Физика. Реактивное движение в природе и в технике

Сегодня реактивное движение у большинства людей в первую очередь, конечно же, ассоциируется с новейшими научными и техническими разработками. Из учебников по физике нам известно, что под «реактивным» подразумевают движение, которое возникает в результате отделения от предмета (тела) любой его части. Человек хотел подняться в небо к звёздам, стремился летать, но осуществить свою мечту смог только с появлением реактивных самолетов и ступенчатых космических кораблей, способных перемещаться на огромные расстояния, разгоняясь до сверхзвуковых скоростей, благодаря установленным на них современным реактивным двигателям. Конструктора и инженеры разрабатывали возможность использования реактивного движения в двигателях. Фантасты тоже не оставались в стороне, предлагая самые невероятные идеи и способы достижения этой цели. Удивительно, но этот принцип перемещения широко распространен в живой природе. Достаточно осмотреться вокруг, можно заметить обитателей морей и суши, среди которых есть и растения, в основе движения которых лежит реактивный принцип.

История

Еще в античные времена ученые с интересом изучали и анализировали явления, связанные с реактивным движением в природе. Одним из первых, кто теоретически обосновал и описал его суть, был Герон, механик и теоретик Древней Греции, который изобрел первый паровой двигатель, названый в честь него. Китайцы смогли найти реактивному методу практическое применение. Они первыми, взяв за основу способ передвижения каракатиц и осьминогов, еще в XIII веке изобрели ракеты. Они применялись в фейерверках, производя большое впечатление, а также, как сигнальные ракеты, возможно были и боевые ракеты, которые использовались как реактивная артилерия. Со временем эта технология пришла и в Европу.

Первооткрывателем нового времени стал Н. Кибальчич, придумав схему прототипа летательного аппарата с реактивным двигателем. Он был выдающимся изобретателем и убежденным революционером, за что сидел в тюрьме. Именно находясь в заключении, он вошел в историю, создав свой проект. После его казни за активную революционную деятельность и выступления против монархии, его изобретение было забыто на архивных полках. Спустя некоторое время К.Циолковский смог усовершенствовать идеи Кибальчича, доказывая возможность исследовать космическое пространство посредством реактивного перемещения космических кораблей.

Позже, в ходе Великой Отечественной войны, появились знаменитые Катюши, системы полевой реактивной артиллерии. Так ласковым именем народ неофициально именовал мощные установки, которые применяли силы СССР. Достоверно неизвестно, в связи с чем, оружие получило это название. Причиной этому стала то ли популярность песни Блантера, то ли буква «К» на корпусе миномёта. Со временем фронтовики стали давать прозвища и другому оружию, создав, таким образом, новую традицию. Немцы же эту боевую ракетную установку называли «сталинским органом» за внешний вид, который напоминал музыкальный инструмент и пронзительный звук, который исходил от стартующих ракет.

Растительный мир

Представителями фауны также используются законы реактивного движения. Большую часть растений, обладающих такими свойствами составляют однолетники и малолетники: колючеплодник, чесночница черешчатая, сердечник недотрога, пикульник двунадрезный, мёрингия трёхжилковая.

Колючеплодник, иначе бешеный огурец, относят к семейству тыквенных. Это растение достигает больших размеров, имеет толстый корень с шершавым стеблем и крупными листьями. Произрастает на территории Средней Азии, Средиземноморья, на Кавказе, довольно распространен на юге России и Украины. Внутри плода в период созревания семян преобразуется в слизь, которая под действием температур начинает бродить и выделять газ. Ближе к созреванию давление внутри плода может достигнуть 8 атмосфер. Тогда при легком прикосновении плод отрывается от основания и семена с жидкостью со скоростью 10 м/с вылетают из плода. Благодаря способности стрелять на 12 м. в длину, растение назвали «дамский пистолет».

Сердечник недотрога — однолетний широко распространённый вид. Встречается, как правило, в тенистых лесах, по берегам вдоль рек. Попав в северо-восточную часть Северной Америки и в Южную Африку, благополучно прижился. Сердечник-недотрога размножается семенами. Семена у сердечника-недотроги мелкие, массой не более 5 мг, которые отбрасываются на расстояние в 90 см. Благодаря такому способу распространения семян, растение и получило свое название.

Животный мир

Реактивное движение — интересные факты, касающиеся животного мира. У головоногих моллюсков реактивное перемещение происходит посредством воды, выдыхаемой через сифон, который обычно сужается к небольшому отверстию для получения максимальной скорости выдоха. Вода через жабры проходит до выдоха, выполняя двойную цель дыхания и перемещения. Морские зайцы, иначе брюхоногие моллюски, используют аналогичные средства движения, но без сложного неврологического аппарата головоногих, они перемещаются более неуклюже.

Некоторые рыбы-рыцари также развили реактивное перемещение, пропуская воду через жабры, чтобы дополнить плавниковое движение.

У личинок стрекоз реактивная сила достигается путем вытеснения воды из специализированной полости в организме. Морские гребешки и кардиды, сифонофоры, туники (такие, как сальпы) и некоторые медузы, также используют реактивную тягу.

Большую часть времени морские гребешки спокойно лежат на дне, но в случае появления опасности, быстро смыкают створки своей раковины, так они выталкивают воду. Этот механизм поведения тоже говорит об использовании принципа реактивного перемещения. Благодаря ему, гребешки могут всплывать и перемещаться на большое расстояние, применяя технику открытия-закрытия раковины.

Кальмар также применяет этот метод, вбирает в себя воду, а затем с огромной силой проталкивая через воронку движется скоростью не менее 70 км./ч. Собирая щупальцы в один узел, тело кальмара образует обтекаемую форму. Взяв за основу такой двигатель кальмара, инженерами был сконструирован водомет. Вода в нем засасывается в камеру, а после выбрасывается через сопло. Таким образом, судно направляется в обратную сторону от выбрасываемой струи.

Если сравнить с кальмарами, наиболее эффективными двигателями пользуются сальпы, тратя на порядок меньше энергии, чем кальмары. Двигаясь сальпа запускает воду в отверстие спереди, а затем поступает в широкую полость, где натянуты жабры. После глотка отверстие закрывается, а с помощью сокращающихся продольных и поперечных мускул, которые сжимают тело, происходит выброс воды через отверстие сзади.

Самым необычным из всех механизмов передвижения может похвастаться обыкновенная кошка. Марсель Депре высказал предположение, что тело способно двигаться и изменять свое положение даже с помощью одних только внутренних сил (ни от чего не отталкиваясь и ни на что не опираясь), из чего можно было сделать вывод, что законы Ньютона могут быть ошибочны. Доказательством его предположению могла послужить кошка, которая сорвалась с высоты. Во время падения вниз головой, она все равно приземлится на все лапы, это стало уже своего рода аксиомой. Детально сфотографировав перемещение кошки, смогли по кадрам рассмотреть, все, что она проделывала в воздухе. Увидели ее движение лапой, которое вызвало ответную реакцию туловища, поворачиваясь в другую сторону относительно движения лапки. Действуя по законам Ньютона, кошка удачно приземлилась.

У животных все происходит на уровне инстинкта, человек в свою очередь делает сознательно. Профессиональные пловцы, прыгнув с вышки успевают трижды обернуться в воздухе, и сумев приостановить вращение, выпрямляются строго вертикально и ныряют в воду. Этот же принцип действует в отношении воздушных цирковых гимнастов.

Сколько бы человек не пытался превзойти природу, совершенствуя созданные ею изобретения, все равно мы пока не достигли того технологического совершенства, когда бы самолеты могли повторить действия стрекозы: зависать в воздухе, мгновенно подаваться назад или двигаться в сторону. Причем все это происходит на большой скорости. Возможно, пройдет еще немного времени и самолеты, благодаря поправкам на особенности аэродинамики и реактивные возможности стрекоз, смогут совершать крутые развороты и станут менее восприимчивы к внешним условиям. Подсмотрев у природы, человек еще многое может усовершенствовать на благо технического прогресса.

У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

История реактивного движения

С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.

Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.

Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

Кто открыл реактивное движение?

Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.

Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

Примеры реактивного движения в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Закон реактивного движения

Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.

Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.

То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

Закон сохранения импульса и реактивное движение

Физика поясняет процесс реактивного движения . Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

Формула реактивного движения

В целом реактивное движение можно описать следующей формулой:
m s v s +m р v р =0
m s v s =-m р v р

где m s v s импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

Реактивное движение в технике – принцип работы реактивного двигателя

В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть

  • запас топлива,
  • камера, для сгорания топлива,
  • сопло, задача которого ускорять реактивную струю.

Так выглядит реактивный двигатель.

Реактивное движение, видео

И в завершение занимательное видео о физических экспериментах с реактивным движением.

Принцип реактивного движения заключается в том, что этот вид движения возникает тогда, когда происходит отделение с некоторой скоростью, от тела его части. Классическим примером реактивного движения служит движение ракеты. К особенностям данного движения можно отнести то, что тело получает ускорение без взаимодействия с другими телами. Так, движение ракеты происходит за счет изменения ее массы. Масса ракеты уменьшается при истечении газов, которые возникают при сгорании топлива. Рассмотри движение ракеты. Допустим, что масса ракеты равна , а ее скорость в момент времени . Спустя время масса ракеты уменьшается на величину и становится равна: , скорость ракеты становится равной .

Тогда изменение импульса за время можно представить как:

где — скорость истечения газов по отношению к ракете. Если принять, что — величина малая высшего порядка в сравнении с остальными, то получим:

При действии на систему внешних сил () изменение импульса представим как:

Приравниваем правые части формул (2) и (3), получаем:

где выражение — носит название реактивной силы. При этом, если направления векторов и противоположны, то ракета ускоряется, в противном случае она тормозит. Уравнение (4) носит название уравнения движения тела переменной массы. Его часто записывают в виде (уравнение И.В. Мещерского):

Идея использования реактивной силы была предложена еще в XIX веке. Позднее К.Э. Циолковский выдвинул теорию движения ракеты и сформулировал основы теории жидкостного реактивного двигателя. Если положить, что на ракету не действуют внешние силы, то формула (4) получит вид:

>>Физика: Реактивное движение

Законы Ньютона позволяют объяснить очень важное механическое явление -реактивное движение. Так называют движение тела, возникающее при отделении от него с какой-либо скоростью некоторой его части.

Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактивное движение.

По принципу реактивного движения передвигаются некоторые представители животного мира, например кальмары и осьминоги. Периодически выбрасывая вбираемую в себя воду, они способны развивать скорость до 60-70 км/ч. Аналогичным образом перемещаются медузы, каракатицы и некоторые другие животные.

Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды "бешеного" огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами, сами огурцы при этом отлетают в противоположном направлении.

Реактивное движение, возникающее при выбросе воды, можно наблюдать на следующем опыте. Нальем воду в стеклянную воронку, соединенную с резиновой трубкой, имеющей Г-образный наконечник (рис. 20). Мы увидим, что, когда вода начнет выливаться из трубки, сама трубка придет в движение и отклонится в сторону, противоположную направлению вытекания воды.

На принципе реактивного движения основаны полеты ракет . Современная космическая ракета представляет собой очень сложный летательный аппарат, состоящий из сотен тысяч и миллионов деталей. Масса ракеты огромна Она складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной или, как говорят, "сухой" массы ракеты, остающейся после выброса из ракеты рабочего тела.

"Сухая" масса ракеты, в свою очередь, состоит из массы конструкции (т. е. оболочки ракеты, ее двигателей и системы управления) и массы полезной нагрузки (т. е. научной аппаратуры, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения корабля).

По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету ненужным грузом, затрудняя ее разгон. Поэтому для достижения космических скоростей применяют составные (или многоступенчатые) ракеты (рис. 21). Сначала в таких ракетах работают лишь блоки первой ступени 1. Когда запасы топлива в них кончаются, они отделяются и включается вторая ступень 2; после исчерпания в ней топлива она также отделяется и включается третья ступень 3. Находящийся в головной части ракеты спутник или какой-либо другой космический аппарат укрыт головным обтекателем 4, обтекаемая форма которого способствует уменьшению сопротивления воздуха при полете ракеты в атмосфере Земли.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Почему это происходит?

Согласно третьему закону Ньютона, сила F, с которой ракета действует на рабочее тело, равна по величине и противоположна по направлению силе F", с которой рабочее тело действует на корпус ракеты:
F" = F (12.1)
Сила F" (которую называют реактивной силой) и разгоняет ракету.

Отослано читателями из интернет-сайтов

Онлайн библиотека с учебниками и книгами, планы-конспекты уроков по физике 8 класса, скачать тесты физика, книги и учебники согласно каленадарного планирования физики 8 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Среди великих технических и научных достижений XX столетия одно из первых мест, несомненно, принадлежит ракетам и теории реактивного движения . Годы второй мировой войны (1941-1945) привели к необычайно быстрому совершенствованию конструкций реактивных аппаратов. На полях сражений вновь появились пороховые ракеты, но уже на более калорийном бездымном тротилпироксилиновом порохе («катюши»). Были созданы самолеты с воздушно-реактивными двигателями, беспилотные самолеты с пульсирующими воздушно-реактивными двигателями («ФАУ-1») и баллистические ракеты с дальностью полета до 300 км («ФАУ-2»).

Ракетная-техника становится сейчас очень важной и быстрорастущей отраслью промышленности. Развитие теории полета реактивных аппаратов - одна из насущных проблем современного научно-технического развития.

К. Э. Циолковский много сделал для познания основ теории движения ракет . Он был первым в истории науки, кто формулировал и исследовал проблему изучения прямолинейных движений ракет, исходя из законов теоретической механики. Как мы указывали, принцип сообщения движения, при помощи сил реакции отбрасываемых частиц был осознан Циолковским еще в 1883 году, однако создание им математически строгой теории реактивного движения относится к концу XIX столетия.

В одной из своих работ Циолковский писал: «Долго на ракету я смотрел, как и все: с точки зрения увеселений и маленьких применений. Не помню хорошо, как мне пришло в голову сделать вычисления, относящиеся к ракете. Мне кажется, первые семена мысли были заронены известным фантазером Жюлем Верном; он пробудил работу моего мозга в известном направлении. Явились желания, за желаниями возникла деятельность ума. ...Старый листок с окончательными формулами, относящимися к реактивному прибору, помечен датою 25 августа 1898 года».

«...Никогда я не претендовал на полное решение вопроса. Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчет. И уже в конце концов исполнение венчает мысль. Мои работы о космических путешествиях относятся к средней фазе творчества. Более, чем кто-нибудь, я понимаю бездну, разделяющую идею от ее осуществления, так как в течение моей жизни я не только мыслил и вычислял, но и исполнял, работая также руками. Однако нельзя не быть идее: исполнению предшествует мысль, точному расчету - фантазия».

В 1903 году в журнале «Научное обозрение» появилась первая статья Константина Эдуардовича по ракетной технике, которая называлась «Исследование мировых пространств реактивными приборами». В этом труде на основании простейших законов теоретической механики (закона сохранения количества движения и закона независимого действия сил) была дана теория полета ракеты и обоснована возможность применения реактивных аппаратов для межпланетных сообщений (Создание общей теории движения тел, масса которых изменяется в процессе движения, принадлежит профессору И. В. Мещерскому (1859-1935)).

Идея применения ракеты для решения научных проблем, использование реактивных двигателей для создания движения грандиозных межпланетных кораблей целиком принадлежат Циолковскому. Он родоначальник современных жидкостных ракет дальнего действия, один из создателей новой главы теоретической механики.

Классическая механика, изучающая законы движения и равновесия материальных тел, базируется на трех законах движения , отчетливо и строго сформулированных английским ученым еще в 1687 году. Эти законы применялись многими исследователями для изучения движения тел, масса которых не изменялась во время движения. Были рассмотрены очень важные случаи движения и создалась большая наука - механика тел постоянной массы. Аксиомы механики тел постоянной массы, или законы движения Ньютона, явились обобщением всего предыдущего развития механики. В настоящее время основные законы механического движения излагаются во всех учебниках физики для средней школы. Мы дадим здесь краткое изложение законов движения Ньютона, так как последующий шаг в науке, позволивший изучать движение ракет, был дальнейшим развитием методов классической механики.