Что называется взрывом. Взрыв

Классификация

Взрывы классифицируют по происхождению выделившейся энергии на:

  • Химические.
  • Взрывы ёмкостей под давлением (баллоны , паровые котлы):
    • Взрывы при сбросе давления в перегретых жидкостях.
    • Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
  • Кинетические (падение метеоритов).
  • Электрические (например при грозе).
  • Взрывы сверхновых звёзд.

Химические взрывы

Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при горении. Как правило, скорость детонации выше скорости горения, однако это не является абсолютным правилом. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы детонации в горение и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв .

Параметры взрывчатых веществ

В следующей таблице для трёх ВВ приведены суммарные химические формулы и основные детонационные параметры: удельная энергия взрыва Q, начальная плотность r, скорость детонации D, давление P и температура T на момент завершения реакции.

ВВ Формула Q, ккал/кг p, г/см3 D, км/с P, ГПа T, K
ТНТ 1,0 1,64 7,0 21 3600
Гексоген 1,3 1,8 8,8 34 3900
БТФ 1,4 1,9 8,5 33 5100

Ядерные взрывы

Защита зданий от взрыва

Терроризм становится все большей и большей угрозой. Это требует принятия соответствующих мер. До сравнительно недавнего времени считалось: чтобы выдержать наружный взрыв, конструкция здания должна быть необыкновенно крепкой.

Оказывается, это совсем не обязательно. Новый подход, воплощенный в Конструктивном занавесе здания против наружного взрыва и осколков (Sails-Rigging Blast Protective Shield ), основан на идее временного накопления энергии взрыва, ее поглощении и рассеивании . Конструктивный занавес включает в себя парус, такелаж и пилястры (см. изображение справа). В помещениях со взрывоопасными производственными процессами площадь окон должна быть не менее двух третей от площади стен, чтобы ударная волна вышла, не разрушив здание полностью.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

Смотреть что такое "Взрыв" в других словарях:

    взрыв - взрыв, а … Русский орфографический словарь

    Сущ., м., употр. часто Морфология: (нет) чего? взрыва, чему? взрыву, (вижу) что? взрыв, чем? взрывом, о чём? о взрыве; мн. что? взрывы, (нет) чего? взрывов, чему? взрывам, (вижу) что? взрывы, чем? взрывами, о чём? о взрывах 1. Взрыв какого либо… … Толковый словарь Дмитриева

    А, м. 1. Освобождение большого количества энергии в ограниченном объёме за короткий промежуток времени, вызванное воспламенением взрывчатого вещества, ядерной реакцией и другими причинами. Атомный, тепловой в. В. метана в шахте. В. снаряда, мины … Энциклопедический словарь

    взрыв - потряс действие, субъект взрыв прогремел существование / создание, субъект, факт взрыв произошёл существование / создание, субъект, факт вызвать взрыв действие, каузация вызвать новый взрыв действие, каузация гремят взрывы действие,… … Глагольной сочетаемости непредметных имён

    ВЗРЫВ, взрыва, муж. 1. Особая химическая реакция, воспламенение с мгновенным расширением образовавшихся газов, производящее разрушительные действия (спец.). Взрыв пороха. Взрывы снарядов. || Вызванное этой реакцией разрушение, сопровождающееся… … Толковый словарь Ушакова

ВЗРЫВ - крайне быстрое выделение энергии, связанное с внезапным изменением состояния вещества, как правило, сопровождаемое таким же быстрым превращением энергии в механическую работу, разрушением окружающей среды, образованием и распространением в среде ударной или взрывной волны.

Место взрыва представляет собой совокупность следов взрывного действия, отображенных в конкретной обстановке, выявление и фиксация которых невозможны без выделения основных признаков проявления взрыва в целом и взрывного устройства определенной конструкции в частности.

Классификации самих взрывов разнообразны и многочисленны, критериями которых служат среда, в которой они производятся (наземный, неконтактный, подводный и т.п.), наличие концентрации продуктов взрыва в определенном направлении (кумулятивный) и иные факторы. Подробный перечень разновидностей взрывов приводят R.A. Strehlow и W.E. Bacer (1976) :

1) природные взрывы (молнии, вулканы, метеориты и др.);

2) преднамеренные взрывы (ядерные; взрывы военных, промышленных и пиротехнических взрывчатых веществ; взрывы топливно-воздушных смесей; взрывы у пушечного или оружейного дульного среза; электрические и лазерные взрывы; взрывы в цилиндрах двигателей внутреннего сгорания; исследовательские взрывы и др.);

3) случайные взрывы (взрывы конденсированных взрывчатых веществ; взрывы емкостей, находящихся под давлением, емкостей с перегретой жидкостью, емкостей с веществами, претерпевшими неконтролируемые химические превращения, и т.д.).

В криминалистической литературе как критерий систематизации чаще всего рассматривается природа взрыва. Так, А.М. Ларин с соавторами различают взрывы : 1) физические (взрыв парового котла); 2) электрические (молния); 3) атомные (взрыв ядерного заряда); 4) химические (взрывы бризантных взрывчатых веществ).

К.В. Вишневецкий, А.И. Гаевой, А.В. Гусев, В.Н. Михайлошин предлагают следующую классификацию взрыва :

■ в зависимости от вида взрывчатого вещества: 1) взрыв смешанных с воздухом газов и паров жидкостей (например, пропана, метана, нефтепродуктов и т.д.), а также легковоспламеняющейся, взвешенной в воздухе пыли некоторых материалов (например, угольной, мучной, табачной, древесной, пластмассовой); 2) взрывы твердых взрывчатых веществ;

■ в зависимости от способа распространения взрывной энергии: 1) объемный (взрыв, при котором поражение наносится ударной волной, возникающей при взрыве облака); 2) направленный (окружающая среда перемещается преимущественно в заданном направлении и на расчетное расстояние (кумулятивный взрыв).

М.А. Михайлов справедливо признает наиболее универсальной и лаконичной для практики борьбы с преступностью классификацию взрывов, предложенную Ю.М. Диль- диным, В.В. Мартыновым, А.Ю. Семеновым, А.А. Шмыревым, на взрывы физической и химической природы .

Физические взрывы (физические превращения системы) могут происходить при быстром переходе вещества в парообразное состояние при нагреве извне, мощном искровом разряде, смешении двух веществ в жидком состоянии при большой разнице температур (например, при попадании воды в расплавленный металл).

Примерами преднамеренного противоправного использования физического взрыва являются размещение в топке печи баллона со сжатым газом, изготовление самодельного взрывного устройства.

В преступных целях чаще осуществляются химические взрывы, при которых происходит превращение энергии взрывчатых веществ в энергию сжатых газов в результате химической реакции. Лицам, осуществляющим предварительное расследование по факту взрыва, в большинстве случаев приходится сталкиваться с последствиями химических взрывов, характеризующихся следующими факторами:

1) экзотермичностью (выделение тепла, за счет чего происходит разогрев газообразных продуктов до большой температуры и последующее их расширение; чем больше теплота и скорость распространения реакции, тем больше разрушительное действие взрыва);

2) большой скоростью распространения взрывной реакции (в виде взрывного горения или детонации; определяется исходя из минимального количества времени, необходимого для протекания реакции);

3) выделением большого количества газообразных продуктов химической реакции (придает взрыву разрушительную силу ударной волной, возникающей вследствие перепада давления).

Процесс протекания реакции химического взрыва состоит из трех этапов. Это:

1) инициирование - возбуждение процесса взрыва, вызванное внешним импульсом (трение, нагревание, удар и т.п.);

2) детонация - прохождение реакции превращения взрывчатого вещества внутри массы заряда в газ со скоростью, превышающей скорость звука;

3) образование и распространение ударной волны - осуществляется в результате резкого расширения газовой смеси, что приводит к резкому скачку давления во внешней среде, вследствие чего вытесняется воздух, находящийся вокруг заряда взрывчатого вещества. Фаза избыточного давления продолжается доли секунды, постепенно уменьшаясь до величины давления окружающей среды; при этом вытесненный сжатый воздух начинает движение в обратную сторону, стремясь заполнить образовавшийся в эпицентре взрыва вакуум, что ведет к дополнительному разрушению объектов и перемещению отдельных предметов.

Повреждающие факторы взрыва. Химический взрыв сопровождается образованием большого количества продуктов, нагретых до высоких температур и сжатых до больших давлений, которые, расширяясь, образуют ударную волну, оказывающую сильное динамическое воздействие на окружающую среду и предметы вещной обстановки. Поражающее действие взрыва заключается в причинении повреждений предметам вещной обстановки и людям. Эти проявления во внешней среде ряда признаков, указывающих на производимые взрывом эффекты, называются факторами взрыва. Основными факторами химического взрыва являются:

1) термическое (зажигательное) действие, выражающееся в возникновении очагов загорания предметов вещной обстановки, причинении ожогов на открытых участках поверхности тела человека, находившегося на расстоянии до 7 радиусов заряда взрывчатых веществ; основные признаки термического действия взрыва: а) следы окоп- чения; б) следы оплавления;

2) кумулятивное действие, проявляющееся в поражении цели сосредоточенной и направленной струей продуктов взрыва заряда и материалов облицовки, что приводит к значительному увеличению глубины пробития преграды;

3) осколочное действие, происходящее при взрыве зарядов, помещенных в прочную металлическую оболочку, когда в результате бризантного воздействия осуществляется дробление оболочки и метание образовавшихся осколков (первичных) с высокой скоростью; признаки осколочного действия: а) кратеры и трассы (царапины) на объектах; б) пробоины сквозные и «слепые» от внедрения осколков в материалы преград; в) характерное (множественное и разной локализации) поражение тела человека;

4) ударное действие, проявляющееся в поражении цели за счет кинетической энергии движущегося снаряда, материальные следы которого следы, характерные для осколочного, фугасного, фугасно-осколочного действия взрыва;

5) фугасное действие, характеризующееся поражением (разрушением) цели продуктами взрыва разрывного заряда и образующейся ударной волной, проявляющимся в гораздо большем пространстве от центра взрыва и производящим необратимые изменения окружающей обстановки; его признаки: а) поражение людей; б) перемещение предметов окружающей обстановки; в) разрушение, повреждение и деформация отдельных элементов и предметов в области действия взрыва; г) высокоскоростной разлет элементов разрушенных взрывом объектов с последующим ударным взаимодействием с другими объектами окружающей обстановки;

6) бризантное (дробящее) действие, проявляющееся в способности взрывчатых веществ производить при взрыве разрушение (дробление) среды, непосредственно соприкасающейся с зарядом; основные признаки бризантного действия взрыва: а) воронка в грунте и других материалах; б) локальные деформации зоны пластического течения металла; в) разрушения в виде вмятин, воронок, сколов на высокопрочных элементах металла, железобетона, кирпичах и т.п.; г) локальные области полных разрушений на малопрочных объектах из дерева, стекла, полимерных материалов и т.п.; д) образование на теле человека тяжких телесных повреждений;

7) действие специального назначения (осветительное, сигнальное, помехообразующее и др.).

Повреждающее действие взрыва на тело показано на рисунке 3.3.

Рисунок 3.3 - Повреждения открытых участков тела при взрыве.

Таким образом, при взрыве повреждающим действием обладают продукты детонации, взрывчатые вещества, ударная волна окружающей среды, осколки взрывного устройства, специальные поражающие элементы и вещества, вторичные воздействия. Их совокупность обозначают повреждающими факторами взрыва, приведенными в схеме 3.4.

Схема 3.4 - Классификация повреждающих факторов взрыва.

Травмирующее действие повреждающих факторов взрыва неоднозначно. Повреждения от взрыва отличаются крайним разнообразием: от единичных осколочных ранений до полного разрушения тела взрослого человека. Травмирующее действие повреждающих факторов показано на схеме 3.5 .

Поскольку взрывные устройства отличаются конструктивным и мощностным разнообразием, рассматриваются расстояния от центра взрыва, опираясь на несколько условных качественных дистанций:

а) непосредственное соприкосновение (близкая, «контактная», «нулевая» дистанция), когда тело пострадавшего находится в зоне комбинированного действия взрывных газов;

б) относительно близкая дистанция (в пределах зоны действия ударной волны, но за пределами зоны действия взрывных газов);

в) неблизкая дистанция, когда действуют только осколки оболочки или составные элементы взрывного устройства.

Сравнительная характеристика взрывных повреждений на всех дистанциях приведена в таблице 3.1.

Схема 3.5 - Характер травмирующего действия повреждающих факторов взрыва.

Таблица 3.1 - Характер повреждений в зависимости от дистанции взрыва (по В.Л. Попову, 2002) 62

Расстояние взрыва Повреждающие Характер повреждения
1. Соприкосновение снаряда с телом или очень близкое расстояние (в пределах действия взрывных газов) - волна взрывных газов

Кусочки взрывных веществ

Ударная волна

Осколки оболочки, взрывателя, вторичные снаряды

Комбинированные поражения:

Разрушения и отрывы частей тела

Опаление -закопчение

Закрытые повреждения костей и внутренних органов

Осколочные ранения

2. Относительно близкое (в пределах действия ударной волны) - ударная волна

Отбрасывание и падение тела

Осколки оболочки

Вторичные снаряды

- закрытые и открытые переломы и повреждения внутренних органов

Осколочные ранения

3. Близкое при наличии разрушающих преград - разрушение преграды

Осколки

- закрытые и открытые повреждения костей и внутренних органов

Осколочные ранения

4. Неблизкое - единичные осколки - одно или несколько осколочных ранений

62 Попов, В.Л. Судебная медицина: учебник / В.Л. Попов. - СПб.: Питер, 2002. - С. 214-215.

Таким образом, общая характеристика взрывчатых веществ, взрывных устройств, взрывов и их следов позволяет определить круг исследуемых объектов, направления их исследования, обоснованно строить следственные и экспертные версии относительно обстоятельств, связанных со спецификой устройства и действия взрывчатых веществ и взрывных устройств, а также возможных источников происхождения объектов исследования по факту взрыва.

Взрывная травма - единственный вид травмы, в результате причинения которой одновременно в течение очень короткого промежутка времени на тело человека действуют механические, термические и химические факторы. Именно это сочетание обуславливает ее своеобразие, дает возможность дифференцировать различные виды взрывов по результатам судебно-медицинской экспертизы.

Еще по теме Общая характеристика взрывов и их повреждающих факторов:

  1. Характеристика телесных повреждений и их описание при первичном осмотре трупа на месте его обнаружения
  2. Осмотр огнестрельных повреждений на трупе, визуально обнаруживаемых при осмотре места происшествия
  3. Общая характеристика взрывов и их повреждающих факторов

- Авторское право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право -

На предприятиях общественного питания используют и перерабатывают горючее и взрывоопасное сырье в различном агрегатном состоянии (эссенции, органические кислоты, жиры, масла, мука, сахарная пудра и др.). Кроме того, производство оснащено сосудами и аппаратами, работающими под избыточным давлением, в том числе холодильными установками, хладагентом которых, как правило, является взрывоопасный газ или аммиак. Для нагрева, сушки, обжарки, варки, выпечки применяют тепловое оборудование, работающее на тепловом проявлении электрического тока, газовом, жидком и твердом топливе. Исходя из свойств обращающихся веществ, характера технологических процессов, пищевое производство относят к числу взрыво- и пожароопасных.

Взрывом называется быстрое выделение энергии, связанное с внезапным изменением состояния вещества, сопровождаемое разрушением окружающей среды и распространением в ней ударной или взрывной волны, переходом начальной энергии в энергию движения вещества.

При взрыве развиваются давления в десятки и сотни тысяч атмосфер, а скорости движения взрывчатого вещества измеряются километрами в секунду.

Взрывчатые вещества - это соединения или смеси, способные к быстрому, самораспространяющемуся химическому превращению с образованием газов и выделением значительного количества тепла. Такое превращение, возникнув в какой-либо точке под воздействием соответствующего импульса (нагрева, механического удара, взрыва другого взрывчатого вещества), распространяется с большой скоростью на всю массу взрывчатого вещества.

Быстрое образование значительных объемов газов и их нагрев до высоких температур (1800 ... 3800 °С) за счет теплоты реакции объясняют причину возникновения на месте взрыва высокого давления.

В отличие от сгорания обычного топлива реакция взрыва протекает без участия кислорода воздуха и вследствие больших скоростей процесса позволяет получить в небольшом объеме огромные мощности. Например, 1 кг угля требует около 11 м 3 воздуха, при этом выделяется приблизительно 9300 Вт теплоты. Взрыв 1 кг гек-согена, занимающего объем 0,00065 м 3 происходит за стотысячную долю секунды и сопровождается выделением 1580 Вт теплоты.

В некоторых случаях исходная энергия с самого начала представляет собой тепловую энергию сжатых газов. В какой-то момент, вследствие снятия или ослабления связей, газы могут расширяться и произойдет взрыв. К такому роду взрыва можно отнести взрыв баллонов со сжатыми газами. Близкими к этому виду взрывов относят взрывы паровых котлов. Однако исходная энергия сжатых газов у них составляет лишь часть энергии взрыва; существенную роль здесь играет наличие перегретой жидкости, которая может быстро испариться при снижении давления.

Причины и характер возникновения взрыва могут быть различными.

Цепная теория возникновения газового взрыва определяет условия, при которых происходят цепные реакции. Цепные реакции -это химические реакции, в которых появляются активные вещества (свободные радикалы). Свободные радикалы в отличие от молекул обладают свободными ненасыщенными валентностями, что приводит к легкому их взаимодействию с исходными молекулами. При взаимодействии свободного радикала с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал. Этот радикал, в свою очередь, легко реагирует с другой исходной молекулой, вновь образуя при этом свободный радикал. В результате путем повторения этих циклов происходит лавинообразное нарастание числа активных центров взрывоопасности.

Тепловая энергия исходит из условий нарушения теплового равновесия, при котором приход тепла вследствие реакции становится больше теплоотдачи. Возникающий в системе разогрев дополнительно воздействует на реакцию. В результате возникает прогрессивное нарастание скорости реакции, приводящее при определенных условиях к взрыву. При тепловом воздействии может образоваться взрыв большой мощности и сравнительно медленное горение.

Возникновение взрыва при ударе связано с действием локальных микроскопических разогревов, которые особенно сильны из-за наличия при ударе очень высокого давления. Локальные разогревы охватывают огромное количество молекул и при определенных условиях приводят к взрыву.

Возникающие при взрыве сжатие и движение окружающей среды (воздуха, воды, грунта) передаются все более и более удаленным слоям. В среде распространяется особого рода возмущение - ударная, или взрывная, волна. Когда эта волна приходит в какую-либо точку пространства, то плотность, температура и давление скачком повышаются и вещество среды начинает двигаться в направлении распространения волны. Скорость распространения сильной ударной волны, как правило, значительно превышает скорость звука. По мере распространения эта скорость уменьшается, и в конце концов ударная волна превращается в обычную звуковую волну.

Вблизи от очага взрыва скорость движения воздуха может достигать тысяч метров в секунду, а кинетическая энергия движущегося воздуха равна 50% полной энергии ударной волны.

При распространении ударной волны не в инертной среде, а, например, во взрывчатом веществе она может вызвать быстрое его химическое превращение, которое распространяется по веществу со скоростью волны, поддерживает ударную волну и не дает ей затухнуть. Это явление называется детонацией , а ударная волна, способствующая быстрой реакции, называется детонационной волной.

Как правило, любой взрыв вызывает пожары. Горением называется сложный физико-химический процесс взаимодействия горючего вещества и окислителя. Окислителями в процессе горения могут быть кислород, хлор, бром и некоторые другие вещества, такие, как азотная кислота, бертолетова соль и перекись натрия. Обычным окислителем в процессах горения является кислород, находящийся в воздухе. Реакция окисления при определенных условиях может самоускоряться. Этот процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Условиями для возникновения и протекания горения в этом случае является наличие горючего вещества, кислорода воздуха и источника воспламенения. Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник воспламенения вызывает в ней реакцию горения.

Горючие системы могут быть химически однородными и неоднородными. К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом, например смеси горючих газов, паров или пылей с воздухом.

К химически неоднородным относятся системы, в которых горючее вещество и воздух имеют поверхности раздела, например твердые горючие материалы и жидкости, струи горючих газов и паров, поступающих в воздух. При. горении химически неоднородных горючих систем кислород воздуха непрерывно диффундирует сквозь продукты сгорания к горючему веществу и затем вступает с ним в реакцию.

Выделившаяся в зоне горения теплота воспринимается продуктами сгорания, вследствие чего они нагреваются до высокой температуры, которая называется температурой горения.

Кинетическое горение, т. е. горение химически однородной горючей смеси газов, паров или пыли с воздухом, протекает различно. Если горючая смесь поступает с определенной скоростью из горелки, то она сгорает устойчивым пламенем. Горение этой же смеси, заполнившей замкнутый объем, может вызвать химический взрыв.

Кинетическое горение возможно только при определенном соотношении газа, паров, пыли и воздуха. Минимальная и максимальная концентрации горючих веществ в воздухе, способных воспламеняться, называются нижним и верхним концентрационными пределами воспламенения (взрыва).

Все смеси, концентрации которых находятся между пределами воспламенения, называют взрыво- и пожароопасными.

Смеси, концентрации которых находятся ниже нижнего и выше верхнего пределов воспламенения, в замкнутых объемах гореть не способны и считаются безопасными. Однако смеси, концентрация которых находится выше верхнего предела воспламенения, при выходе из замкнутого объема воздуха способны гореть диффузионным пламенем, т. е. ведут себя как пары и газы, не смешанные с воздухом.

Концентрационные пределы воспламенения непостоянны и зависят от ряда факторов. Большое влияние на изменение пределов воспламенения оказывают мощность источника воспламенения, примесь инертных газов и паров, температура и давление горючей смеси.

Увеличение мощности источника воспламенения ведет к расширению области воспламенения (взрыва) с понижением нижнего предела и повышением верхнего предела воспламенения.

При введении негорючих газов в взрывчатую смесь происходит резкое уменьшение верхнего предела воспламенения и незначительное изменение нижнего. Область воспламенения сокращается и при определенной концентрации негорючих газов смесь перестает воспламеняться.

С повышением начальной температуры взрывчатой смеси промежуток воспламенения ее расширяется, при этом нижний предел уменьшается, а верхний увеличивается.

При уменьшении давления горючей смеси ниже нормального происходит уменьшение области воспламенения. При низком давлении смесь становится безопасной.

При нижнем пределе воспламенения смеси количество выделяемого тепла незначительно и поэтому давление при взрыве не превышает 0,30 ... 0,35 МПа. С увеличением концентрации горючего вещества растет давление взрыва. Оно для большинства смесей составляет 1,2 МПа.

При дальнейшем повышении концентрации горючего вещества давление взрыва снижается и на верхнем пределе воспламенения становится таким же, как и на нижнем.

Взрывоопасные свойства смесей паров с воздухом не отличаются от свойств смесей горючих газов с воздухом. Концентрация насыщенных паров жидкости находится в определенной взаимосвязи с ее температурой. Эти температуры называют температурными пределами воспламенения (взрываемости).

Верхним температурным пределом называется та наибольшая температура жидкости, при которой образуется смесь насыщенных паров с воздухом, еще способная воспламеняться, однако выше этой температуры образовавшиеся пары в смеси с воздухом в замкнутом объеме воспламеняться не могут.

Нижним температурным пределом называется та наименьшая температура жидкости, при которой образуется смесь насыщенных паров с воздухом, способная воспламеняться при поднесении к ней источника воспламенения. При более низкой температуре жидкости смесь паров с воздухом не способна воспламеняться.

Нижний температурный предел воспламенения жидкостей иначе называется температурой вспышки, которая принята за основу классификации жидкостей по степени их пожарной опасности. Так, жидкости, имеющие температуру вспышки до 45 °С, называют легковоспламеняющимися, а выше 45 °С - горючими.

На пищевых предприятиях многие технологические процессы сопровождаются выделением мелкодисперсной органической пыли (мучной, сахарной пудры, крахмальной и др.), которая при определенной концентрации образует взрывоопасную пылевоздушную смесь.

Пыль может находиться в двух состояниях: взвешенной в воздухе (аэрозоль) и осевшей на стенах, потолках, конструктивных частях оборудования и т. д. (аэрогель).

Аэрогель характеризуется температурой самовоспламенения, мало отличающейся от температуры самовоспламенения твердого вещества.

Температура самовоспламенения аэрозоля всегда значительно выше, чем у аэрогеля, и даже превышает температуру самовоспламенения паров и газов. Объясняется это тем, что концентрация горючего вещества в единице объема аэрозоля в сотни раз меньше, чем у аэрогеля, поэтому скорость выделения тепла может превышать скорость теплоотдачи только при значительно высокой температуре.

В табл. приведены температуры самовоспламенения аэрогеля и аэрозоля некоторых пылей.

Как и у газовых смесей, воспламенение и распространение пламени по всему объему аэрозоля возникают только в том случае, если его концентрация находится выше нижнего предела воспламенения.

Что касается верхних пределов воспламенения аэрозолей, то они настолько велики, что в большинстве случаев практически недостижимы. Например, концентрация верхнего предела воспламенения сахарной пыли равна 13500 г/м 3 .

Температура самовоспламенения горючих веществ разнообразна. У одних она превышает 500 °С, у других находится в пределах окружающей среды, которую в среднем можно принять 0 ... 50°С.

Например, желтый фосфор при температуре 15°С самонагревается и загорается. Вещества, способные самовоспламеняться без нагрева, представляют большую пожарную опасность и называются самовозгорающимися, а процесс самонагревания их до стадии горения определяют термином самовозгорание. Самовозгорающиеся вещества подразделяют на три группы:

вещества, самовозгорающиеся от воздействия на них воздуха (растительные масла, животные жиры, бурый и каменный угли, сульфиды железа, желтый фосфор и др.);

вещества, самовозгорающиеся от воздействия на них воды (калий, натрий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, негашеная известь и др.);

вещества, самовозгорающиеся при смешивании друг с другом (ацетилен, водород, метан и этилен в смеси с хлором; перманганат калия, смешанный с глицерином или этиленгликолем; скипидар в хлоре и др.).

Большую взрыво- и пожароопасность на пищевых предприятиях представляет смесь органической пыли с воздухом.

По пожароопасности все пыли в зависимости от их свойств подразделяют на взрывоопасные в состоянии аэрозоля и пожароопасные в состоянии аэрогеля.

К первому классу по взрывоопасности относят пыли с нижним пределом воспламенения (взрываемости) до 15 г/м 3 . К этому классу относится пыль серы, канифоли, сахарной пудры и др.

Ко второму классу причисляют взрывоопасную пыль с нижним пределом воспламенения (взрываемости) 16 ... 65 г/м 3 . К этой группе относится пыль крахмала, муки, лигнина и др.

Пыли в состоянии аэрогеля по пожароопасности также делятся на два класса: первый класс - наиболее пожароопасные с температурой самовоспламенения до 250 °С (например, табачная пыль - 205 °С, зерновая - 250 °С); второй класс - пожароопасные с температурой самовоспламенения выше 250 °С (например, древесные опилки - 275 °С).

Взрыв -- это быстропротекающий процесс физических и химических превращений веществ, сопровождающийся освобождением значительного количества энергии в ограниченном объеме, в результате которого образуется и распространяется ударная волна, способная привести и приводящая к техногенной чрезвычайной ситуации.

Характерные особенности взрыва:

  • * большая скорость химического превращения;
  • * большое количество газообразных продуктов;
  • * сильный звуковой эффект (грохот, громкий звук, шум, сильный хлопок);
  • * мощное дробящее действие.

Взрывы классифицируют по происхождению выделившейся энергии на:

  • · Химические.
  • · Взрывы ёмкостей под давлением (газовые баллоны, паровые котлы):
  • · Взрыв расширяющихся паров вскипающей жидкости (BLEVE).
  • · Взрывы при сбросе давления в перегретых жидкостях.
  • · Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
  • · Ядерные.
  • · Электрические (например при грозе).
  • · Взрывы сверхновых звёзд

В зависимости от среды, в которой происходят взрывов, они бывают подземными, наземными, воздушными, подводными и надводными.

Масштабы последствий взрывов зависят от их мощности и среды, в которой они происходят. Радиусы зон поражения при взрывах могут доходить до нескольких километров.

Различают три зоны действия взрыва.

Зона I -- зона действия детонационной волны. Для нее характерно интенсивное дробящее действие, в результате которого конструкции разрушаются на отдельные фрагменты, разлетающиеся с большими скоростями от центра взрыва.

Зона II -- зона действия продуктов взрыва. В ней происходит полное разрушение зданий и сооружений под действием расширяющихся продуктов взрыва. На внешней границе этой зоны образующаяся ударная волна отрывается от продуктов взрыва и движется самостоятельно от центра взрыва. Исчерпав свою энергию, продукты взрыва, расширившись до плотности, соответствующей атмосферному давлению, не производят больше разрушительного действия.

Зона III -- зона действия воздушной ударной волны -- включает в себя три подзоны: III а -- сильных разрушений, III б -- средних разрушений, III в -- слабых разрушений. На внешней границе зоны III ударная волна вырождается в звуковую, слышимую еще на значительных расстояниях.

Действие взрыва на здания, сооружения, оборудование.

Наибольшим разрушениям продуктами взрыва и ударной волной подвергаются здания и сооружения больших размеров с легкими несущими конструкциями, значительно возвышающиеся над поверхностью земли. Подземные и заглубленные в грунт сооружения с жесткими конструкциями обладают значительной сопротивляемостью разрушению.

Разрушения подразделяют на полные, сильные, средние и слабые.

Полные разрушения. В зданиях и сооружениях обрушены перекрытия и разрушены все основные несущие конструкции. Восстановление невозможно. Оборудование, средства механизации и другая техника восстановлению не подлежат. В коммунальных и энергетических сетях имеются разрывы кабелей, разрушения участков трубопроводов, опор воздушных линий электропередач и т. п.

Сильные разрушения. В зданиях и сооружениях имеются значительные деформации несущих конструкций, разрушена большая часть перекрытий и стен. Восстановление возможно, но нецелесообразно, так как практически сводится к новому строительству с использованием некоторых сохранившихся конструкций. Оборудование и механизмы большей частью разрушены и деформированы. В коммунальных и энергетических сетях имеются разрывы и деформации на отдельных участках подземных сетей, деформации воздушных линий электропередачи и связи, разрывы технологических трубопроводов.

Средние разрушения. В зданиях и сооружениях разрушены главным образом не несущие, а второстепенные конструкции (легкие стены, перегородки, крыши, окна, двери). Возможны трещины в наружных стенах и вывалы в отдельных местах. Перекрытия и подвалы не разрушены, часть сооружений пригодна к эксплуатации. В коммунальных и энергетических сетях значительны разрушения и деформации элементов, которые можно устранить капитальным ремонтом.

Слабые разрушения. В зданиях и сооружениях разрушена часть внутренних перегородок, заполнения дверных и оконных проемов. Оборудование имеет значительные деформации. В коммунальных и энергетических сетях имеются незначительные разрушения и поломки конструктивных элементов.

По происхождению выделившейся энергии.

Химические взрывы.

Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии, как при горении. Как правило, скорость детонации выше скорости горения, однако это не является абсолютным правилом. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы детонации в горение и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры -- объёмный взрыв.

Индивидуальные взрывчатые вещества как правило, содержат кислород в составе своих собственных молекул, притом, их молекулы, по сути метастабильные образования. При сообщении такой молекуле достаточной энергии (энергии активации) она самопроизвольно диссоциирует на составляющие атомы, из которых образуются продукты взрыва, с выделением энергии, превышающей энергию активации. Подобными свойствами обладают молекулы нитроглицерина, тринитротолуола и др. Нитраты целлюлозы (бездымный порох), чёрный порох, который состоит из механической смеси горючего вещества (древесный уголь) и окислителя (различные селитры), в обычных условиях не склонны к детонации, но их по традиции относят к взрывчатым веществам.

Взрывы ёмкостей под давлением

Сосудами, работающими под давлением, называются герметически закрытые емкости, предназначенные для ведения химических и тепловых процессов, а также для хранения и перевозки сжатых, сжиженных и растворенных газов и жидкостей под давлением. Основная опасность при эксплуатации таких сосудов заключается в возможности их разрушения при внезапном адиабатическом расширении газов и паров (т.е. физический взрыв). Причинами взрывов сосудов, работающих под давлением, могут быть ошибки, допущенные при проектировании и изготовлении сосуда, дефекты материалов, потеря прочности в результате местных перегревов, ударов, превышение рабочего давления в результате отсутствия или неисправности контрольно-измерительных приборов, отсутствие или неисправность предохранительных клапанов, мембран, запорной и отключающей арматуры. Особенно опасны взрывы сосудов, содержащих горючую среду, т.к. осколки резервуаров даже большой массы (до нескольких тонн) разлетаются на расстояние до нескольких сот метров и при падении на здания, технологическое оборудование, емкости вызывают разрушения, новые очаги пожара, гибель людей.

Ядерный взрыв

Ядерный взрыв -- неуправляемый процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза за очень малый промежуток времени. По своему происхождению ядерные взрывы являются либо продуктом деятельности человека на Земле и в околоземном космическом пространстве, либо природными процессами на некоторых видах звёзд. Искусственные ядерные взрывы -- мощное оружие, предназначенное для уничтожения крупных наземных и защищённых подземных военных объектов, скоплений войск и техники противника (в основном тактическое ядерное оружие), а также полное подавление и уничтожение противоборствующей стороны: разрушение больших и малых населённых пунктов с мирным населением и стратегической промышленности (Стратегическое ядерное оружие).

Цепная реакция деления

Атомные ядра некоторых изотопов химических элементов с большой атомной массой (например, урана или плутония) при их облучении нейтронами определённой энергии теряют свою устойчивость и распадаются с выделением энергии на два меньших и приблизительно равных по массе осколка -- происходит реакция деления атомного ядра. При этом наряду с осколками, обладающими большой кинетической энергией, выделяются ещё несколько нейтронов, которые способны вызвать аналогичный процесс в соседних таких же атомах. В свою очередь, нейтроны, образовавшиеся при их делении, могут привести к делению новых порций атомов -- реакция становится цепной, приобретает каскадный характер. В зависимости от внешних условий, количества и чистоты расщепляющегося материала её течение может происходить по-разному. Вылет нейтронов из зоны деления или их поглощение без последующего деления сокращает число делений в новых стадиях цепной реакции, что приводит к её затуханию. При равном числе расщеплённых ядер в обеих стадиях цепная реакция становится самоподдерживающейся, а в случае превышения количества расщеплённых ядер в каждой последующей стадии в реакцию вовлекаются всё новые атомы расщепляющегося вещества.

Термоядерный синтез

Реакции термоядерного синтеза с выделением энергии возможны только среди элементов с небольшой атомной массой, не превышающих приблизительно атомную массу железа. Они не носят цепного характера и возможны только при высоких давлениях и температурах, когда кинетической энергии сталкивающихся атомных ядер достаточно для преодоления кулоновского барьера отталкивания между ними, либо для заметной вероятности их слияния за счёт действия туннельного эффекта квантовой механики. Для возможности этого процесса необходимо совершить работу для разгона исходных атомных ядер до высоких скоростей, но если они сольются в новое ядро, то выделившаяся при этом энергия будет больше, чем затраченная. Появление нового ядра в результате термоядерного синтеза как правило сопровождается образованием различного рода элементарных частиц и высоко энергетичных квантов электромагнитного излучения.

Явления при ядерном взрыве

Сопутствующие ядерному взрыву явления варьируют от местонахождения его центра. Ниже рассматривается случай атмосферного ядерного взрыва в приземном слое, который был наиболее частым до запрета ядерных испытаний на земле, под водой, в атмосфере и в космосе. После инициирования реакции деления или синтеза за очень короткое время порядка долей микросекунд в ограниченном объёме выделяется огромное количество лучистой и тепловой энергии. Реакция обычно заканчивается после испарения и разлёта конструкции взрывного устройства вследствие огромной температуры (до 10 7 К) и давления (до 10 9 атм.) в точке взрыва. Визуально с большого расстояния эта фаза воспринимается как очень яркая светящаяся точка.

Световое давление от электромагнитного излучения при реакции нагревает и вытесняет окружающий воздух от точки взрыва -- образуется огненный шар и начинает формироваться скачок давления между воздухом, сжатым излучением, и невозмущённым, поскольку скорость перемещения фронта нагрева изначально многократно превосходит скорость звука в среде. После затухания ядерной реакции энерговыделение прекращается и дальнейшее расширение происходит за счёт разницы температур и давлений в области огненного шара и окружающего воздуха.

Происходящие в заряде ядерные реакции служат источником разнообразных излучений: электромагнитного в широком спектре от радиоволн до высокоэнергичных гамма-квантов, быстрых электронов, нейтронов, атомных ядер. Это излучение, называемое проникающей радиацией, порождает ряд характерных только для ядерного взрыва последствий. Нейтроны и высокоэнергичные гамма-кванты, взаимодействуя с атомами окружающего вещества, преобразуют их стабильные формы в нестабильные радиоактивные изотопы с различными путями и периодами полураспада -- создают так называемую наведённую радиацию. Наряду с осколками атомных ядер расщепляющегося вещества или продуктами термоядерного синтеза, оставшимися от взрывного устройства, вновь получившиеся радиоактивные вещества поднимаются высоко в атмосферу и способны рассеяться на большой территории, формируя радиоактивное заражение местности после ядерного взрыва. Спектр образующихся при ядерном взрыве нестабильных изотопов таков, что радиоактивное заражение местности способно длиться тысячелетиями, хотя интенсивность излучения падает со временем.

Наземный ядерный взрыв в отличие от обычного также имеет свои особенности. При химическом взрыве температура грунта, примыкавшего к заряду и вовлечённого в движение относительно невелика. При ядерном взрыве температура грунта возрастает до десятков миллионов градусов и большая часть энергии нагрева в первые же мгновения излучается в воздух и дополнительно идёт в образование теплового излучения и ударной волны, чего при обычном взрыве не происходит. Отсюда резкое различие в воздействии на поверхность и грунтовый массив: наземный взрыв химического взрывчатого вещества передаёт в грунт до половины своей энергии, а ядерный -- считанные проценты. Соответственно размеры воронки и энергия сейсмических колебаний от ядерного взрыва в разы меньше оных от одинакового по мощности взрыва ВВ. Однако при заглублении зарядов это соотношение сглаживается, так как энергия перегретой плазмы меньше уходит в воздух и идёт на совершение работы над грунтом.

Взрыв – это весьма быстрое изменение химического (физического) состояния взрывчатого вещества, сопровождающееся выделением большого количества тепла и образованием большого количества газов, создающих ударную волну, способную своим давлением вызывать разрушения.

Взрывчатыми веществами (ВВ) – особые группы веществ, способные к взрывчатым превращениям в результате внешних воздействий.
Различают взрывы :

1.Физический – высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (сжиженного пара). Сила взрыва зависит от внутреннего давления. Возникающие разрушения могут вызываться ударной волной от расширяющегося газа или осколками разорвавшегося резервуара (Пример: разрушение резервуаров со сжатым газом, паровых котлов, а также мощные электрические разряды)

2.Химический – взрыв, вызванный быстрой экзотермической химической реакцией, протекающей с образованием сильно сжатых газообразных или парообразных продуктов. Примером может служить взрыв дымного пороха, при котором происходит быстрая химическая реакция между селитрой, углем и серой, сопровождающаяся выделением, значительного количества теплоты. Образовавшиеся газообразные продукты, нагретые за счет теплоты реакции до высокой температуры, обладают высоким давлением и, расширяясь, производят механическую работу.

3.Атомные взрывы . Быстропротекающие ядерные и ли термоядерные реакции (реакции деления или соединения атомных ядер), при которых освобождается очень большое количество теплоты. Продукты реакции, оболочка атомной или водородной бомбы и некоторое количество окружающей бомбу среды мгновенно превращается в нагретые до очень высокой температуры газы, обладающие соответственно высоким давлением. Явление сопровождается колоссальной механической работой.

Химические взрывы подразделяются на конденсированные и объемные взрывы.

А) Под конденсированными взрывчатыми веществами понимаются химические соединения и смеси, находящиеся в твердом или жидком состоянии, которые под влиянием определенных внешних условий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, производят механическую работу. Такое химическое превращение ВВ принято называть взрывчатым превращением.

Возбуждением взрывчатого превращения ВВ называется инициированием. Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:
- механическим (удар, накол, трение);
- тепловым (искра, пламя, нагревание);
- электрическим (нагревание, искровой разряд);
- химическим (реакции с интенсивным выделением тепла);
- взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

Конденсированные ВВ подразделяются на группы :

Характеристика. Примеры вещества.

Чрезвычайно опасные вещества

Нестабильны. Взрываются даже в самых малых количествах. Трихлорид азота; некоторые органические перекисные соединения; ацетиленид меди, образующийся при контакте ацетилена с медью
или медесодержащим сплавом

Первичные ВВ

Менее опасные вещества. Инициирующие соединения. Обладают очень высокой чувствительность к удару и тепловому воздействию. Используются в основном в капсулях-детонаторах для возбуждения детонации в зарядах ВВ. Азид свинца, гремучая ртуть.

Вторичные ВВ (бризантные ВВ)

Возбуждение детонации в них происходит при воздействии сильной ударной волны. Последняя может создаваться в процессе их горения или с помощью детонатора. Как правило, ВВ этой группы сравнительно безопасны в обращении и могут храниться в течение длительных промежутков времени. Динамиты, тротил, гексоген, октоген, централит.

Метательные ВВ, пороха

Чувствительность к удару очень мала, относительно медленно горят.
Баллиститные пороха – смесь нитроцеллюлозы, нитроглицерина и других технологических добавок.
Загораются от пламени, искры или нагрева. На открытом воздухе быстро горят. В замкнутом сосуде взрываются. На месте взрыва черного пороха, содержащего азотнокислый калий, серу и древесный уголь в отношениях 75:15:10, остается остаток, содержащий углерод.

Классификацию взрывов можно произвести и по типам химических реакций:

  1. Реакция разложения – процесс разложения, который дают газообразные продукты
  2. Окислительно-восстановительная реакция – реакция, в которой воздух или кислород реагирует с восстановителем
  3. Реакция смесей – пример такой смеси – порох.

Б) Объемные взрывы бывают двух типов:

  • Взрывы облака пыли (пылевые взрывы) рассматриваются как взрывы пыли в штольнях шахт и в оборудовании или внутри здания. Такие взрывоопасные смеси возникают при дроблении, просеве, насыпке, перемещении пылящих материалов. Взрывоопасные пылевые смеси имеют нижний концентрационный предел взрываемости (НКПВ) , определяемый содержанием (в граммах на кубический метр) пыли в воздухе. Так для порошка серы НКПВ составляет 2,3 г/м3. Концентрационные пределы пыли не являются постоянными и зависят от влажности, степени измельчения, содержания горючих веществ.

В основе механизма пылевых взрывов на шахтах лежат относительно слабые взрывы газовоздушной смеси воздуха и метана. Такие смеси считаются уже взрывоопасными при 5%-ной концентрации метана в смеси. Взрывы газовоздушной смеси вызывают турбулентность воздушных потоков, достаточных для того, чтобы образовать пылевое облако. Воспламенение пыли порождает ударную волну, поднимающую еще большее количество пыли, и тогда может произойти мощный разрушительный взрыв.

Меры, применяемые для предупреждения пылевых взрывов:

    1. вентиляция помещений, объектов
    2. увлажнение поверхностей
    3. разбавление инертными газам (СО 2, N2) или порошками силикатными

Пылевые взрывы внутри зданий, оборудования чаще всего происходят на элеваторах, где из-за трения зернышек при их перемещении образуется большое количество мелкой пыли.

  • Взрывы паровых облаков – процессы быстрого превращения, сопровождающиеся возникновением взрывной волны, происходящие на открытом воздушном пространстве в результате воспламенения облака, содержащего горючий пар.

Такие явления возникают при утечке сжиженного газа, как правило, в ограниченных пространствах (помещениях), где быстро растет та предельная концентрация горючих элементов, при которой происходит воспламенение облака.
Меры, применяемые для предупреждения взрывов паровых облаков:

    1. сведение к минимуму использования горючего газа или пара
    2. отсутствие источников зажигания
    3. расположение установок на открытом, хорошо проветриваемой местности

Наиболее часто ЧС, связанные с взрывами газа , возникают при эксплуатации коммунального газового оборудования.

Для предупреждения таких взрывов ежегодно проводят профилактику газового оборудования. Здания взрывоопасных цехов, сооружений, часть панелей в стенах делают легкоразрушаемыми, а крыши – легкосбрасываемыми.