо сольватирующиеся лиофильные дисперсные системы образуются путем самопроизвольного диспергирования. Такие си­стемы термодинамически устойчивы. Приме­рами таких систем являются дисперсии некоторых глин и поверх­ностно-активных веществ (ПАВ), растворы высокомолекулярных веществ (ВМВ).

У гидрофобных золей частицы состоят из труднорастворимых соединений, отсутствует или слабо выражено сродство дисперсной фазы к растворителю. Такие частицы плохо сольватированы. Гидрофобные золи являются основным классом коллоидных растворов, у которых ярко выражены гетерогенность и высокая удельная поверхность.

Общая химия: учебник / А. В. Жолнин; под ред. В. А. Попкова, А. В. Жолнина. - 2012. - 400 с.: ил.

Глава 13. ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ

Глава 13. ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ

Жизнь - это особая коллоидная система,... это особое царство природных вод.

В.И. Вернадский

13.1 ДИСПЕРСНЫЕ СИСТЕМЫ, ИХ КЛАССИФИКАЦИИ, СВОЙСТВА

Коллоидные растворы

Материальная основа современной цивилизации и самого существования человека и всего биологического мира связана с дисперсными системами. Человек живет и работает в окружении дисперсных систем. Воздух, особенно воздух рабочих помещений, - это дисперсная система. Многие пищевые продукты, полупродукты и продукты их переработки представляют дисперсные системы (молоко, мясо, хлеб, масло, маргарин). Многие лекарственные вещества производятся в форме тонких суспензий или эмульсий, мазей, паст или кремов (протаргол, колларгол, желатиноль и др.). Дисперсными являются все живые системы. Мышечные и нервные клетки, волокна, гены, вирусы, протоплазма, кровь, лимфа, спинномозговая жидкость - все это высокодисперсные образования. Протекающие в них процессы управляются физико-химическими закономерностями, которые изучает физикохи-мия дисперсных систем.

Дисперсными называют системы, в которых вещество находится в состоянии более или менее высокой раздробленности и равномерно распределено в окружающей среде. Науку о высокодисперсных системах называют коллоидной химией. В основе живого вещества лежат соединения, находящиеся в коллоидном состоянии.

Дисперсная система состоит из дисперсионной среды и дисперсной фазы. Существует несколько классификаций дисперсных систем, основанных на различных признаках дисперсных систем.

1. По агрегатному состоянию дисперсионной среды все дисперсные системы можно свести к 3 типам. Дисперсные системы с газообразной

дисперсионной средой - аэрозоли (дым, воздух рабочих помещений, облака и т.д.). Дисперсные системы с жидкой дисперсионной средой - лиозоли (пены, эмульсии - молоко, суспензии, пыль, попавшая в дыхательные пути; кровь, лимфа, моча представляют собой гидрозоли). Дисперсные системы с твердой дисперсионной средой - солидозоли (пемза, силикагель, сплавы).

2. Вторая классификация группирует дисперсные системы в зависимости от размера частиц дисперсной фазы. Мерой раздробленности частиц служит либо поперечный размер частиц - радиус (r), либо

(радиус) частиц (r) выражать в сантиметрах, то дисперсность Д - это число частиц, которое можно уложить вплотную по длине одного сантиметра. Наконец, можно характеризовать удельной поверхностью (∑), единицами измерения ∑ являются м 2 /г или м 2 /л. Под удельной поверхностью понимают отношение поверхности (S ) дисперсной фазы к ее

коэффициент зависимости удельной поверхности от формы частиц. Удельная поверхность прямо пропорциональна дисперсности (Д) и обратно пропорциональна поперечному размеру частицы (r). С повышением дисперсности, т.е. с уменьшением размера частиц, ее удельная поверхность возрастает.

Вторая классификация группирует дисперсные системы в зависимости от размера частиц дисперсной фазы на следующие группы (табл. 13.1): грубодисперсные системы; коллоидные растворы; истинные растворы.

Коллоидные системы могут быть газообразными, жидкими и твердыми. Наиболее распространены и изучены жидкие (лиозоли). Коллоидные растворы для краткости обычно называют золями. В зависимости от природы растворителя - дисперсионной среды, т.е. воды, спирта или эфира, лиозоли называют соответственно гидрозоли, алкозоли или этерозоли. По интенсивности взаимодействия частиц дисперсной фазы и дисперсионной среды золи делят на 2 группы: лиофильные - интенсивное взаимодействие, в результате которого образуются развитые сольватные слои, например, золь протоплазмы, крови, лимфы, крахмала, белка и т.д.; лиофобные золи - слабое взаимодействие частиц дисперсной фазы с частицами дисперсионной среды. Золи металлов, гидроксидов, практически все классические коллоидные системы. ВМС и растворы ПАВ выделяют в отдельные группы.

Таблица 13.1. Классификация дисперсных систем по размеру частиц и их свойства

Большой вклад в теорию коллоидных растворов внесли наши отечественные ученые И.Г. Борщов, П.П. Веймарн, Н.П. Песков, Д.И. Менделеев, Б.В. Дерягин, П.А. Ребиндер и т.д.

Всякий коллоидный раствор является микрогетерогенной, многофазной, высоко- и полидисперсной системой с высокой степенью дисперсности. Условием образования коллоидного раствора является нерастворимость вещества одной фазы в веществе другой, ибо только между такими веществами могут существовать физические поверхности раздела. По силе взаимодействия между частицами дисперсной фазы различают свободно-дисперсные и связнодисперсные системы. Примером последних являются биологические мембраны.

Получение коллоидных растворов проводят двумя методами: диспергированием крупных частиц до коллоидной степени дисперсности и конденсацией - созданием условий, при которых атомы, молекулы или ионы соединяются в агрегаты коллоидной степени дисперсности.

Образовать гидрозоли могут металлы, малорастворимые в воде соли, оксиды и гидроксиды, многие неполярные органические вещества. Хорошо растворяющиеся в воде вещества, но малорастворимые в неполярных соединениях не способны образовывать гидрозоли, но могут образовывать органозоли.

В качестве стабилизаторов используются вещества, препятствующие агрегации коллоидных частиц в более крупные и выпадению их в осадок. Таким действием обладают: небольшой избыток одного из реагентов, из которых получается вещество дисперсной фазы, ПАВ, в том числе белки и полисахариды.

Для достижения требуемой для коллоидных систем дисперсности (10 -7 -10 -9 м) применяют:

Механическое дробление с помощью шаровых и коллоидных мельниц в присутствии жидкой дисперсной среды и стабилизатора;

Действие ультразвука (например, гидрозоля серы, графита, гидроксидов металлов и т.д.);

Метод пептизации, добавление небольшого количества электролита - пептизатора;

Одной из разновидностей конденсационного способа является метод замены растворителя, в результате которой происходит понижение растворимости вещества дисперсной фазы. Молекулы вещества конденсируются в частицы коллоидных размеров в результате разрушения сольватных слоев молекул в истинном растворе и образования более крупных частиц. В основе хими-

ческих конденсационных методов лежат химические реакции (окисления, восстановления, гидролиза, обмена), приводящие к образованию малорастворимых веществ в присутствии тех или иных стабилизаторов.

13.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ РАСТВОРОВ. ОСМОС.

ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ

Броуновское движение - это тепловое движение частиц в коллоидных системах, которое имеет молекулярно-кинетическую природу. Установлено, что движение коллоидных частиц является следствием беспорядочных ударов, наносимых им молекулами дисперсионной среды, находящихся в тепловом движении. В результате коллоидная частица часто меняет свое направление и скорость. За 1 с коллоидная частица может изменить свое направления свыше 10 20 раз.

Диффузией называется самопроизвольно протекающий процесс выравнивания концентрации коллоидных частиц в растворе под влиянием их теплового хаотического движения. Явление диффузии необратимо. Коэффициент диффузии численно равен количеству вещества, продиффундировавшего через единицу площади в единицу времени при градиенте концентрации, равном 1 (т.е. изменению концентрации в 1 моль/см 3 на расстоянии в 1 см). А. Эйнштейн (1906) вывел уравнение, связывающее коэффициент диффузии с абсолютной температурой, вязкостью и размером частиц дисперсной фазы:

где T - температура, К; r - радиус частицы, м; η - вязкость, Н с/м 2 ; к Б - постоянная Больцмана, 1,38 10 -23 ; D - коэффициент диффузии, м 2 /с.

Коэффициент диффузии прямо пропорционален температуре и обратно пропорционален вязкости среды (η) и радиусу частиц (r). Причиной диффузии, как и броуновского движения, является молекулярно-кинетическое движение частиц растворителя и вещества. Известно, что кинетическая энергия движущейся молекулы тем меньше, чем больше ее объем (табл. 13.2).

Пользуясь уравнением Эйнштейна, можно легко определить массу 1 моля вещества, если известны D, T, η и r. Из уравнения (13.1) можно определить r:

где R - универсальная газовая постоянная, 8,3 (Дж/моль-К); N a постоянная Авогадро.

Таблица 13.2. Коэффициент диффузии некоторых веществ

В случае когда система отделена от других частей системы перегородкой, которая проницаема для одного компонента (например, вода) и непроницаема для другого (например, растворенного вещества), диффузия становится односторонней (осмос). Сила, обусловливающая осмос, отнесенная к единице поверхности мембраны, называется осмотическим давлением. Роль полупроницаемых перегородок (мембран) могут выполнять ткани человека, животных и растений (мочевой пузырь, стенки кишечника, оболочки клеток и др.). Для коллоидных растворов осмотическое давление меньше, чем в истинных растворах. Процесс диффузии сопровождается возникновением разности потенциала в результате различной подвижности ионов и образования градиента концентрации (мембранного потенциала).

Седиментация. На распределение частиц оказывает влияние не только диффузия, но и гравитационное поле. Кинетическая устойчивость коллоидной системы зависит от действия двух факторов, направленных взаимно противоположно: силы тяжести, под действием которой частицы оседают, и силы, при которой частицы стремятся разойтись по всему объему и противодействовать оседанию.

Оптические свойства коллоидных растворов. Светорассеяние. Уравнение Д. Рэлея. Различить коллоидный и истинный растворы с первого взгляда невозможно. Хорошо приготовленный золь - практически чистая прозрачная жидкость. Микрогетерогенность его можно обнаружить специальными методами. Если золь, находящийся в неосвещенном месте, осветить узким лучом, то при наблюдении сбоку можно увидеть светлый конус, вершина которого находится в месте входа луча в негомогенное пространство. Это так называемый конус Тиндаля - своеобразное мутное свечение коллоидов, наблюдаемое при боковом освещении, называется эффектом Фарадея-Тиндаля.

Причина этого характерного для коллоидов явления в том, что размер коллоидных частиц меньше половины длины световой волны, при этом наблюдается дифракция света, в результате рассеивания частицы светятся, превращаясь в самостоятельный источник света, и луч становится видимым.

Теория рассеивания света разработана Рэлеем в 1871 году, который вывел для сферических частиц уравнение, связывающее интенсивность падающего света (I 0) с интенсивностью света, рассеянного единицей объема системы (I p).

где I, I 0 - интенсивность рассеянного и падающего света, Вт/м 2 ; к р - константа Рэлея, постоянная, зависящая от показателей преломления веществ дисперсной фазы и дисперсионной среды, м -3 ; с v - концентрация частиц золя, моль/л; λ - длина волны падающего света, м; r - радиус частицы, м.

13.3. МИЦЕЛЛЯРНАЯ ТЕОРИЯ СТРОЕНИЯ КОЛЛОИДНЫХ ЧАСТИЦ

Мицеллы образуют дисперсную фазу золя, а интермицеллярная жидкость - дисперсионную среду, в состав которой входят растворитель, ионы электролитов и молекулы неэлектролитов. Мицелла состоит из электронейтрального агрегата и ионогенной частицы. Масса коллоидной частицы сосредоточена главным образом в агрегате. Агрегат может иметь как аморфное, так и кристаллическое строение. Согласно правилу Панета-Фаянса на агрегате адсорбируется необратимо с образованием прочных связей с атомами агрегата ионы, которые входят в состав кристаллической решетки агрегата (или изоморфны с ней). Показателем этого является нерастворимость этих соединений. Они называются потенциалопределяющими ионами. Агрегат в результате избирательной адсорбции ионов или ионизации поверхностных молекул приобретает заряд. Итак, агрегат и потенциалопределяющие ионы образуют ядро мицеллы и группируют вокруг ядра ионы противоположного знака - противоионы. Агрегат вместе с ионогенной частью мицеллы образуют двойной электрический слой (адсорбционный слой). Агрегат вместе с адсорбционным слоем называют гранулой. Заряд гранулы равен сумме зарядов противоионов и потенциалопределяющих ионов. Ионогенная

часть мицеллы состоит из двух слоев: адсорбционного и диффузного. На этом заканчивается формирование электронейтральной мицеллы, которая является основой коллоидного раствора. Мицеллу изображают в виде коллоидно-химической формулы.

Рассмотрим строение мицеллы гидрозолей на примере образования коллоидного раствора сульфата бария при условии избытка BaCl 2:

Труднорастворимый барий сульфат образует кристаллический агрегат, состоящий из m молекул BaSO 4 . На поверхности агрегата адсорбируется n ионов Ва 2+ . С поверхностью ядра связано 2(n - x) хлорид ионов С1 - . Остальные противоионы (2x) располагаются в диффузном слое:

Строение мицеллы золя бария сульфата, полученного при избытке натрий сульфата, записывается в виде:

Из приведенных выше данных следует, что знак заряда коллоидной частицы зависит от условий получения коллоидного раствора.

13.4. ЭЛЕКТРОКИНЕТИЧЕСКИЙ ПОТЕНЦИАЛ

КОЛЛОИДНОЙ ЧАСТИЦЫ

Дзета-(ζ )-потенциал. Величину заряда ζ-потенциала определяет заряд гранулы. Она определяется разностью суммы зарядов потенциал-определяющих ионов и зарядов противоионов, находящихся в адсорбционном слое. Он уменьшается по мере увеличения числа противоионов в адсорбционном слое и может стать равным нулю, если заряд противо-ионов равен заряду ядра. Частица будет находиться в изоэлектрическом состоянии. По величине ζ-потенциала можно судить об устойчивости дисперсной системы, ее структуре и об электрокинетических свойствах.

ζ-потенциал различных клеток организма разнится. Живая протоплазма заряжена отрицательно. При pH 7,4 величина ζ-потенциала эритроцитов от -7 до -22 мв, у человека равна -16,3 мв. У моноцитов примерно в 2 раза ниже. Электрокинетический потенциал рассчитывают, определяя скорость движения частиц дисперсной фазы при электрофорезе.

Электрофоретическая подвижность частиц зависит от ряда величин и рассчитывается по уравнению Гельмгольца-Смолуховского:

где и эф - электрофоретическая подвижность (скорость электрофореза), м/с; ε- относительная диэлектрическая проницаемость раствора; ε 0 - электрическая постоянная, 8,9 10 -12 А с/Вт м; Δφ - разность потенциалов от внешнего источника тока, В; ζ - электрокинетический потенциал, В; η - вязкость дисперсионной среды, Н с/м 2 ; l - расстояние между электродами, м; к ф - коэффициент, значение которого зависит от формы коллоидной частицы.

13.5. ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ.

ЭЛЕКТРОФОРЕЗ. ЭЛЕКТРОФОРЕЗ

В МЕДИКО-БИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ

Электрокинетические явления отражают связь, существующую между движением фаз дисперсной системы относительно друг друга и электрическими свойствами границы раздела этих фаз. Различают четыре вида электрокинетических явлений - электрофорез, электроосмос, потенциал течения (протекания) и потенциал оседания (седиментации). Электрокинетические явления открыты Ф.Ф. Рейссом. В кусок влажной глины он погрузил на некоторое расстояние две стеклянные трубки, в которые насыпал немного кварцевого песка, налил воды до одинакового уровня и опустил электроды (рис. 13.1).

Пропуская постоянный ток, Рейсс установил, что в анодном пространстве вода над слоем песка становится мутной вследствие появления суспензии глинистых частиц, вместе с тем уровень воды в колене понижается; в катодной трубке вода остается прозрачной, но уровень ее повышается. По результатам опыта можно сделать вывод: частицы глины, двигающиеся к положительному электроду, заряжены отрицательно, а прилегающий слой воды заряжен положительно, так как перемещается к отрицательному полюсу.

Рис. 13.1. Электрокинетические явления движения частиц дисперсной фазы

в дисперсной системе

Явление движения заряженных частичек дисперсной фазы относительно частиц дисперсионной среды под действием электрического поля получило название электрофореза. Явление движения жидкости относительно твердой фазы через пористое твердое тело (мембрану) называется электроосмосом. В условиях описанного опыта наблюдалось одновременно два электрокинетических явления - электрофорез и электроосмос. Передвижение коллоидных частиц в электрическом поле является ярким доказательством того, что коллоидные частицы несут на своей поверхности заряд.

Коллоидную частицу - мицеллу можно рассматривать как огромный по размеру сложный ион. Коллоидный раствор под действием постоянного тока подвергается электролизу, коллоидные частицы переносятся к аноду или катоду (зависит от заряда коллоидной частицы). Таким образом, электрофорез есть электролиз высокодисперсной системы.

Позднее были обнаружены 2 явления, противоположные электрофорезу и электроосмосу. Дорн обнаружил, что при оседании каких-либо частиц в жидкости, например песка в воде, возникает ЭДС между 2 электродами, введенными в разные места столба жидкости, называемое потенциалом седиментации (эффект Дорна).

При продавливании жидкости через пористую перегородку, по обеим сторонам которой находятся электроды, также появляется ЭДС - потенциал течения (протекания).

Коллоидная частица движется со скоростью, пропорциональной величине ζ-потенциала. Если в системе сложная смесь, то можно изучить и разделить ее, используя метод электрофореза, основанный на электро-форетической подвижности частиц. Это широко используется в медико-биологических исследованиях в виде макро и микроэлектрофореза.

Создаваемое электрическое поле вызывает движение частиц дисперсной фазы со скоростью, пропорциональной величине ζ-потенциала, которое можно наблюдать по перемещению границы раздела между исследуемым раствором и буфером с помощью оптических приспособлений. В результате смесь разделяется на ряд фракций. При регистрации получают кривую с несколькими пиками, высота пика - количественный показатель содержания каждой фракции. Этим методом удается выделить и исследовать отдельные фракции белков плазмы крови. Электрофореграммы плазмы крови всех людей в норме одинаковы. При патологии они имеют характерный для каждого заболевания вид. Они используются для установления диагноза и лечения заболеваний. Электрофорез используется для разделения аминокислот, антибиотиков, ферментов, антител и т.д. Микроэлектрофорез заключается в определении скорости движения частиц под микроскопом, электрофорез - на бумаге. Явление электрофореза происходит при миграции лейкоцитов в воспалительные очаги. Как методы лечения сейчас разрабатываются и внедряются имуноэлек-трофорез, диск-электрофорез, изотахофорез и др. Они решают многие медико-биологические задачи как препаративного, так и аналитического характера.

13.6. УСТОЙЧИВОСТЬ КОЛЛОИДНЫХ РАСТВОРОВ. СЕДИМЕНТАЦИОННАЯ, АГРЕГАТИВНАЯ И КОНДЕНСАЦИОННАЯ УСТОЙЧИВОСТЬ ЛИОЗОЛЕЙ. ФАКТОРЫ, ВЛИЯЮЩИЕ НА УСТОЙЧИВОСТЬ

Вопрос об устойчивости коллоидных систем - весьма важный вопрос, касающийся непосредственно самого их существования. Седиментационная устойчивость - устойчивость частиц дисперсной системы к оседанию под действием сил тяжести.

Песков ввел понятие агрегативной и кинетической устойчивости. Кинетическая устойчивость - способность дисперсной фазы коллоидной системы находиться во взвешенном состоянии, не седимен-тировать и противодействовать силам тяжести. Высокодисперсные системы - кинетически устойчивы.

Под агрегативной устойчивостью нужно понимать способность дисперсной системы сохранять первоначальную степень дисперсности. Это возможно только при наличии стабилизатора. Следствием нарушения агрегативной устойчивости является кинетическая неустойчивость,

ибо образовавшиеся из первоначальных частиц агрегаты под действием сил тяжести выделяются (оседают или всплывают).

Агрегативная и кинетическая устойчивость взаимосвязаны. Чем больше агрегативная устойчивость системы, тем больше ее кинетическая устойчивость. Устойчивость определяется результатом борьбы сил тяжести и броуновского движения. Это пример проявления закона единства и борьбы противоположностей. Факторы, определяющие устойчивость систем: броуновское движение, дисперсность частиц дисперсной фазы, вязкость и ионный состав дисперсионной среды и т.д.

Факторы устойчивости коллоидных растворов: наличие электрического заряда коллоидных частиц. Частицы несут одноименный заряд, поэтому при встрече частицы отталкиваются; способность к сольватации (гидратации) ионов диффузного слоя. Чем более гидратированы ионы в диффузном слое, тем толще общая гидратная оболочка, тем стабильнее система. Упругие силы сольватных слоев оказывают расклинивающее действие на дисперсные частицы и не дают им сближаться; адсорбционно-структурирующие свойства систем. Третий фактор связан с адсорбционными свойствами дисперсных систем. На развитой поверхности дисперсной фазы легко абсорбируются молекулы поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений (ВМС). Большие размеры молекул, несущих собственные сольватные слои, создают на поверхности частиц адсорбционно-сольватные слои значительной протяженности и плотности. Такие системы по устойчивости близки к лиофильным системам. Все эти слои обладают определенной структурой, создают по П.А. Ребиндеру структурно-механический барьер на пути сближения дисперсных частичек.

13.7. КОАГУЛЯЦИЯ ЗОЛЕЙ. ПРАВИЛА КОАГУЛЯЦИИ. КИНЕТИКА КОАГУЛЯЦИИ

Золи являются термодинамически неустойчивыми системами. Частицы дисперсной фазы золей стремятся к уменьшению свободной поверхностной энергии за счет сокращения удельной поверхности коллоидных частиц, что происходит при их объединении. Процесс объединения коллоидных частиц в более крупные агрегаты, и в конечном итоге выпадение их в осадок, называется коагуляцией.

Коагуляцию вызывают различные факторы: механическое воздействие, изменение температуры (кипячение и вымораживание), излуче-

ние, посторонние вещества, особенно электролиты, время (старение), концентрация дисперсной фазы.

Наиболее изученным процессом является коагуляция золей электролитами. Существуют следующие правила коагуляции золей электролитами.

1.Все электролиты способны вызывать коагуляцию лиофобных золей. Коагулирующим действием (Р) обладают ионы, имеющие заряд, противоположный заряду гранулы (потенциалопределяющих ионов) и одинаковый по знаку с противоионами (правило Гарди). Коагуляцию положительно заряженных золей вызывают анионы.

2.Коагулирующая способность ионов (Р) зависит от величины их заряда. Чем выше заряд иона, тем выше его коагулирующее действие (правило Шульце): РА1 3+ > PCa 2+ > PK + .

Соответственно для порога коагуляции можно записать:

т.е. чем ниже заряд иона, тем при большей концентрации будет происходить коагуляция.

3. Для ионов одного заряда коагулирующая способность зависит от радиуса (r) сольватированного иона: чем больше радиус, тем больше его коагулирующее действие:

4. Каждый электролит характеризуется пороговой концентрацией процесса коагуляции коллоидного раствора (порог коагуляции), т.е. наименьшей концентрацией, выраженной в миллимолях, которую необходимо добавить к одному литру коллоидного раствора, чтобы вызвать его коагуляцию. Порог коагуляции или пороговая концентрация обозначается С к. Порог коагуляции является относительной характеристикой устойчивости золя по отношению к данному электролиту и является величиной, обратной коагулирующей способности:

5. Коагулирующее действие органических ионов больше, чем неорганических; коагуляция многих лиофобных золей наступает раньше,

чем достигается их изоэлектрическое состояние, при котором начинается явная коагуляция. Это действие называется критическим. Его величина составляет +30 мВ.

Процесс коагуляции для каждой дисперсной системы идет с определенной скоростью. Зависимость скорости коагуляции от концентрации электролита-коагулятора показана на рис. 13.2.

Рис. 13.2. Зависимость скорости коагуляции от концентрации электролитов.

Пояснения в тексте

Выделены 3 области и две характерные точки АиБ. Область, ограниченная линией ОА (по оси концентрации), называется областью скрытой коагуляции. Здесь скорость коагуляции практически равна нулю. Это зона устойчивости золя. Между точками А и Б расположена область медленной коагуляции, в которой скорость коагуляции зависит от концентрации электролита. Точка А соответствует наименьшей концентрации электролита, при которой начинается явная коагуляция (порог коагуляции), и имеет критическое значение. Об этой стадии можно судить по внешним признакам: изменению окраски, появлению мути. Происходит полное разрушение коллоидной системы: выделение вещества дисперсной фазы в осадок, который называется коагулятом. В точке Б начинается быстрая коагуляция, т. е. все столкновения частичек оказываются эффективными и не зависят от концентрации электролита. В точке Б ζ-потенциал равен 0. Количество вещества, необходимое для коагуляции коллоидного, раствора зависит от того, прибавляется электролит сразу или постепенно, небольшими порциями. Замечено, что в последнем случае приходится прибавлять больше вещества, чтобы вызвать такое же явление коагуляции. Это явление используется при дозировке лекарств.

Если слить два коллоидных раствора с противоположными зарядами, то они быстро коагулируют. Процесс носит электростатический характер. Это используют для очистки промышленных и сточных вод. На водопроводных станциях к воде добавляют перед песчаными фильтрами алюминий сульфат или железо (III) хлорид. При их гидролизе образуются положительно заряженные золи гидроксидов металлов, которые вызывают коагуляцию отрицательно заряженных частиц микрофлоры, почвы, органических примесей.

В биологических системах явления коагуляции играют очень важную роль. Цельная кровь - это эмульсия. Форменные элементы крови - дисперсная фаза, плазма - дисперсионная среда. Плазма является более высокодисперсной системой. Дисперсная фаза: белки, ферменты, гормоны. В крови работают система свертывания крови и анти-свертывающая система. Первое обеспечивается тромбином, который действует на фибриноген и вызывает образование нитей фибрина (сгустка крови). Эритроциты седиментируют с определенной скоростью (СОЭ). Процесс свертывания обеспечивает минимальную потерю крови и образование тромбов в кровеносной системе. При патологии эритроциты адсорбируют крупные молекулы гамма-глобулинов и фибриногенов и СОЭ увеличивается. Основной антисвертывающей способностью крови является гепаринантикоагулянт крови. В клиниках пользуются коагулограммами - совокупностью анализов по свертывающей и антисвертывающей способности крови (содержание протромбина, время рекальцификации плазмы, толерантность к гепарину, общее количество фибриногена и т.д.), это важно при сильных кровотечениях, при образовании тромбов. Свертываемость крови необходимо учитывать при ее консервировании. Удаляют нитратом натрия в осадок ионы Са 2+ , который повышает свертываемость. Применяют антикоагулянт, гепарин, дикумарин. Полимеры, используемые для эндопроте-зирования элементов сердечно-сосудистой системы, должны обладать антитромбогенными или тромборезистентными свойствами.

13.8. СТАБИЛИЗАЦИЯ КОЛЛОИДНЫХ СИСТЕМ (ЗАЩИТА КОЛЛОИДНЫХ РАСТВОРОВ)

Стабилизация коллоидных растворов по отношению к электролитам путем создания на поверхности коллоидных частиц дополнительных адсорбционных слоев с повышенными структурно-механическими свойствами, добавлением незначительного количества раствора высо-

комолекулярных соединений (желатин, казеинат натрия, яичный альбумин и др.) получила название коллоидной защиты. Защищенные золи весьма устойчивы к электролитам. Защищенный золь приобретает все свойства адсорбированного полимера. Дисперсная система становится лиофильной и поэтому устойчивой. Защитное действие ВМС или ПАВ характеризуют защитным числом. Под защитным числом следует понимать минимальную массу ВМС (в миллиграммах), которое необходимо добавить к 10 мл исследуемого золя, чтобы защитить его от коагуляции при введении в системы 1 мл 10% раствора натрий хлорида. Степень защитного действия растворов ВМС зависят: от природы ВМС, природы защищаемого золя, степени дисперсности, pH среды, от примесей.

Явление коллоидной защиты в организме играет очень важную роль в ряде физиологических процессов. Защитным действием в организме обладают различные белки, полисахариды, пептиды. Они адсорбируют Са на коллоидных частицах таких гидрофобных систем организма, как карбонаты, фосфаты кальция, переводя их в устойчивое состояние. Примером защищенных золей является кровь и моча. Если выпарить 1 л мочи, собрать получившийся осадок и потом попытаться растворить его в воде, то для этого нужно 14 л растворителя. Следовательно, моча - коллоидный раствор, в котором дисперсные частицы защищены альбуминами, муцинами и другими белками. Протеины сыворотки крови увеличивают растворимость карбоната кальция почти в 5 раз. Повышенное содержание кальций фосфата в молоке обусловлено белковой защитой, которая при старении нарушается.

В развитии атеросклероза играет большую роль лейцетино-холестериновое равновесие, при нарушении которого изменяется соотношение между холестерином, фосфолипидами и белками, приводящее к отложению холестерина на стенках сосудов, следствием чего является атерокальциноз. Большая роль в защите отводится крупномолекулярным жиробелковым компонентам. С другой стороны способность крови удерживать в растворенном состоянии в больших концентрациях газов углерода и кислорода, также обусловлено защитным действием белков. В данном случае белки обволакивают микропузырьки газов и предохраняют их от слипания.

Защита коллоидньгх частиц, применяемых при изготовлении лекарственных препаратов. В организм часто необходимо вводить лекарственные вещества в коллоидном состоянии, чтобы они равномерно распределялись в организме и усваивались. Так, защищенные белковыми веществами коллоидные растворы серебра, ртути, серы, используемые

как лекарственные препараты (протаргол, колларгол, лизоргинон), становятся не только малочувствительными к электролитам, но и могут быть выпарены досуха. Сухой остаток после обработки водой снова переходит в золь.

13.9. ПЕПТИЗАЦИЯ

Пептизация - процесс, обратный коагуляции, процесс перехода коагулята в золь. Пептизация идет при добавлении к осадку (коагуляту) веществ, способствующих переходу осадка в золь. Их называют пепти-заторами. Обычно пептизаторами являются потенциалопределяющие ионы. Например, осадок железа (III) гидроксида пептизируется солями железа (III). Но роль пептизатора может выполнять и растворитель (Н 2 О). Процесс пептизации обусловлен адсорбционными явлениями. Пептизатор облегчает образование структуры двойного электрического слоя и образованию дзета-потенциала.

Следовательно, процесс пептизации в основном обусловлен адсорбцией потенциалопределяющих ионов и десорбцией противоионов, в результате которых происходят повышение ζ-потенциала дисперсных частиц и увеличение степени сольвации (гидратации), образования вокруг частиц сольватных оболочек, производящих расклинивающее действие (адсорбционная пептизация).

Помимо адсорбционной различают еще диссолюционную пептиза-цию. Этот вид охватывает все, когда процесс пептизации сопряжен с химической реакцией поверхностно расположенных молекул дисперсной фазы. Он состоит из двух фаз: образования пептизатора путем химической реакции введенного электролита пептизатора с дисперсной частицей; адсорбцией образовавшегося пептизатора на поверхности дисперсной фазы, приводящей к образованию мицелл и пептиза-ции осадка. Типичным примером диссолюционной пептизации может служить пептизация гидроксидов металлов кислотами.

Максимальная дисперсность золей, получаемых при адсорбционной пептизации, определяется степенью дисперсности первичных частиц, образующих хлопья осадка. При диссолюционной пептизации граница дробления частиц может выходить из области коллоидов и достигать молекулярной степени дисперсности. Процесс пептизации имеет большое значение в живых организмах, так как коллоиды клеток и биологических жидкостей постоянно испытывают на себе действие электролитов в организме.

Действие многих детергентов, в том числе моющих средств, основано на явлении пептизации. Коллоидный ион мыла является диполем, адсорбируется частицами грязи, сообщает им заряд и способствует их пептизации. Грязь в виде золя легко удаляется с поверхности.

13.10. ГЕЛИ И СТУДНИ. ТИКСОТРОПИЯ. СИНЕРЕЗИС

Растворы ВМС и золи некоторых гидрофобных коллоидов способны при известных условиях претерпевать изменения: происходят потеря текучести, застудневание, желатирование растворов, при этом образуются студни и гели (от лат. «замерзший»).

Студни (гели) - это твердообразные нетекучие, структурированные системы, возникающие в результате действия молекулярных сил сцепления между коллоидными частицами или макромолекулами полимеров. Силы межмолекулярного взаимодействия приводят к образованию пространственного сетчатого каркаса, ячейки пространственных сеток заполнены жидким раствором, как губка, пропитанная жидкостью. Образование студня можно представить как высаливание ВМС или начальную стадию коагуляции, возникновения коагуляционного структурирования.

Водный раствор желатина при нагревании смеси до 45 °C становится гомогенной жидкой средой. При охлаждении до комнатной температуры вязкость раствора увеличивается, система утрачивает текучесть, застудневает, консистенция полутвердой массы сохраняет форму (можно резать ножом).

В зависимости от природы веществ, образующих студень или гель, различают: построенные из жестких частиц - хрупкие (необратимые); образованные гибкими макромолекулами - эластичные (обратимые). Хрупкие образованы коллоидными частицами (TiO 2 , SiO 2). Высушенные - это твердая пена с большой удельной поверхностью. Высушенный студень не набухает, высушивание вызывает необратимые изменения.

Эластичные гели образованы полимерами. При высушивании легко деформируются, сжимаются, получается сухой полимер (пирогель), который сохраняет эластичность. Он способен набухать в подходящем растворителе, процесс обратим, можно повторять неоднократно.

Слабые молекулярные связи в студнях можно механически разрушить (встряхиванием, переливанием, температурой). Разрыв связи вызывает разрушение структуры, частицы приобретают способность

к тепловому движению, система разжижается и становится текучей. Через некоторое время структура самопроизвольно восстанавливается. Это можно повторить десятки раз. Такое обратимое превращение получило название тиксотропии. Это изотермическое превращение можно представить схемой:

Тиксотропия наблюдается в слабых растворах желатина, протоплазмы клеток. Обратимость тиксотропии свидетельствует о том, что структурирование в соответствующих системах обусловлено межмолекулярными (ван-дер-ваальсовыми) силами - коагуляционно-тиксотропная структура.

Гелями в организме являются мозг, кожа, глазное яблоко. Конденсационно-кристаллизационный тип структуры характеризуется более прочной связью химического характера. В этом случае обратимость тиксотропных изменений нарушается (гель кремниевой кислоты).

Студень - это неравновесное состояние системы, некоторый этап медленно протекающего процесса разделения фаз и приближение системы к состоянию равновесия. Процесс сводится к постепенному сжатию каркаса студня в более плотную компактную массу с опрессованием второй подвижной жидкой фазы, которая механически удерживается в пространственной сетке каркаса. На поверхности студней при хранении вначале появляются отдельные капли жидкости, со временем они увеличиваются и сливаются в сплошную массу жидкой фазы. Такой самопроизвольный процесс расслаивания студня получил название синерезиса. Для хрупких студней синерезис - необратимая агрегация частиц, уплотнение всей структуры. Для студней ВМС повышением температуры можно приостановить синерезис и вернуть студень в исходное положение. Расслоение сгустков свернувшейся крови, очерствение хлеба, отмокание кондитерских изделий - примеры синерези-са. Ткани молодых людей эластичны, содержат больше воды, с возрастом эластичность теряется, меньше воды - это синерезис.

13.11. ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОПРОВЕРКИ

ПОДГОТОВЛЕННОСТИ К ЗАНЯТИЯМ И ЭКЗАМЕНАМ

1. Дать понятие о дисперсных системах, дисперсной фазе и дисперсионной среде.

2.Как классифицируются дисперсные системы по агрегатному состоянию дисперсной фазы и дисперсионной среды? Приведите примеры медико-биологического профиля.

3.Как классифицируются дисперсные системы по силе межмолекулярного взаимодействия в них? Приведите примеры медико-биологического профиля.

4.Основной частью аппарата «искусственная почка» является диализатор. Каков принцип устройства простейшего диализатора? От каких примесей можно очистить кровь посредством диализа? От каких факторов зависит скорость диализа?

5.Какими способами можно различить раствор низкомолекулярного вещества и коллоидный раствор? На каких свойствах основаны эти способы?

6.Какими способами можно отличить золь от грубодисперсной системы? На каких свойствах основаны эти способы?

7.Какие существуют методы получения коллоидно-дисперсных систем? В чем они отличаются друг от друга?

8.В чем заключаются особенности молекулярно-кинетических и оптических свойств коллоидно-дисперсных систем? Что их отличает от истинных растворов и грубодисперсных систем?

9.Дать понятие агрегативной, кинетической и конденсационной устойчивости дисперсных систем. Факторы, определяющие устойчивость систем.

10.Покажите взаимосвязь электрокинетических свойств коллоидно-дисперсных систем.

11.Какие электрокинетические явления наблюдаются при механическом перемешивании частиц дисперсной фазы: а) относительно дисперсионной среды; б) относительно частиц дисперсной фазы?

12.Объясните, какой из указанных ниже препаратов относится к коллоидным растворам: а) препарат барий сульфата в воде, применяющийся как контрастное вещество при рентгенологических исследованиях с размером частиц 10 -7 м; б) препарат серебра в воде - колларгол, применяющийся для обработки гнойных ран с размером частиц 10 -9 м.

13.Понятие коагуляции золей. Коагуляция лиофильных золей. Каковы внешние признаки коагуляции? Укажите возможные продукты коагуляции золей.

14.Факторы, вызывающие коагуляцию золей. Правила коагуляции золей электролитами. Кинетика коагуляции. Порог коагуляции.

15. В результате нарушения микро (Са 2+)- и макро (С 2 О 4 2-)-элементного и кислотно-основного гомеостаза в ЖКТ в почках происходит реакция:

Каков заряд золя? Какие из указанных ионов будут обладать коагулирующим действием для частиц этого золя: K + , Mg 2+ , SO 4 2- , NO 3 - , PO 4 3- , Al 3+ ?

Образуется золь кальций оксалата. Запишем формулу мицеллы золя

(13.3.).

Заряд гранулы золя положительный, значит, коагулирующим действием (к) для частиц этого золя будут обладать ионы: SO 4 2- , PO 4 3- , NO 3 - , согласно правилу Гарди. Чем выше заряд коагулирующего иона, тем сильнее его коагулирующее действие (правило Шульце). Согласно правилу Шульце, данные анионы можно расположить в следующий ряд: С к Р0 4 3- > С к SO 4 2- > С к NO 3 - . Чем ниже заряд иона, тем при больших концентрациях будет происходить коагуляция. Порог коагуляции (р) является относительной характеристикой устойчивости золя по отношению к данному электролиту и является величиной, обратной

13.12. ТЕСТОВЫЕ ЗАДАНИЯ

1. Выберите неверное утверждение:

а) к конденсационным методам получения коллоидных растворов относятся ОВР, гидролиз, замена растворителя;

б)к дисперсионным методам получения коллоидных растворов относятся механический, УЗ, пептизация;

в)к оптическим свойствам коллоидных систем относятся опалес-ценция, дифракция, эффект Тиндаля;

г)к молекулярно-кинетическим свойствам коллоидных систем относятся броуновское движение, светорассеяние, изменение окраски раствора.

2. Выберите неверное утверждение:

а)электрофорез - это перемещение в электрическом поле дисперсной фазы относительно неподвижной дисперсионной среды;

б)электроосмос - это перемещение в электрическом поле дисперсионной среды относительно неподвижной дисперсной фазы;

в)проникновение жидкостей, содержащих лечебные ионы и молекулы, через капиллярную систему под действием электрического поля, называется электродиализом;

г)электрофорез применяется для разделения белков, нуклеиновых кислот и форменных элементов крови.

3. Коллоидный раствор, потерявший текучесть, - это:

а)эмульсия;

б)гель;

в)золь;

г)суспензия.

4. Плазма крови - это:

а)золь;

б)гель;

в)истинный раствор;

г)эмульсия.

5. Гетерогенная система, состоящая из микрокристалла дисперсной фазы, окруженная сольватируемыми ионами стабилизатора, называется:

а)гранулой;

б)ядром;

в)агрегатом;

г)мицеллой.

6. При образовании мицеллы потенциалопределяющие ионы адсорбируются по правилу:

а)Шульце-Гарди;

б)Ребиндера;

в)Панета-Фаянса;

г)Шилова.

7. Гранулой мицеллы называют агрегат:

а)вместе с адсорбционным слоем;

б)диффузионным слоем;

в)адсорбционным и диффузионным слоями;

г)потенциалопределяющими ионами.

8. Межфазный потенциал - это потенциал между:

а)твердой и жидкой фазами;

б)адсорбционным и диффузным слоями на границе скольжения;

в)ядром и противоионами;

г)потенциалопределяющими ионами и противоионами.

9. Способность мелкопористых мембран задерживать частички дисперсной фазы и свободно пропускать ионы и молекулы, называется:

№6. Классификацию дисперсных систем см. табл. 3.

КЛАССИФИКАЦИЯ ДИСПЕРСНЫХ СИСТЕМ Таблица ПО АГРЕГАТНОМУ СОСТОЯНИЮ

Дисперсионная среда

Дисперсная

Примеры некоторых природных и бытовых дисперсных систем

Жидкость

Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли

Твердое вещество

Пыль в воздухе, дымы, смог, самумы (пыльные и песчаные бури), твердые аэрозоли

Жидкость

Шипучие напитки, пены

Жидкость

Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)

Твердое вещество

Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы

Твердое вещество,

Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки

Жидкость

Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)

Твердое вещество

Горные породы, цветные стекла, некоторые сплавы

Урок по химии в 11 классе: «Дисперсные системы и растворы»

Цель - дать понятие о дисперсных системах, их классификация. Раскрыть значение коллоидных систем в жизни природы и общества. Показать относительность деления растворов на истинные и коллоидные.

Оборудование и материалы:

Технологические карты: схема-таблица, лабораторная работа, инструкции.

Оборудование для лабораторных работ:

Реактивы: раствор сахара, раствор хлорида железа (III), смесь воды и речного песка, желатин, клейстер, нефть, раствор хлорида алюминия, раствор поваренной соли, смесь воды и растительного масла.

Химические стаканы

Бумажные фильтры.

Черная бумага.

Фонарики

Ход урока по химии в 11 классе:

Этап урока Особенности этапа Действия учителя Действия учеников
Организационный (2 мин.) Подготовка к уроку Приветствует учеников.

Готовятся к уроку.

Здороваются с учителем.

Введение (5 мин.) Введение в новую тему.

Подводит к теме урока, задачам и «вопросам для себя»

Знакомит с темой урока.

Выводит на экран задачи сегодняшнего урока.

Принимают участие в обсуждении темы. Знакомятся с темой урока и задачами (ПРИЛОЖЕНИЕ №1)

Записывают три вопроса по теме, на которые хотели бы получить ответы.

Теоретическая часть

(15 мин.)

Объяснение новой темы. Дает задания для работы в группах по поиску нового материала (ПРИЛОЖЕНИЕ №3,4) Объединившись в группы, выполняют задания сообразуясь с технологической картой, предоставленной схемой (ПРИЛОЖЕНИЕ №4) и требованиями учителя.
Подведение итогов по теоретической части (8 мин.) Выводы на основе полученных теоретических знаний.

Заранее вывешивает на доске пустые схемы (формат А3) для наглядного заполнения учениками. (ПРИЛОЖЕНИЕ №4)

Совместно с учениками формулирует основные теоретические выводы.

Маркером заполняют схемы, соответствующие той, по которой работали, отчитываются по проведенной работе в группах

Записывают в технологических картах основные выводы.

Практическая часть (10 мин.) Выполнение лабораторной работы, закрепление полученного опыта. Предлагает выполнить лабораторную работу по теме «Дисперсные системы» (ПРИЛОЖЕНИЕ №2) Выполняют лабораторную работу (ПРИЛОЖЕНИЕ №2), заполняют бланки, сообразуясь с инструкцией к лабораторной работе и требованиями учителя.

Обобщение и выводы (5 мин.)

Подведение итогов урока.

Домашнее задание.

Вместе с учениками делает вывод относительно темы.

Предлагает соотнести вопросы, которые были написаны в начале урока с тем, что получили в конце урока.

Подводят итоги, записывают домашнее задание.

Формы и методы контроля:

Технологические схемы для заполнения (ПРИЛОЖЕНИЕ №4).

Лабораторная работа (ПРИЛОЖЕНИЕ №2)

Контроль осуществляется фронтально в устной и письменной форме. По итогам выполнения лабораторной работы карты с лабораторными работами сдаются учителю на проверку.

1. Введение:

Ответьте, чем отличаются мрамор и гранит? А минеральная и дистиллированная вода?

(ответ: мрамор - чистое вещество, гранит - смесь веществ, дистиллированная вода - чистое вещество, минеральная вода - смесь веществ).

Хорошо. А молоко? Это чистое вещество или смесь? А воздух?

Состояние любого чистого вещества описывается очень просто - твердое, жидкое, газообразное.

Но ведь абсолютно чистых веществ в природе не существует. Даже незначительное количество примесей может существенно влиять на свойство веществ: температуру кипения, электро- и теплопроводимость, реакционную способность и т.д.

Получение абсолютно чистых веществ - одна из важнейших задач современной химии, ведь именно чистота вещества определяет возможность проявления им своих индивидуальных средств (демонстрация реактивов с маркировкой).

Следовательно, в природе и практической жизни человека встречаются не отдельные вещества, а их системы.

Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Гомогенными системами являются растворы, с которыми мы ознакомились на прошлом уроке.

Сегодня мы познакомимся с гетерогенными системами.

2. Тема сегодняшнего урока - ДИСПЕРСНЫЕ СИСТЕМЫ.

Изучив тему урока, вы узнаете:

значение дисперсных систем.

Это, как вы понимаете, наши основные задачи. Они прописаны в ваших технологических картах. Но чтобы наша работа была более продуктивной и мотивированной, я предлагаю вам рядом с основными задачами написать не менее трех вопросов, на которые вы бы хотели найти ответ в процессе данного урока.

3. Теоретическая часть.

Дисперсные системы - что это?

Попробуем вместе вывести определение, исходя из построения слов.

1) Систе́ма (от др.-греч. «система» — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

2) Дисперсия - (от лат. dispersio — рассеяние) разброс чего-либо, дробление.

Дисперсные системы - гетерогенные (неоднородные) системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объёме другого.


Если мы опять обратимся к повторению и предыдущему уроку, мы сможем вспомнить, что: растворы состоят из двух компонентов: растворимое вещество и растворитель.

Дисперсные системы, как смеси веществ, имеют аналогичное строение: состоят из мелких частиц, которые равномерно распределены в объеме другого вещества.

Взгляните в свои технологические карты, и попробуйте из разрозненных частей составить две аналогичные схемы: для раствора и для дисперсной системы.

Проверим получившиеся результаты, сверив их с изображением на экране.

Итак, дисперсионная среда в дисперсной системе выполняет роль растворителя, и является т.н. непрерывной фазой, а дисперсная фаза - роль растворенного вещества.

Так как дисперсионная система - гетерогенная смесь, то между дисперсной средой и дисперсионной фазой есть поверхность раздела.

Классификация дисперсных систем.

Можно изучать каждую дисперсную систему по отдельности, но лучше их классифицировать, выделить общее, типичное и это запомнить. Для этого нужно определить, по каким признакам это сделать. Вы объединены в группы, каждой из которых дано задание и прилагающаяся к нему блок-схема.

Руководствуясь предложенной вам литературой, найдите в тексте, предложенный Вам для изучения признак классификации, изучите его.

Создайте кластер (блок-схема), указав признаки и свойства дисперсных систем, приведите к нему примеры. Для помощи в этом вам уже предоставлена пустая блок-схема, которую вам предстоит заполнить.

4. Вывод по теоретическому заданию.

Давайте подведем итоги.

От каждой команды прошу выйти по одному человеку и заполнить схемы, вывешенные на доске.

(ученики подходят и маркером заполняют каждую из схем, после чего отчитыватся по проведенной работе)

Молодцы, теперь давайте закрепим:

Что является основой для классификации дисперсных систем?

На какие виды делятся дисперсные системы?

Какие особенности коллоидных растворов вы знаете?

Как иначе называются гели? Какое значение они имеют? В чем их особенность?

5. Практическая часть.

Теперь, когда вы знакомы с особенностями дисперсных систем и их классификацией, а также определили по какому принципу классифицируются дисперсные системы, предлагаю вам закрепить это знание на практике, выполнив соответствующую лабораторную работу, предложенную вам на отдельном бланке.

Вы объединены в группы по 2 человека. На каждую группу у вас приложен соответствующий бланк с лабораторной работой, а также определенный набор реактивов, которые вам нужно изучить.

Вам выдан образец дисперсной системы.

Ваша задача: пользуясь инструкцией, определить, какая дисперсная система вам выдана, заполнить таблицу и сделать вывод об особенностях дисперсионной системы.

6. Обобщение и выводы.

Итак, на данном уроке мы с вами изучили более углубленно классификацию дисперсных систем, важность их в природе и жизни человека.

Однако следует отметить, что резкой границы между видами дисперсных систем нет. Классификацию следует считать относительной.

А теперь вернемся к поставленным на сегодняшний урок задачам:

что такое дисперсные системы?

какими бывают дисперсные системы?

какими свойствами обладают дисперсные системы?

значение дисперсных систем.

Обратите внимание на вопросы, которые вы записали для себя. В рамке рефлексии отметьте полезность данного урока.

7. Домашнее задание.

Мы постоянно сталкиваемся с дисперсными системами в природе и быту, даже в нашем организме существуют дисперсные системы. Для того, чтобы закрепить знания о значимости дисперсных систем, вам предлагается выполнить домашнее задание в форме эссе/

Выберите дисперсную систему, с которой вы постоянно сталкиваетесь в своей жизни. Напишите эссе на 1-2 страницы: «Какое значение имеет данная дисперсная система в жизни человека? Какие похожие дисперсные системы с похожими функциями еще известны?»

Спасибо за урок.