Этапы экономико-математического моделирования. Основные этапы экономико-математического моделирова­ния

Тема 1. Математическое моделирование социально-экономических процессов

Общие понятия

Рассмотрим процессы математического моделирования применительно к экономическим объектам и процессам. И в этом случае, естественно, применимы общие подходы (системный подход, кибернетическое моделирование). В то же время при моделировании экономических явлений следует учитывать их специфику, например, при выборе методов моделирования, при формировании информационного обеспечения.

Практическими задачами экономико-математического моделирования являются:

Анализ функционирования и развития экономических объектов и процессов;

Экономическое прогнозирование, предвидение развития экономических процессов;

Выработка управленческих решений на всех уровнях хозяйственной деятельности.

Важнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели , т. е. соответствия модели мо­делируемому объекту или процессу. Адекватность модели - в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно и для экономико-математического моделирования. При моделиро­вании имеется в виду не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для ис­следования. Проверка адекватности экономико-математиче­ских моделей является весьма серьезной проблемой, тем более, что ее осложняет трудность измерения экономических величин. Однако без такой проверки применение результатов модели­рования в управленческих решениях может не только ока­заться мало полезным, но и принести существенный вред.

Социально-экономические системы относятся, как правило, к так называемым сложным системам. Сложные системы в экономике обладают рядом свойств, которые необходимо учитывать при их моделировании, иначе невозможно гово­рить об адекватности построенной экономической модели. Важнейшие из этих свойств:



Эмерджентность;

Массовый характер экономических явлений и процессов;

Динамичность экономических процессов;

Случайность и неопределенность в развитии экономиче­ских явлений;

Невозможность изолировать протекающие в экономиче­ских системах явления и процессы от окружающей сре­ды;

Активная реакция на появляющиеся новые факторы, спо­собность социально-экономических систем к активным, не всегда предсказуемым действиям.

Указанные свойства социально-экономических систем усложняют процесс их моделирования, однако их следует постоянно учитывать при рассмотрении различных аспектов экономико-математического моделиро­вания, начиная с выбора типа модели и заканчивая вопросами практического использования результатов моделирования. То есть эти свойства диктуют необходимость использования системного подхода при моделировании достаточно сложных экономических явлений.

Этапы экономико-математического моделирования

Перейдем теперь к процессу экономико-математического моделирования, то есть описания экономиче­ских и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования, как уже указывалось, обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппара­том и средствами моделирования. Поэтому проанализируем последовательность и содер­жание этапов экономико-математического моделирования, выделив следующие шесть этапов:

Постановка экономиче­ской проблемы, ее качественный анализ;

Построение мате­матической модели;

Математический анализ модели;

Подго­товка исходной информации;

Численное решение;

Анализ численных результатов, их интерпретации и применение.

Рассмотрим перечисленные этапы экономико-математического моделирования подробнее.

1. Постановка экономической проблемы и ее качествен­ный анализ.

На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допу­щения. Необходимо выделить важнейшие черты и свой­ства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели .

Это этап формали­зации экономической проблемы, т. е. выражения ее в виде конкретных математических зависимостей (функ­ций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитыва­ются агрегированно и приближенно. Оправдано стремле­ние построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать не­которого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализа­ция проблемы приводит к неизвестной ранее математи­ческой структуре.

3. Математический анализ модели.

На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важ­ным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, ка­кие переменные могут входить в решение, в каких пре­делах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объек­тов с большим трудом поддаются аналитическому ис­следованию; в таких случаях переходят к численным методам исследования.

Основные этапы процесса моделирования уже рассматривались выше. В различных отраслях знаний, в том числе и в экономике, они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования.

1. Постановка экономической проблемы и ее качественный анализ. Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2. Построение математической модели. Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться "изобретать" модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.

В процессе построения модели осуществляется взаимосопоставление двух систем научных знаний - экономических и математических. Естественно стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре. Потребности экономической науки и практики в середине ХХ в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики.

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели (теорема существования). Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

Знание общих свойств модели имеет столь важное значение, часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Взаимосвязи этапов. Обратим внимание на возвратные связи этапов, возникающие вследствие того, что в процессе исследования обнаруживаются недостатки предшествующих этапов моделирования.

Уже на этапе построения модели может выясниться, что постановка задачи противоречива или приводит к слишком сложной математической модели. В соответствии с этим исходная постановка задачи корректируется. Далее математический анализ модели (этап 3) может показать, что небольшая модификация постановки задачи или ее формализации дает интересный аналитический результат.

Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает при подготовке исходной информации (этап 4). Может обнаружиться, что необходимая информация отсутствует или же затраты на ее подготовку слишком велики. Тогда приходится возвращаться к постановке задачи и ее формализации, изменяя их так, чтобы приспособиться к имеющейся информации. Поскольку экономико-математические задачи могут быть сложны по своей структуре, иметь большую размерность, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают: снимают и объединяют условия, уменьшают число факторов, нелинейные соотношения заменяют линейными, усиливают детерминизм модели и т.д.

Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, дополняемой новыми условиями, включающей уточненные математические зависимости.

По мере развития и усложнения экономико-математического моделирования его отдельные этапы обособляются в специализированные области исследований, усиливаются различия между теоретико-аналитическими и прикладными моделями, происходит дифференциация моделей по уровням абстракции и идеализации.

Теория математического анализа моделей экономики развилась в особую ветвь современной математики - математическую экономику. Модели, изучаемые в рамках математической экономики, теряют непосредственную связь с экономической реальностью; они имеют дело с исключительно идеализированными экономическими объектами и ситуациями. При построении таких моделей главным принципом является не столько приближение к реальности, сколько получение возможно большего числа аналитических результатов посредством математических доказательств. Ценность этих моделей для экономической теории и практики состоит в том, что они служат теоретической базой для моделей прикладного типа.

Довольно самостоятельными областями исследований становятся подготовка и обработка экономической информации, и разработка математического обеспечения экономических задач (создание баз данных и банков информации, программ автоматизированного построения моделей и программного сервиса для экономистов-пользователей). На этапе практического использования моделей ведущую роль должны играть специалисты в соответствующей области экономического анализа, планирования, управления. Главным участком работы экономистов-математиков остается постановка и формализация экономических задач и синтез процесса экономико-математического моделирования.

Введение……………………………………………………………………….Стр.

1. Основы этапы и цели моделирования……………………… Стр.

1.1. Постановка цели моделирования……………………………………….Стр.

1.2. Идентификация реальных объектов...................................... Стр.

1.3. Выбор вида моделей……………………………………………………Стр.

1.4. Выбор математической схемы………………………………………….Стр.

2. Построение непрерывно-стахостической модели…… Стр.

2.1. Основные понятия теории массового обслуживания………………. Стр.

2.2. Определение потока событий……………………………………………Стр.

2.3. Постановка алгоритмов ……………………………..………………….Стр.

3. Программная реализация модели………………………….… Стр.

3.1. Оптимизация алгоритма………………………………..……………….Стр.

3.2. Листинг программы………..……………………………………………Стр.

Вывод…………………………………………………………………………Стр.

Список используемой литературы……………………………….. Стр.

Приложение…………………………………………………………………..Стр.

Введение

Современное состояние общества характеризуется внедрением достижений научно-технического прогресса во все сферы деятельности. Переживаемый в настоящее время этап развития является этапом информатизации. Информатизация - это процесс создания, развития и все-общего применения информационных средств и технологий, обеспечивающих кардинальное улучшение качества труда и условий жизни в обществе. Информатизация тесно связана с внедрением информационно-вычислительных систем, с повышением уровня автоматизации орга-низационно-экономической, технологической, административно-хозяй-ственной, проектно-конструкторской, научно-исследовательской и других видов деятельности. Создание сложных технических систем, проектирование и управление сложными комплексами, анализ экологической ситуации, особенно в условиях агрессивного техногенного воздействия, исследование социальных проблем коллективов, планирование развития регионов и многие другие направления деятельности требуют организации исследований, которые имеют нетрадиционный характер. По ряду специфических признаков все перечисленные объекты прикладной деятельности обладают свойствами больших систем. Таким образом, в различных сферах деятельности приходится сталкиваться с понятиями больших или сложных систем.

В разных сферах практической деятельности развивались соответствующие методы анализа и синтеза сложных систем. Системность стала не только теоретической категорией, но и аспектом практической деятельности. Ввиду того, что сложные системы стали предметом изучения, проектирования и управления, потребовалось обобщение методов исследования систем. Появилась объективная необходимость в возникновении прикладной науки, устанавливающей связь между абстрактными теориями системности и системной практикой. В последнее время это движение оформилось в науку, которая получила название «системный анализ».

Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к необходимости использования всех современных средств научных исследований - математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.

Системный анализ является меж- и наддисциплннарным курсом, обобщающим методологию исследования сложных технических, природных и социальных систем. Для проведения анализа и синтеза сложных систем используется широкий спектр математических методов. Основу математического аппарата данной дисциплины составляют линейное и нелинейное программирование, теория принятия решений, теория игр, имитационное моделирование, теория массового обслуживания, теория статистических выводов и т.п.

Основы цели, проблемы и этапы моделирования

Основная общая цель моделирования заключается в наблюдении за системой, подверженной воздействию внешних или внутренних факторов при достижении системой определенного состоянии, которое может быть как задано, так и неизвестно, из-за отсутствия информации или по каким либо иным причинам. Моделирование позволяет определить сможет ли система функционировать при таких условиях или нет, во время этого перехода. В зависимости от реальной модели и цели расширяются и конкретизируются.

Определение качества функционирования большой системы, выбор оптимальной структуры и алгоритма поведения, построение системы в соответствие с поставленной перед ней целью - главная проблема при проектировании современных больших систем (в том числе и АСУ, САПР, АСНI).

Поэтому, моделирование - один из методов, которые используются при проектировании и исследовании больших систем. Моделирование осуществляется через эксперимент - процедуру организации и наблюдения каких-нибудь явлений, которые осуществляются в условиях, близким к действительным, или имитируют их.

Различают два типа экспериментов:

1. пассивный, когда исследователь наблюдает процесс, не вмешиваясь в него;

2. активный, когда наблюдатель вмешивается и организовывает прохождение процесса.

В основе моделирования лежат информационные процессы:

v создание модели M базируется на информации о реальном объекте;

v при реализации модели получается информация о данном объекте;

v в процессе эксперимента с моделью вводится управляющая информация;

v полученные данные обрабатываются.

Как объект моделирования мы рассматриваем сложные организационно-технические системы, которые относятся к классу больших систем.

Модель М такой системы так же становится частью системы S(M) и может относиться к классу больших систем.

Следует также заметить, что модель большой системы описывается следующими критериями:

1. ЦЕЛЬ ФУНКЦИОНИРОВАНИЯ. Определяет степень целенаправленности поведения модели М. Модели делятся на одноцелевые (для решения одной задачи) и многоцелевые (рассматривают ряд сторон объекта).

2. СЛОЖНОСТЬ. Оценивается числом элементов и связей между ними, иерархию связей, множеством входов и выходов и т.д.

3. ЦЕЛОСТНОСТЬ. Модель М, которая создается, является одной целостной системой S(M), включает в себя большое количество составных частей (экспериментов), которые находятся в сложной взаимосвязи. Характеризуется появлением новых свойств, отсутствующих у элементов (эмерджентность).

4. НЕОПРЕДЕЛЕННОСТЬ. Проявляется в системе: по состоянию системы, возможности достижения поставленной цели, методом решения задач, достоверности исходной информации и т.д. Главная характеристика неопределенности это такая мера информации как энтропия.

5. ПОВЕДЕНЧЕСКАЯ КАЗНЬ. Позволяет оценить эффективность достижения системой S поставленной цели. Применяя к М, позволяет оценить эффективность М и точность, и достоверность результатов.

6. АДАПТИВНОСТЬ. Это свойство высокоорганизованной системы. Благодаря ей S адаптируется к внешним раздражителям в широком диапазоне изменения действий Е. Применяя к модели М важна ее адаптация к внешним условиям, близким к реальным, а также вопрос существования М, и ее живучести и надежности.

7. ОРГАНИЗАЦИОННАЯ СТРУКТУРА СИСТЕМЫ МОДЕЛИРОВАНИЯ. Зависит от сложности модели и степени совершенствования средств моделирования. Одним из главных достижений в области моделирования - это возможность использования имитационных моделей для проведения машинных экспериментов.

Здесь нужны:

v оптимальная организационная структура комплекса технических средств

v информационного

v математического и программного обеспечения системы моделирования S`(М)

v оптимальная организация процесса моделирования (время моделирования и точность результата).

8. УПРАВЛЯЕМОСТЬ МОДЕЛИ. Необходимо обеспечить управление со стороны экспериментаторов при имитации разных условий прохождения процесса. Управляемость S связана со степенью автоматизации моделирования (программные средства и средства диалога).

9. ВОЗМОЖНОСТЬ РАЗВИТИЯ МОДЕЛИ. Современный уровень науки и техники позволяет создавать мощные системы моделирования S(M) для исследования многих сторон функционирования реального объекта. Необходимо предвидеть возможность развития S(M) как по горизонтали, расширяя спектр изучаемых функций, так и по вертикали, расширяя число подсистем.

В целом проблема моделирования сложной системы - это комплекс сложных научно-технических задач.

При создании рассматривают следующие основные этапы:

v определение цели моделирования;

v идентификация реальных объектов;

v выбор вида моделей;

v построение моделей и их машинная реализация

v взаимодействие исследователя с моделью в ходе машинного эксперимента

v проверка правильности полученных в ходе моделирования результатов

v определение главных закономерностей, исследуемых при моделировании

Теперь же перейдем непосредственно к созданию модели по конкретно поставленному заданию.

Постановка цели моделирования

Постановка задачи, построение содержательной модели - творческий процесс, основанный на возможностях и знаниях исследователя, базируется на эвристике.

Изучив задание, можно выделить следующие цели создания модели:

1. Определение производительности второго цикла обработки деталей;

2. При каком условии возможно повышение загрузки второго станка и снижение уровня задела на втором цикле обработки;

Идентификация реальных объектов

На этом этапе осуществляется определение основных элементов реальной системы, и привязка их к образным понятиям модели с дальнейшим конкретизированием и конвертированием в математическое представление на стадии расширения алгоритма программной реализации.

Для начала определим, что это вообще берется за понятие системы. Исходя из поставленной задачи, под системой подразумевается автоматизированный конвейер обработки деталей в машинном цехе, воздействие на систему с внешней среды не осуществляется, а внутреннее производится непосредственно над деталями (первичная и вторичная обработка) и станками (уровень загрузки и производительности).

Далее определим входные и выходные элементы системы, для модели это будет входная и выходная информация. За входные элементы примем детали, а точнее количество этих деталей. За выходные - производительность станков на втором уровне обработки (я не принимаю уровень загрузки сборщика брака, т.к. это можно определить по производительности).

Так же можно сразу разбить систему на две подсистемы (это в дальнейшем упростит программную реализацию): систему первичной обработки деталей и систему вторичной обработки брака. Так как известно, что бракованные детали не могут обрабатываться дважды нет необходимости в дальнейшем дроблении.

Выбор вида моделей

Виды моделей можно классифицировать следующим способом:

детерминированное стохастическое

статическое динамическое

дискретное дискретно-непрерывное непрерывное

мысленное (абстрактное) реальное (материальное)

наглядное, символическое, математическое, натурное физическое

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на: детерминированные и стохастические; статические и динамические; дискретные, непрерывные и дискретно- непрерывные.

Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предвидится отсутствие всяких случайных влияний.

Стохастическое моделирование отображает вероятностные процессы и случаи. Анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, то есть набор однородных реализаций.

Статическое моделирование описывает поведение объекта в данный момент времени.

Динамическое моделирование отображает поведение объекта во времени.

Дискретное моделирование отображает дискретные процессы, непрерывное моделирование - непрерывные процессы, дискретно-непрерывное моделирование - оба процесса.

В зависимости от формы представления объекта (системы S) выделяют: вымышленные и реальные.

Вымышленное (абстрактное) моделирование - когда невозможно или дорогое материальное создание (модели микромира). Делится на:

v наглядное;

v символическое;

v материальное.

Наглядное моделирование - на базе представления человека об объекте создаются гипотетические модели, аналоги и макеты. Гипотетическое моделирование - выбирается гипотеза о реальном объекте, гипотеза, которая отображает уровень знаний об объекте, когда знаний не хватает для формализации. Аналоговое моделирование использует аналогии разных уровней (полная, неполная, приблизительная). Макетирование - в основе выполненного макета лежит аналогия причинно-наследственных связей.

Символическое моделирование - искусственный процесс создания логического объекта-заместителя реального с помощью системы знаков и символов. Знаковое моделирование - вводятся знаки, условные обозначения отдельных понятий, составляются из знаков слова и предложения; операции объединения, пересечения и дополнения теории множеств дают описание объекта.

Языковое моделирование - в основе лежит словарь однозначных понятий.

Математическое моделирование - замена реального объекта математическим. Делится на аналитическое, имитационное и комбинированное.

Аналитическое моделирование - процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:

v аналитическими, когда хотят получить в общем виде явные зависимости для искомых характеристик;

v численным, когда, не умея решить уравнение в общем виде, получают числовые результаты при конкретных исходных данных;

v качественный, когда не умея решить уравнение, находят некоторые свойства решений (например, стойкость и др.).

Аналитический метод связывает явной зависимостью исходные данные с искомыми результатами. Это возможно для сравнительно простых систем.

Численные методы позволяют исследовать более широкий класс систем. Они эффективны при использовании ЭВМ. Для построения аналитических моделей существует мощный математический аппарат - алгебра, функциональный анализ, разностные уравнения, теория вероятности, математическая статистика, теория массового обслуживания и т.д.

Имитационное моделирование используется, когда для описания СС недостаточно аналитического моделирования. В имитационной модели поведение компонент сложной системы (СС) описывается набором алгоритмов, которые затем реализуют ситуации, которые возникают в реальной системе. Алгоритмы, которые модулируют по исходным данным (сходное состояние СС) и фактическим значением параметров СС позволяют отобразить явления в S и получить информацию о возможном поведении СС. На основе этой информации исследователь может принять соответствующее решение. Имитационная модель (ИМ) СС рекомендуется в следующих случаях:

1) нет законченной постановки задачи исследования и идет процесс познания объекта моделирования. ИМ - способ изучения явления.

2) математические средства аналитического моделирования сложные и громоздкие и ИМ дает наиболее простой способ.

3) кроме оценки влияния параметров СС необходимо наблюдать поведение компонент СС некоторый период.

4) ИМ - единственный способ исследования СС, то есть невозможны наблюдения в реальных условиях за объектом.

5) необходимо контролировать протекание процессов в СС, уменьшая и ускоряя скорость их протекания в ходе имитации.

6) при подготовке специалистов и освоении новой техники.

7) изучение новых ситуаций в СС, проверка новых стратегий и принятие решений перед проведением экспериментов на реальной S.

8) предвиденье узких мест и трудностей в поведении СС при введении новых компонент.

ИМ - наиболее распространенный метод анализа и синтеза СС.

Натурное моделирование - исследование на реальном объекте и обработке результатов экспериментов на основе теории подобия. Научный эксперимент, комплексные исследования, производственный эксперимент (исследуется широкая автоматизация, вмешательство в управление реальным процессом, создание критических ситуаций).

Физическое моделирование - на установках, которые сохраняют природу явлений при физическом подобии.

Кибернетическое моделирование - нет непосредственно физического подобия. Отображается S как "черный ящик" рядом входов и выходов.

Из всего вышесказанного и условий задания можно определить следующий вид модели:

v В зависимости изучаемых процессов: стохастическая - неизвестно сколько будет находиться деталей в накопителе при повторной обработке (известно, что если больше 3-х - активизируется второй станок); динамическое - необходимо узнать как система будет функционировать не в конкретный момент времени а на всем промежутки обработки 500-а деталей; непрерывное - из задания следует, что рассматривается автоматизированный конвейер.

v В зависимости от формы представления: вымышленное (абстрактное) - слишком дорого для студента материальное создание; к данной моделе применимы почти все варианты абстрактного моделирования (математическое, символьное т.д.) так, что нет смысла перечислять все.

Выбор математической схемы

Математическая схема - это участок при переходе от содержательного к формальному описанию процесса функционирования системы с учетом действия внешней среды.

То есть имеет место связка: "описательная модель - математическая схема - математическая (аналитическая и (или) имитационная) модель".

Каждая конкретная система S характеризуется набором свойств, то есть величин, отображающих поведение моделируемого объекта (реальной S) и учитывающих условия ее функционирования во взаимодействии с внешней средой (системой) Е.

При построении ММ системы решаются вопросы о полноте и упрощении. Полнота модели реализуется выбором границы " система S - среда Е ". Упрощение модели - выделение основных свойств S и отбрасывание второстепенных свойств (зависит от цели моделирования).

МАТЕМАТИЧЕСКИЕ СХЕМЫ ОБЩЕГО ВИДА

Модель S можно представить множеством величин, описывающих процесс функционирования реальной системы S.

Эти величины создают в общем случае четыре подмножества:

1) совокупность входных влияний на систему;;

2) совокупность влияний внешней среды;

3) совокупность внутренних параметров системы

4) совокупность выходных характеристик системы.

В этих подмножествах выделяются управляемые и неуправляемые переменные.

При моделировании S входные влияния, влияние внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными в векторной форме:

Выходные характеристики системы - зависимые (эндогенные) переменные.

Процесс функционирования описывается оператором Fs, который пре-

образовывает экзогенные переменные в эндогенные:

Совокупность зависимых выходных характеристик системы от времени (1) называется выходной траекторией (t), (2): называется законом функционирования системы S и обозначается Fs.

В общем случае закон функционирования системы Fs может быть задан в виде функции, функционала, логических условий, алгоритма, таблицы, словесного правила соответствия.

Таким образом, математическая модель объекта (реальной системы) - это конечное подмножество переменных вместе с математическими связями между ними и характеристиками.

ТИПОВЫЕ МАТЕМАТИЧЕСКИЕ СХЕМЫ

В практике моделирования объектов в области системотехники и системного анализа рациональней использовать типовые математические схемы:

v дифференциальные уравнения

v конечные автоматы

v вероятностные автоматы

v СМО (системы массового обслуживания).

ММ на основе этих схем:

1) детерминированные модели, когда при исследовании случайные факторы не учитываются, и системы функционируют в непрерывном времени, основанные на использовании дифференциальных, интегральных, интегро-дифференциальных и других уравнений.

2) детерминированные модели, которые функционируют в дискретном времени - конечные автоматы и конечно-разностные схемы.

3) стохастические модели (при учете случайных факторов) в дискретном времени - вероятностные автоматы.

4) стохастические модели в непрерывном времени - СМО.

Для больших информационно-управляющих систем (Ех, АСУ) типовые схемы недостаточны. Поэтому используют:

5) агрегативные модели (А-системы), которые описывают широкий круг объектов исследования с отображением системного характера этих объектов. При агрегативном описании сложная система разделяется на конечное число частей (подсистем), сохраняя при этом связи между взаимодействующими частями.

Итак, 5 подходов при построении ММ сложных систем:

1) непрерывно-детерминированный (D-схемы);

2) дискретно-детерминированный (R- схемы);

3) дискретно-стохастический (P- схемы);

4) непрерывно-стохастический (Q- схемы);

5) обобщенный или универсальный (А-схемы).

На основе сделанного выбора вида модели (непрерывно-стохастической) необходимо выбрать схему модели, исходя из определения схем (не вижу смысла описывать все схемы, а выбранная схема будет описана в следующей главе) для моей модели подходит Q-схема.

Аннотация

Данная курсовая работа должна показать уровень усвоения материала в области системного анализа и навыки при создании моделей систем.

Следует сразу заметить, что в этой курсовой работе не будет рассматриваться моделирование простых систем, т.к. их разработка довольно проста, а основные принципы одинаковы как для сложных систем, так и для простых. Так же не будут рассматривать начальные и основные понятия системного анализа, т.к. постановка задание подразумевает уклон на непосредственно моделирование системы, а не на разъяснения что такое система.

Классификация экономико-математических моделей

На сегодняшний день общепризнанной единой классифика­ции моделей не существует. Однако можно выделить порядка десяти классификационных рубрик таких моделей. Рассмотрим некоторые из этих рубрик.

В зависимости от формы построения можно выделить следующие типы моделей:

- словесная, или монографическая, модель представляет собой словесное описание объекта, явления или процесса. Очень час­то она выражается в виде определения, правила, теоремы, зако­на или их совокупности;

- графическая модель создается в виде рисунка, географиче­ской карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат которого отложен спрос (D), а на оси абсцисс - цена (Р). Кри­вая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот (рисунок 1.1);

Рисунок 1.1 - Графическая модель, отображающая зависимость

между спросом и ценой

- физические, или вещественные, модели создаются для кон­струирования пока еще несуществующих объектов.

По степени агрегирования объектов моделирования различают модели:

- микроэкономические (эти модели разрабатываются для углубленного анализа структуры производства, позволяют выявить резервы роста объемов производства продукции);

- локальные (это модели, с помощью которых анализируются и прогнозируются некоторые показатели развития отрасли);

- макроэкономические (эти модели строятся для изучения народного хозяйства республики в целом на базе укрупненных показателей). Макромодели в зависимости от принятых уровней детализации подразделяются на одно-, двухсекторные и многосекторные (одно-, двух-, многопродуктовые).

По учету фактора времени различают модели:

- статические (в этих моделях экономическая система описана в статике, применительно к одному определенному моменту вре­мени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени);

- динамические (эти модели описы­вают экономическую систему в развитии).

По учету фактора неопределенности различают модели.

- детерминированные (с однозначно определенными резуль­татами);

- стохастические (с различными вероятностными результа­тами).

По цели создания и применения различают модели:

- балансовые (в этих моделях отражается требование соответствия наличия ресурсов и их использования. Эти модели представляют систему балансов производства и распределения продукции и записываются в форме шахматных квадратных матриц);

- эконометрические (параметры этих моделей оцениваются с помо­щью методов математической статистики. В данных моделях развитие ос­новных показателей моделируемой экономической системы выражается через тренд (длительную тенденцию). Эконометрические модели используются для анализа и прогно­зирования конкретных экономических процессов с использова­нием реальной статистической информации);



- оптимизационные (позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наиболее эффективным образом для достижения поставленной цели);

- имитационные (наряду с машинными решениями со­держат блоки, где решения принимаются человеком (экспер­том). Вместо непосредственного участия человека в принятии решений может выступать ЭВМ, специализированное программное обеспечение, база данных и база знаний, которые образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом ими­тации действий человека, эксперта в данной области);

- сетевые (наиболее широко применяются в управле­нии проектами. Сетевая модель отображает комплекс работ (операций) и событий и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ);

- модели систем массового обслуживания (создаются для ми­нимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания).

По типу математического аппарата различают модели линейного и нелинейного программирования; корреляционно-регрессионные; матричные; сетевые; теории игр; теории массового обслуживания, теории управления запасами и т.д.

Будучи целенаправленным процессом, моделирование осуществляется в соответствии с достаточно строгой, логиче­ски упорядоченной программой действий. В числе основных этапов построения экономико-математической модели могут быть:

1) постановка экономической проблемы и ее качественный анализ;

2) построение математической модели;

3) математический анализ модели;

4) подготовка исходной информации;

5) численное решение;

6) анализ численных результатов и их применение.

1. Постановка экономической проблемы и ее качествен­ный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения, выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняю­щие поведение и развитие объекта.

2. Построение математической модели. Это этап формали­зации экономической проблемы, т. е. выражения ее в виде кон­кретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип эконо­мико-математической модели, изучаются возможности ее при­менения в данной задаче, уточняются конкретный перечень пе­ременных и параметров и форма связей. Для некоторых слож­ных объектов целесообразно строить несколько разноаспектных моделей, при этом каждая модель выделяет лишь некото­рые стороны объекта, а другие стороны учитываются агрегированно и приближенно.

3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулиро­ванной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в ре­шение, в каких пределах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому иссле­дованию; в таких случаях переходят к численным методам исследования.

4. Подготовка исходной информации. В экономических за­дачах это чаще всего наиболее трудоемкий этап моделирования. Математиче­ское моделирование предъявляет жесткие требования к системе информации, при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуе­мого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оцен­ки достоверности данных и т. д. При системном экономико-ма­тематическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку алго­ритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов. Обычно расчеты на основе экономико-мате­матической модели носят многовариантный характер. Много­численные модельные эксперименты, изучение поведения мо­дели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное ре­шение существенно дополняет результаты аналитического ис­следования, а для многих моделей оно является единственно возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о пра­вильности и полноте результатов моделирования и примени­мости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь дол­жна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Применение численных результатов моде­лирования в экономике направлено на решение практиче­ских задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных про­цессов, выработка управленческих решений на всех уровнях хозяйственной иерархии).

Моделирование любого экономического явления состоит из ряда этапов.

Первый этап посвящен постановке проблемы. Обычно перед исследователем стоит большое число разнообразных проблем, причем формулируются они в довольно общих чертах. Цель первого этапа исследования экономических процессов – найти среди проблем такие вопросы, которые могут быть решены на современном уровне развития экономико-математических методов. При этом можно воспользоваться либо уже существующими моделями, либо, если таких моделей нет, то построить собственную модель интересующих объектов.

После того, как сформулирована проблема, которая стоит перед исследователем, можно приступать к следующему, второму этапу исследования – построению математической модели изучаемого экономического объекта и ее идентификации. Этот этап состоит в выборе подходящей модели из совокупности экономических моделей и в подборе параметров этой модели таким образом, чтобы она соответствовала изучаемому объекту.

Третий этап – исследование модели. Предварительно необходимо выбрать способ анализа модели для решения проблем, сформулированных на первом этапе исследования, и вариантов управления экономической системой.

Существует несколько основных методов анализа экономических моделей. Первый из них состоит в качественном анализе модели, то есть в выяснении некоторых ее свойств. Хотя методы качественного анализа очень полезны, такое исследование можно провести лишь в достаточно простых моделях. Также поставленную задачу можно решить одним из методов быстро развивающегося в последнее время раздела прикладной математики – методов оптимизации . Однако даже в случае единственного критерия задачу оптимизации удается решить далеко не всегда: модель может оказаться чересчур большой или чересчур сложной для современных методов оптимизации.

Для анализа экономико-математических моделей широко используется имитационный подход , на основе которого удается преодолеть некоторые из трудностей, связанных с использованием оптимизационного подхода. В имитационном подходе не требуется заранее задавать критерий развития изучаемого объекта. Вместо него задается управление. Сформулировав заранее некоторое число вариантов управления, можно построить траекторию системы для каждого из вариантов. В этом Подходе вместо проблемы формулировки единственного критерия возникает проблема вариантов управления, которые будут изучаться в исследовании. В последнее время появился еще один подход, предназначенный для оценки возможностей системы в целом, при всех допустимых управлениях – подход на основе множеств допустимости . Множеством допустимости для системы называется множество всех таких состояний, в которые систему можно привести при помощи допустимого управления из начальной точки за определенный промежуток времени.



Таким образом, современный этап развития методов анализа моделей экономического объекта характеризуется определенным уровнем зрелости. Отдельные идеи заняли соответствующее место в системе методов исследования, стали ясны области их наиболее целесообразного использования.

Моделирование – мысленное построение идеальных моделей тех или иных явлений, процессов и их изучение в различных условиях. Моделирование – способ воспроизведения некоего объекта или его характеристик на другом объекте, специально созданном для его научного исследования. Научные модели не являются материальными. Они конструируются теоретически на основе абстрагирования, идеализации явления, процесса, системы. При этом фиксируются лишь существенные компоненты, элементы, характеристики объекта исследования, а затем путем идеализации. Создается некая мыслительная конструкция, исключающая ряд элементов, характеристик, свойств данного явления, процесса. Системы. Иначе говоря, модель – не зеркальное отражение оригинала, а во многом его абстрактная схема.

Модель – абстракция, но она базируется на реальности, служит в конечном счете ее преобразованию, совершенствованию. Модель – это упрощенное формальное описание, которое используется для изучения различных явлений.

Виды модели классифицируются на основе различных характеристик: по характеру моделируемого объекта, по сфере приложения, по глубине моделирования.



По характеру модели делятся на материальные и идеальные. При материальном моделировании исследование ведется на основе модели, воспроизводящей основные характеристики изучаемого объекта. Частными случаями материального моделирования является физическое моделирование .

Идеальное моделирование основано не на материальной аналогии моделируемых объектов, а на аналогии идеальной, мысленной. Разновидностью идеального моделирования является знаковое , в котором моделями служат знаковые образования какого-либо вида (схемы, графики, формулы). Важным видом знакового моделирования является математическое моделирование , осуществляемое средствами языка математики и логики. Математическая модель объекта – это его отображение в виде совокупности уравнений, неравенств, логических отношений, графиков.

Другой разновидностью идеального моделирования является интуитивное моделирование , в котором не используются четко фиксированные знаковые системы.

Математические модели , используемые в экономике, можно подразделять на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели макро- и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статические и динамические.

Макроэкономические модели описывают экономику как единое целое, связывая между собой укрупненные материальные и финансовые показатели.

Теоретические модели позволяют изучать общие свойства экономики и ее характерных элементов дедукцией выводов из формальных предпосылок. Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений.

Равновесные модели описывают такие состояния экономики, когда результирующая всех сил, стремящихся вывести ее из данного состояния, равна нулю.

В моделях статических описывается состояние экономического объекта в конкретный момент или период времени. Динамические модели включают взаимосвязи переменных во времени, описывают силы и взаимодействия в экономике, определяющие ход процессов в ней.

56. Особенности математического моделирования экономических явлений .

Для того чтобы правильно оценить состояние и перспективы математических моделей в экономических исследованиях, полезно сопоставить их развитие с опытом применения математического моделирования в физике, где этот метод возник, получил свое развитие и откуда он начал проникать в другие отрасли человеческого знания. На протяжении столетий физика с успехом использует математические модели. Модели, основанные, скажем, на принципах ньютоновской механики, уже три века надежно служат человечеству, давая необходимую расчетную базу в его практической деятельности. Более того, прогресс самой математики в значительной степени связан с исследованием разнообразных физических моделей. За триста лет совместной активной деятельности многих поколений физиков и математиков удалось построить стройное здание – систему математических моделей физических процессов, где все этажи тесно связаны между собой, причем многие модели связаны надежными логическими переходами. Математическое моделирование экономических явлений в значительной мере отличается от физического. Дело осложняется в первую очередь тем, что экономика охватывает не только производственные процессы, но и производственные отношения. Моделирование производственных процессов не представляет принципиальных трудностей и не намного сложнее, чем моделирование физических процессов. Моделировать же производственные отношения невозможно, не учитывая поведения людей, их интересов и индивидуально принятых решений. Для описания функционирования экономической системы можно выделить два основных уровня экономических процессов.

Первый уровень – производственно- технологический. К нему относятся описание производственных возможностей изучаемых экономических систем. При моделировании производственных возможностей системы ее обычно разбивают на отдельные, «элементарные», в данной модели, производственные единицы. После этого необходимо описать, во-первых, производственные возможности каждой из единиц, и, во-вторых, возможности обмена ресурсами производства и продукцией между «элементарными» производственными единицами. Производственные возможности описываются при помощи так называемых производственных функций различных типов, а при описании возможностей обмена главную роль играют балансовые соотношения .

На втором уровне – уровне социально- экономических процессов – определяется, каким образом реализуются производственные возможности, описанные при моделировании производственно-технологического уровня экономической системы. Дело в том, что обычно технологические ограничения сами по себе не определяют полностью развития экономического процесса. Существует множество вариантов распределения заданий, укладывающихся в технологические ограничения, которые задают производственные возможности системы. В математических моделях выделяют специальные переменные, значения которых определяют единственный вариант развития экономического процесса. Эти переменные принято называть управляющими воздействиями или управлениями . На уровне социально-экономических процессов определяется механизм выбора управляющих воздействий.

Есть, однако, большое число проблем, в которых описание социально-экономического уровня не является необходимым. Это, так называемые, нормативные проблемы , в которых указывается, как надо задать управление, чтобы достичь наилучших в каком-то смысле результатов. При этом необходимо точно определить, что понимается под наилучшим результатом, то есть сформулировать критерий (целевую функцию), по которому можно оценивать и сравнивать различные управления. Определяется такое управление, при котором критерий достигал бы экстремального значения. Такое значение управления находится методами оптимизации и называется оптимальным .

Важную роль в моделировании экономических явлений играют исходные предложения, на которых строятся модели экономических систем. Известный естествоиспытатель Гексли сказал, что «математика подобно жернову перемалывает то, что под него засыпают, и подобно тому, как нельзя рассчитывать получить доброкачественную муку, засыпав под жернов плевелы, нельзя рассчитывать с помощью математики получить временный результат из неверных предпосылок».