Население марса. Полезные ископаемые на Марсе (природное богатство)

Как уже упоминалось, есть много интересных сходств между Землей и Марсом, которые делают последний жизнеспособным вариантом для колонизации. Для начала Марс и Земля обладают похожей длиной дня. Марсианский день (сол) длится 24 часа и 39 минут, а это означает, что растениям и животным, не говоря уж о колонистах со стороны людей, такой суточный цикл придется вполне по душе.

Марс также обладает наклоном оси, который очень похож на земной, что означает практически те же основные перемены времен года, к которым мы привыкли на Земле. В основном когда одно полушарие направлено на Солнце, оно испытывает лето, тогда как на другом царит зима - только температуры выше и дни дольше.

Это будет весьма на руку, когда дело дойдет до выращивания культур и обеспечения колонистов комфортными условиями и способом измерения течения года. Подобно фермерам на Земле, будущие марсиане будут переживать сезон роста урожая и сезон его сбора, а также иметь возможность проводить ежегодные торжества по случаю смены времен года.

Кроме того, как и на Земле, Марс расположен в пределах потенциально обитаемой зоны нашего Солнца (так называемой зоны Златовласки), хотя и смещен к ее внешнему краю. Венера тоже находится в этой зоне, но расположена ближе к внутреннему краю, что в сочетании с ее толстой атмосферой сделало ее самой горячей планетой Солнечной системы. Отсутствие кислотных дождей также делает Марс более привлекательным вариантом.

В дополнение к этому, Марс находится ближе к Земле, чем другие планеты Солнечной системы - кроме Венеры, но мы уже поняли, что она не подходит для первых колонистов. Это упростит процесс колонизации. На самом деле, каждые несколько лет, когда Земля и Марс находятся в оппозиции - то есть на минимальной дистанции, - открываются «окна запуска», идеальные для отправки колонистов.

К примеру, 8 апреля 2014 года Земля и Марс были на 92,4 миллиона километров друг от друга. 22 мая 2016 года они будут на расстоянии 75,3 миллиона километров, а к 27 июля 2018 года сойдутся на 57,6 миллиона километров. Запуск в нужный момент позволит сократить время полета с нескольких лет до месяцев.

Кроме того, Марс обладает изрядными запасами воды в форме льда. Большая его часть расположена в полярных регионах, но изучение марсианских метеоритов показало, что много воды может находиться под поверхностью планеты. Ее можно добывать и очищать в питьевых целях, причем довольно просто.

В своей книге The Case for Mars Роберт Зубрин также отмечает, что будущие колонисты могли бы жить за счет почвы, отправляясь на Марс, и в конечном счете колонизировали бы планеты на все сто. Вместо того чтобы возить все припасы с Земли - подобно жителям Международной космической станции, - будущие колонисты могли бы делать собственный воздух, воду и даже топливо, расщепляя марсианскую воду на кислород и водород.

Предварительные эксперименты показали, что марсианскую почву можно запечь в кирпичи, чтобы создать защитные сооружения, и это сократило бы количество материалов, которые необходимо отправлять с поверхности Земли. Земные растения также могут расти в марсианской почве, если получают достаточно света и углекислого газа. Со временем высадка растений в местной почве может помочь создать пригодную для дыхания атмосферу.

Проблемы колонизации Марса


Несмотря на вышеупомянутые выгоды, есть несколько довольно серьезных проблем в колонизации Красной планеты. Для начала есть вопрос о средней температуре поверхности, которая довольно негостеприимна. Хотя температуры вокруг экватора в полдень могут достигать мягких 20 градусов по Цельсию, на месте высадки «Кьюриосити» - в кратере Гейла, который близок к экватору - обычные ночные температуры опускаются до -70 градусов.

Гравитация на Марсе составляет около 40% земной, приспособиться к ней будет довольно трудно. Согласно отчету NASA, последствия влияния микрогравитации на тело человека довольно глубоки, ежемесячные потери мышечной массы доходят до 5%, а плотности костей - до 1%.

На поверхности Марса эти потери будут ниже, поскольку там есть некоторая гравитация. Но постоянные поселенцы будут сталкиваться с проблемами дегенерации мышц и остеопороза в долгосрочной перспективе.

Также есть вопрос атмосферы, которая непригодна для дыхания. Порядка 95% атмосферы планеты составляет углекислый газ, а это значит, что в дополнение к производству пригодного для дыхания воздуха для колонистов, они также не смогут выходить наружу без сдавливающих скафандров и кислородных баллонов.

Марс также не имеет глобального магнитного поля, сравнимого с геомагнитным полем Земли. В сочетании с тонкой атмосферой это означает, что поверхности Марса может достигать значительное количество ионизирующего излучения.

Благодаря измерениям, сделанным космическим кораблем Mars Odyssey (инструмент MARIE), ученые выяснили, что уровень радиации на орбите Марса в 2,5 раза выше, чем на Международной космической станции. На поверхности этот уровень должен быть ниже, но все равно остается слишком высоким для будущих поселенцев.

В одной из последних работ, представленных группой ученых MIT, анализирующих план Mars One по колонизации планеты, которая начнет в 2020 году, подсчитано, что первый астронавт задохнется уже через 68 дней, в то время как остальные умрут от голода, обезвоживания или выгорания в богатой кислородом атмосфере.


Короче говоря, проблемы создания постоянного поселения на Марсе остаются многочисленными, но вполне преодолимыми.

Терраформирование Марса

Со временем многие или все трудности жизни на Марсе могут быть преодолены путем применения геоинженерии (терраформирования). Используя организмы вроде цианобактерий и фитопланктона, колонисты могли бы постепенно преобразовать большую часть углекислого газа в атмосфере в пригодный для дыхания кислород.

В дополнение к этому предполагается, что значительное количество диоксида углерода (CO2) содержится в форме сухого льда на южном полюсе Марса, а также поглощено реголитом (почвой). Если температура на планете поднимается, этот лед сублимирует в газ и повысит атмосферное давление. Хотя атмосфера после этого не станет более дружелюбной для легких человека, это решит проблему необходимости сдавливающих костюмов.

Возможный способ осуществить это - намеренно создать парниковый эффект на планете. Это можно сделать путем импорта аммиачного льда из атмосфер других планет в нашей Солнечной системе. Поскольку аммиак (NH3) представлен в основном азотом по весу, он также поставить буферный газ, необходимый для пригодной для дыхания атмосферы - как здесь, на Земле.

Точно так же можно было бы вызвать парниковый эффект за счет импорта углеводородов вроде метана - его много в атмосфере Титана и на его поверхности. Метан можно было бы выпустить в атмосферу, где он выступит в качестве компонента парникового эффекта.

Зубрин и Крис Маккей, астробиолог Исследовательского центра Эймса при NASA, также предложили создать заводы на поверхности планеты, которые накачивали бы парниковые газы в атмосферу, тем самым вызвав глобальное потепление (с помощью такого же процессы мы портим атмосферу нашей родной Земли).

Существуют и другие возможности, начиная с орбитальных зеркал, нагревающих поверхность, до намеренной бомбардировки поверхности кометами. Независимо от метода, все существующие варианты по терраформированию Марса могут сделать планету пригодной для человека только в долгосрочной перспективе.


Другое предложение заключается в создании подземных жилищ. Построив ряд туннелей, соединяющих подземные места обитания, колонисты могли бы отказаться от необходимости носить кислородные баллоны и сдавливающие скафандры, находясь вдали от дома.

Также это обеспечило бы некоторой защитой от радиации. Данные, полученные Mars Recknnaissance Orbiter, показывают, что такие подземные жилища уже существуют, а значит, их можно использовать.

Предлагаемые миссии

NASA предлагает осуществить пилотируемую миссию на Марс - которая состоится в 2030-х годах с использованием многоцелевого транспортного средства «Орион» и ракеты SLS - но это не единственное предложение по отправке людей на Красную планету. В дополнение к другим федеральным космическим агентствам, существуют планы по освоению у частных корпораций и некоммерческих организаций, некоторые из которых довольно амбициозны и преследуют не только ознакомительные цели.

Давно планирует отправить людей на Марс, только вот строить нужный транспорт так пока и не начало. Российское федеральное космическое агентство Роскосмос планирует пилотируемую миссию на Мар,с и в запасе есть проведенные испытания модели «Марс-500» еще в 2011 году, в ходе которых в течение 500 дней имитировались летные условия полета на Марс. Впрочем, ЕКА тоже принимало участие в этом эксперименте.

В 2012 году группа голландских предпринимателей раскрыла планы на краудфандинговую компанию по созданию марсианской базы, которое начнется в 2023 году. План MarsOne предусматривает серию односторонних миссий с целью создания постоянной и расширяющейся колонии на Марсе, которые будут финансироваться при помощи сбора средств через СМИ.

Другие детали плана MarsOne включают отправку телекоммуникационного орбитального аппарата к 2018 году, марсохода к 2020 году и компонентов базы вместе с колонистами к 2023 году. База будет оснащена 3000 квадратных метров солнечных панелей, а оборудование будет доставлено с помощью ракеты SpaceX Falcon 9 Heavy. Первая команда из четырех астронавтов должна будет приземлиться на Марс в 2025 году; после этого, через каждые два года будет прибывать новая группа.

2 декабря 2014 года директор по продвинутым системам человеческого исследования и операционным миссиям NASA Джейсон Крусан и зампомощника администратора по программам Джеймс Рейтнер анонсировали предварительную поддержку инициативе Boeing под названием Affordable Mars Mission Design (проект доступной миссии на Марс). Запланированная на 2030-е годы, миссия включает планы по созданию радиационной защиты, искусственной гравитации с помощью центрифуги, повторной поддержки расходными материалами и аппарата для возвращения.


CEO SpaceX и Tesla Элон Маск также объявил о планах по созданию колонии на Марсе с населением 80 000 человек. Неотъемлемой частью этого плана является разработка Mars Colonial Transporter (MCR), системы космических полетов, которая будет полагаться на ракеты повторного использования, пусковые аппараты и космические капсулы для транспортировки людей на Марс и возвращения на Землю.

В 2014 году SpaceX начала разработку большого ракетного двигателя Raptor для MCT, однако MCT не начнет работу до середины 2020-х. В январе 2015 года Маск заявил, что надеется представить детали «совершенно новой архитектуры» системы марсианского транспорта в конце 2015 года.

Настанет день, когда спустя поколения терраформирования и многочисленные волны колонистов Марс заполучит жизнеспособную экономику. Возможно, на Красной планете будут добываться минералы, их можно будет отсылать на Землю для продажи. Запуск драгоценных металлов вроде платины будет относительно недорогим, благодаря низкой силе тяжести на планете.

Однако Маск считает, что наиболее вероятный сценарий (для обозримого будущего) включает экономику недвижимости. По мере того как население Земли будет расти, будет расти желание убраться отсюда подальше, а также инвестировать в недвижимость Марса. И как только система транспорта будет налажена и отработана, инвесторы будут рады начать строительство на новых землях.

Однажды на Марсе заведутся настоящие марсиане - и это будем мы.

События

Писатели-фантасты в своих произведениях часто упоминают шахты и прииски на других планетах. А одна из самых близких нам планет – это Марс. Конечно, геологоразведочные работы начнутся нескоро, но ученые уже составили примерную карту того, где на Марсе могут располагаться полезные ископаемые.

По словам ученых, изучающих потенциальные места концентрации металлов на красной планете, будущим геологам Марса, скорее всего, придется искать полезные ископаемые в самых необычных местах. Например, на Земле огромную роль в вымывании, концентрации и осаждении таких ценных минералов как железо, золото, серебро, медь и никель, играют поверхностные и грунтовые воды, и даже химикалии, оставленные живыми существами.

Но на Марсе нет ни океанов, ни поверхностных вод, ни живых микроорганизмов. Более того, температура на планете такая низкая, что грунтовые воды заморожены до состояния вечной мерзлоты, и сами могут считаться полезными ископаемыми.

Но где в таком случае можно найти полезные минералы и металлы? Майкл Вест из Национального австралийского университета города Канберра говорит, что самые подходящие места для геологоразведочных работ – это вулканы и метеоритные кратеры.

"На Марсе вы точно не найдете огромные залежи полезных ископаемых, которые будете перевозить на Землю. Но этого может быть достаточно для заселения планеты ", – сказал Вест.

Вулканические ландшафты Марса похожи на то, что на Земле называют крупными магматическими провинциями. Такие провинции – это территории, на поверхность которых вылилась лава. Встречаются они в Сибири, Индии и на западе Северной Америки. В таких местах добывают никель, медь, железо, платину, палладий и хром.

По словам ученого Адриана Брауна, исследующего планеты, вулканы Марса тоже могут оказаться богатыми полезными ископаемыми. "Мы не знаем, что можем обнаружить возле вулканов. Они покрыты пылью, и вовсе не являются подходящим местом для приземления разведочных аппаратов ", – говорит он. Это займет немало времени.

Другими потенциальными источниками полезных ископаемых могут быть метеоритные кратеры: так как камни в кратерах выставлены наружу, следовательно, копать надо меньше. К тому же, в этих местах концентрировалось большое количество тепла на протяжении тысяч лет после падения метеоритов. А это означает, что замороженная вода в почве превратилась в жидкость или даже пар, с помощью которого происходит осаждение минералов, и образуются залежи в виде рудоносных жил и гидротермальных источников. На Земле такие жилы богаты медью, цинком, свинцом, барием, серебром и золотом.

У Марса совершенно другие кора и атмосфера, отличные от земных, и минералы также будут отличаться от привычных нам полезных ископаемых.

На сегодняшний день Марс является наиболее привлекательным объектом для потенциальной колонизации. Стоит начать с того, что это ближайшая планета к Земле (не считая Венеры), полет к которой займет всего 9 месяцев. Кроме того, несмотря на то что человек не может находиться на поверхности Марса без защитного снаряжения, условия планеты очень похожи на земные.

Во-первых, площадь поверхности Марса практически равна площади суши на Земле. Во-вторых, марсианские сутки схожи с земными и длятся 24 часа 39 минут и 35 секунд. Кроме того, Марс и Земля имеют почти одинаковые наклон оси к плоскости эклиптики, следствие чего на Марсе тоже происходит смена времен года. Главным фактором в возможности потенциальной колонизации планеты является наличие на Марсе атмосферы, хоть и не очень плотной, что гарантирует некоторую защиту от радиации, а также облегчает посадку космического корабля. Также в результате недавних исследований было подтверждено наличие воды на планете, что дает ученым повод утверждать о вероятности возникновения и поддержания жизни. Плюс к этому, стоит отметить тот факт, что марсианский грунт по своим параметрам очень напоминает земной, поэтому учеными теоретически рассматривается возможность выращивания на поверхности планеты растений.

Однако стоит отметить факторы, которые способны сильно затруднить колонизацию красной планеты. Во-первых, это сила тяжести, которая более чем в два с половиной раза меньше земной. Во-вторых, это низкая температура (максимально воздух прогревается на экваторе до +30 градусов по Цельсию, при этом зимой на полюсах температура может опускаться до -123 градусов). При этом для планеты характерны большие годовые колебания температуры. Магнитное поле планеты приблизительно в 800 раз слабее, чем на Земле. Что касается атмосферного давления, то на Марсе оно слишком мало, чтобы колонисты смогли находиться на поверхности без специального костюма.

Атмосфера Марса на 95 процентов состоит из углекислого газа, поэтому на начальных этапах терраформирования планеты требуется растительность, с помощью которой можно бы было увеличить содержание кислорода. Кстати давление углекислого газа может оказаться достаточным для поддержания жизни растительности на планете без дополнительного терраформирования.

Тем не менее для успешной колонизации планеты без предварительного терраформирования не обойтись. Во-первых, необходимо достичь на Марсе атмосферного давления, при котором стало бы возможным существование воды в жидком виде. Во-вторых, необходимо создать озоновый слой, который бы защищал поверхность от излучения. Плюс к этому, нужно повысить температуру на экваторе до минимум +10 градусов.

При удачном террафомировании наиболее благоприятными местами для создания колоний станут низменности в экваториальной зоне. Среди подобных мест ученые отмечают в первую очередь впадину Эллада (наивысшее давление на планете), а также долину Маринера (наибольшие минимальные температуры).

План колонизации Марса привлекает человечество в первую очередь из-за большого запаса различных полезных ископаемых на планете: меди, железа, вольфрама, рения, урана и других. Сама добыча этих элементов может проходить гораздо плодотворнее, чем на Земле, так как, например, благодаря отсутствию биосферы и высокому фону излучения можно широкомасштабно применять термоядерные заряды для вскрытия рудных тел.

Несмотря на то, что Марс является наиболее благоприятной для колонизации планетой Солнечной системы, многие ученые заявляют о невозможности осуществления плана его колонизации. Одним из аргументов является малое количество элементов, необходимых для поддержания жизни (водорода, азота, углерода). Также многие специалисты ставят под сомнение практическую ценность террафомирования планеты (так как проверить это экспериментально в земных условиях не предоставляется возможным). Кроме того, многих ученых весьма пугает марсианская радиация, а также марсианская сила тяжести, пагубное влияние которых может привести к различным мутациям в теле человека. Плюс ко всему, ученые пока затрудняются ответить о возможных последствиях длительного перелета (вполне возможно, что длительное нахождение людей в замкнутом пространстве может вызвать серьезные психологические проблемы).

Mars One - частный проект, о котором вы неоднократно слышали, руководимый Басом Лансдорпом и предполагающий полет на Марс с последующим основанием колонии на его поверхности и трансляцией всего происходящего по телевидению.


Эту статью вы прочитаете за 20 минут вместе с разглядыванием картинок.

План проекта

2011 - старт проекта, все поставщики оборудования подтверждают свою готовность принять участие;
2013 - начало международного отбора астронавтов;
2015 - начало технической и психологической подготовки отобранных 24 кандидатов, получение навыков выживания в изолированной среде и в условиях, приближенных к марсианским;
2018 - в мае будет запущена демонстрационная миссия: отправка посадочного модуля для проверки солнечных батарей, технологии извлечения воды из марсианского грунта, а также запуск коммуникационного спутника, который 24 часа в сутки, 7 дней в неделю будет передавать изображения, видео и другие данные с поверхности Марса;
2020 - запуск второго спутника связи на орбиту вокруг Солнца (точка L5, для обеспечения бесперебойного потока), оборудования для строительства колонии и беспилотного марсохода с прицепом, который выберет лучшее место для поселения и подготовит поверхность Марса для прибытия груза и размещения солнечных панелей;
2022 - в июле будет запущено 6 грузов: 2 жилых блока, 2 блока с системами жизнеобеспечения, 2 грузовых/складских блока;
2023 - в феврале грузы совершат посадку на Марс рядом с марсоходом, он начинает готовить базу для прибытия людей: доставляет блоки на выбранное место, активирует системы энергопитания и жизнеобеспечения, создающие запасы воды (3000 литров) и кислорода (120 кг);
2024 - в апреле-мае на орбиту Земли будут отправлены: транзитный модуль, корабль MarsLander (посадочный модуль) со «сборочным» экипажем на борту и 2 разгонных ступени. В сентябре первая четвёрка миссии сменяет «сборочный» экипаж и, после последней проверки системы на Марсе и транзитного модуля, состоится запуск первого пилотируемого корабля на Марс. Одновременно отправляется груз для обеспечения жизни второго экипажа;
2025 - в апреле первый экипаж в посадочном модуле высаживается на Марсе (транзитный останется летать по орбите вокруг Солнца). После восстановления и акклиматизации «поселенцы» установят дополнительные солнечные панели, соберут все модули, включая 2 жилых блока и 2 системы жизнеобеспечения для второго экипажа, в единую марсианскую базу и начнут обживать свой новый инопланетный дом;
2027 - в июле высадка следующей группы людей из 4 человек, новые модули, вездеходы и оборудование. И так каждые два года;
2035 - население колонии должно достигнуть 20 человек. (Источник: Mars One - Roadmap)

Отбор колонистов

Бас Лансдорп - соучредитель и руководитель проекта Mars One.
В 2013 году Mars One начали отбор будущих астронавтов, которые будут обучаться необходимым навыкам, будут проходить тесты на длительное нахождение в закрытом пространстве в симуляторах ракеты и колонии. В состав группы астронавтов обязательно будут входить оба пола. Минимальный возраст для подачи заявления на участие - 18 лет, максимальный - 65 лет; подать заявление могут граждане любых стран. Приоритет имеют высокообразованные, умные, здоровые люди с научно-техническим образованием. Заявки на участие начали приниматься в первом квартале 2013 года. Процедура подачи заявки является бесплатной, однако, для подтверждения серьезности намерений кандидата необходимо внести пожертвование в размере до 40 долларов США, в зависимости от государства, в котором живет человек. В июне 2013 на сайте проекта зарегистрировалось более 85 тысяч человек со всей Земли, выразив таким образом свое желание полететь на Марс, многие из них подали заявление на участие в отборе; в августе число желающих превысило 100 тыс. человек, а позднее составило более 165 тыс. Окончание первого этапа отбора планировалось на конец августа 2013 года. Затем, как заявляют на официальном сайте проекта, будут проведены локальные встречи с участниками, в их государствах. Окончательное решение о том, кто полетит на Марс, и о том, кто будет первым человеком, ступившим на Марс, оставлено зрителям (из науки делают шоу).

Тот самый Бас Лансдорп

Первый тур

9 сентября 2013 года руководители проекта Mars One сообщили о завершении первого тура сбора заявок на участие в опыте по колонизации Марса. За пять месяцев желание принять участие в миссии «невозвращенцев» выразили 202 586 человек из 140 стран мира.

Больше всего заявок поступило из США - 24 %. На втором месте находится Индия с 10 % от общего числа запросов, далее следуют: Китай (6 %), Бразилия (5 %), Великобритания (4 %), Канада (4 %), Россия (4 %), Мексика (4 %), Филиппины (2 %), Испания (2 %), Колумбия (2 %), Аргентина (2 %), Австралия (1 %), Франция (1 %), Турция (1 %), Чили (1 %), Украина (1 %), Перу (1 %), Германия (1 %), Италия (1 %) и Польша (1 %).

Из общего количества кандидатов отборочный комитет Mars One отберёт потенциальных поселенцев. Прошедшие первый тур получили уведомления об этом в январе 2014 года. В ближайшие два года будет проведено еще три дополнительных отборочных тура, и к 2015 году планируется отобрать 6-10 групп по четыре человека.

По результатам первого тура было отобрано 1058 (из более чем 200 000) человек из 107 стран. В том числе жители США - 297 человек, Канады - 75, Индии - 62, России - 52 человека. Из Польши первый этап отбора прошли 13 человек, из Украины 10, из Белоруссии 5 (трое мужчин и две женщины), из Литвы два, а из Латвии один.

Второй тур

30 декабря 2013 года Mars One анонсировал второй тур программы отбора космонавтов. Кандидаты, прошедшие во второй тур, прошли комплексное медицинское обследование и представили результаты отборочной комиссии Mars One до 8 марта 2014. По результатам мед. обследования из 1058 человек осталось 705 - из 99 стран. Из оставшихся кандидатов больше всего - жителей США - 204 человека, Канады - 54, Индии - 44, России - 36, Австралии - 27, Великобритании - 23. По уровню образования: 23 человека - младшие специалисты, 9 - юристы, 12 - медики, 253 - не имеют научной степени, 229 - бакалавры, 114 - магистры и 65 - кандидаты наук.

Также Mars One начинает работу по моделированию марсианской базы для будущих колонистов. Руководителем проекта назначен Кристиан фон Бенгтсон.

Техническая подготовка

2 астронавта должны быть специалистами в области использования и ремонта всего оборудования, чтобы быть в состоянии выявлять и решать технические проблемы.

2 астронавта получат обширную медицинскую подготовку, чтобы иметь возможность лечить как незначительные, так и серьезные проблемы со здоровьем, в том числе оказания первой помощи и использования медицинского оборудования, которое будет доставлено вместе с ними на Марс. Их обучение и подготовка займет все время между включением их в программу и отправкой на Марс.

1 человек будет тренироваться для исследования геологии Марса .

еще 1 получит опыт в экзобиологии, поиске жизни за пределами Земли и изучении влияния внеземной среды на живые организмы.
Другие специальности, такие как физиотерапия, психология и электроника, будут общими для всех астронавтов в каждой из начальных групп.

Полёт к Марсу

Полёт к Марсу: переходная орбита Гомана - Ветчинкина.
Подходящие сроки запусков к Марсу ограничены наиболее благоприятным взаимным расположением планет, и будут осуществляться по орбите Гомана - Ветчинкина (Гомановская траектория). Стартовое окно открывается каждые 2 года. Полёт пилотируемого корабля к Марсу займёт около 7 месяцев (~210 дней), для минимизации воздействия космического излучения на организмы членов экипажа. Грузовые миссии могут длиться и дольше, для экономии топлива.

Посадочный модуль

В начале 2014 года Mars One начала подготовку посадочного модуля, который отправится на Марс в рамках первого этапа первой частной миссии. Базой посадочного модуля Mars One станет посадочный модуль NASA Phoenix, который совершил посадку на Марс в 2008 году и был разработан и изготовлен компанией Lockheed Martin. Правда, состав научного оборудования модуля Mars One будет существенно отличаться от состава оборудования модуля Phoenix, и для модуля Mars One потребуется большее количество энергии. Это станет причиной того, что солнечные батареи нового модуля будут иметь большую площадь и несколько другую форму, нежели батареи модуля-предшественника.

Связь планируется осуществлять при помощи спутников, расположенных на орбите вокруг Солнца, Марса и Земли. Минимальное расстояние от Земли до Марса - 55 миллионов километров, максимальное - 400 миллионов километров, когда Марс не скрыт от Земли Солнцем. Скорость сигнала связи равна скорости света, минимальное время до прибытия сигнала - 3 минуты, максимальное - 22. Когда Марс скрыт от Земли Солнцем, связь невозможна. Будут доступны текстовые, аудио- и видеосообщения. Пользование Интернетом ограничено ввиду длительной задержки сигнала, однако предполагается наличие у колонистов сервера с презагруженными данными, которые они могут в любое время просматривать и которые должны временами синхронизироваться с земными. Жизнь колонистов будет транслироваться на Землю круглые сутки.

Радиация и облучение колонистов

Данные, полученные аппаратурой на борту транзитной капсулы, доставившей марсоход Curiosity, показали, что радиоактивное облучение для миссии постоянного поселения будет находиться в пределах установленных границ, принятых космическими агентствами.

Радиация на пути к Марсу

В исследованиях, опубликованных в журнале Science в мае 2013, подсчитано, что радиоактивное облучение за 360-дневный полёт туда и обратно составляет 662 +/- 108 миллизивертов (мЗв) - как измерения детектором радиоактивной экспертизы (RAD) (англ.). Исследования показывают, что 95 % радиации, принятой прибором RAD приходится на галактические космические лучи, от которых трудно защититься без использования непозволительно большой экранирующей массы. В 210-дневном путешествии поселенцы Mars One получат дозу радиации, равную 386 +/- 63 мЗв, учитывая за стандарт самые свежие данные измерений. Облучение будет ниже верхней границы принятых норм в карьере космонавтов: в Европейском, Российском и Канадском Космических Агентствах предел составляет 1000 мЗв, в НАСА - 600-1200 мЗв, в зависимости от пола и возраста.

Радиационное убежище в марсианской транзитной капсуле

На пути к Марсу команда будет защищена от солнечных частиц конструкцией космического корабля. Экипаж получит общую экранирующую защиту в 10-15 гр/см² для всего корабля в течение всего полёта. В случае солнечных вспышек или всплесков солнечной радиации этого экранирования будет недостаточно, и космонавты, получив сигнал от бортового дозиметрического контроля и системы тревожного оповещения, будут пережидать в более защищённой части корабля. Выделенное радиационное убежище будет окружено резервуаром с водой, что обеспечит дополнительную защиту на уровне 40 гр/см². Космонавтам следует ожидать всплески солнечной радиации в среднем 1 раз в 2 месяца - всего около 3 или 4 за всё время полёта, при этом каждый из них обычно длится не больше пары дней.

Радиация на Марсе

Марсианская поверхность получает больше радиации, чем земная, но и там радиация также в значительной мере блокируется. Радиоактивное облучение на поверхности - 30 мкЗв (микрозивертов) в час в период солнечного минимума, во время солнечного максимума доза эквивалентного облучения понизится на фактор два. (ДЛЯ ВАШЕГО ПОНИМАНИЯ: «В России требование обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв.) Если поселенцы станут проводить около трёх часов из 3 суток на поверхности Марса вне жилого комплекса, их собственное облучение составит 11 мЗв в год. Жилые модули Mars One будут покрыты несколькими метрами почвы , что обеспечит надёжную защиту даже от галактического космического излучения. 5 метров грунта обеспечат защиту, идентичную земной атмосфере и эквивалентную экранированию 1000 гр/см². С помощью системы прогнозирования в убежище в жилых модулях можно будет избегать всплесков солнечной радиации.

Суммарное облучение

210-дневный полёт приведёт к облучению в 386 +/- 63 мЗв. На поверхности колонисты будут получать дозу радиации в 11 мЗв в год - в ходе их деятельности «под открытым небом». Это означает, что поселенцы смогут провести около шестидесяти лет на Марсе до превышения ограничений, принятых в ЕКА в их карьере космонавтов.

На этом месте можете налить себе чаю, дальше будет интереснее=)

Предполагаемая картина формирования жизни на Марсе


…и вид Марса после терраформирования:

Цели колонизации

В качестве целей колонизации Марса называются следующие:
-Создание постоянной базы для научных исследований самого Марса и его спутников, в перспективе - для изучения пояса астероидов и дальних планет Солнечной Системы.
-Промышленная добыча ценных полезных ископаемых.
-Решение демографических проблем Земли.
-«Колыбель Человечества» на случай глобального катаклизма на Земле.
Основным лимитирующим фактором является, прежде всего, крайне высокая стоимость доставки колонистов и грузов на Марс.

На текущий момент и ближайшее будущее, очевидно, актуальна только первая цель. Ряд энтузиастов идеи колонизации Марса считает, что при больших первоначальных затратах на организацию колонии в перспективе, при условии достижения высокой степени автономии и организации производства части материалов и предметов первой необходимости (прежде всего - кислород, вода, продукты питания) из местных ресурсов этот путь ведения исследований окажется в целом экономически эффективнее, чем отправка возвращаемых экспедиций или создание станций-поселений для работы вахтовым методом. Кроме того, в перспективе Марс может стать удобным полигоном для проведения масштабных научных и технических экспериментов, опасных для земной биосферы.

Что касается добычи полезных ископаемых, то, с одной стороны, Марс может оказаться достаточно богат минеральными ресурсами, причём из-за отсутствия свободного кислорода в атмосфере возможно наличие на нём богатых месторождений самородных металлов, с другой - на текущий момент стоимость доставки грузов и организации добычи в агрессивной среде (непригодная для дыхания разрежённая атмосфера и большое количество пыли) настолько велика, что никакое богатство месторождений не обеспечит окупаемости добычи.

Для решения демографических проблем потребуется, во-первых, переброска с Земли населения в масштабах, несопоставимых с возможностями современной техники (как минимум - миллионы человек), во-вторых - обеспечение полной автономии колонии и возможности более-менее комфортной жизни на поверхности планеты, для чего потребуется создание на ней пригодной для дыхания атмосферы, гидросферы, биосферы и решение проблем защиты от космического излучения. Сейчас всё это можно рассматривать лишь умозрительно, как перспективу на отдалённое будущее.

Пригодность для освоения

Марсианские сутки составляют 24 часа 39 минут 35,244 секунды , что очень близко к земным.
Площадь поверхности Марса составляет 28,4 % земной - чуть меньше площади суши на Земле (которая составляет 29,2 % от всей земной поверхности).
Наклон оси Марса к плоскости эклиптики составляет 25,19°, а земной - 23,44°. В результате этого на Марсе, как на Земле, есть смена времён года, хотя она и происходит почти в два раза дольше, поскольку марсианский год в 1,88 раза длиннее земного.
У Марса есть атмосфера. Несмотря на то, что её плотность составляет всего 0,007 земной, она даёт некоторую защиту от солнечной и космической радиации, а также была успешно использована для аэродинамического торможения космического летательного аппарата.
Недавние исследования НАСА подтвердили наличие воды на Марсе. Таким образом, условия на Марсе, похоже, достаточны для поддержания жизни.
Параметры марсианского грунта (соотношение pH, наличие необходимых для растений химических элементов, и некоторые другие характеристики) близки к земным, и на марсианской почве теоретически можно было бы выращивать растения.
Химический состав распространённых на Марсе минералов разнообразнее, чем у других небесных тел поблизости от Земли. По мнению корпорации 4Frontiers, их достаточно для снабжения не только самого Марса, но и Луны, Земли и астероидного пояса.
На Земле есть места, в которых природные условия похожи на марсианские. На экваторе Марса в летние месяцы бывает так же тепло (+20 °C) , как и на Земле. Также на Земле есть пустыни, схожие по виду с марсианским ландшафтом.

Различия с Землей

Сила тяжести на Марсе примерно в 2,63 раза меньше, чем на Земле (0,38 g). До сих пор неизвестно, достаточно ли этого, чтобы избежать проблем для здоровья, возникающих при невесомости.
Температура поверхности Марса гораздо ниже земной. Максимальная отметка составляет +30 °C (в полдень на экваторе), минимальная - −123 °C (зимой на полюсах). При этом температура приповерхностного слоя атмосферы - всегда ниже нуля.
На поверхности Марса пока не обнаружено воды в жидком агрегатном состоянии.
В силу того, что Марс находится дальше от Солнца, количество достигающей его поверхности солнечной энергии примерно вдвое меньше , чем на Земле.
Орбита Марса имеет больший эксцентриситет, что увеличивает годовые колебания температуры и количества солнечной энергии.
Атмосферное давление на Марсе слишком мало, чтобы люди могли выжить без пневмокостюма. Жилые помещения на Марсе придётся оборудовать шлюзами, наподобие устанавливаемых на космических кораблях, которые могли бы поддерживать земное атмосферное давление.
Марсианская атмосфера состоит в основном из углекислого газа (95 %). Поэтому, несмотря на её малую плотность, парциальное давление CO2 на поверхности Марса в 52 раза больше чем на Земле, что, возможно, позволит поддерживать растительность.
У Марса есть два естественных спутника, Фобос и Деймос. Они гораздо меньше и ближе к планете, чем Луна к Земле. Эти спутники могут оказаться полезными при проверке средств колонизации астероидов.
Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разрежённой (в сотни раз в сравнении с Землёй) атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения.
Обнаружение аппаратом Феникс, приземлившимся вблизи Северного полюса Марса в 2008 году, в грунте Марса перхлоратов ставит под сомнение возможность выращивания в марсианской почве земных растений без дополнительных экспериментов либо без искусственного грунта.
Радиационный фон на Марсе в 2,2 раза превышает радиационный фон на Международной космической станции и приближается к установленным пределам безопасности для космонавтов.
Вода, вследствие низкого давления, закипает на Марсе уже при температуре +10 °C. Другими словами вода изо льда, минуя жидкое состояние, сразу же превращается в пар.

Принципиальная достижимость

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе. В принципе, доставка на Марс необходимого минимума снаряжения и припасов на начальный период существования небольшой колонии не выходит за пределы возможностей современной космической техники, с учётом перспективных разработок, срок реализации которых оценивается в одно-два десятилетия. На текущий момент принципиальной нерешённой проблемой остаётся защита от излучений во время перелёта; в случае её решения сам перелёт (в особенности, если он будет производиться «в одну сторону») вполне реален, хотя и требует вложения огромных финансовых средств и решения целого ряда научных и технических вопросов различного масштаба.

При этом необходимо заметить, что «стартовое окно» для полёта между планетами открывается один раз в 26 месяцев . С учётом времени перелёта даже в самых идеальных условиях (удачное расположение планет и наличие транспортной системы в состоянии готовности) ясно, что в отличие от околоземных станций или лунной базы марсианская колония в принципе не будет иметь возможности получить оперативную помощь с Земли или эвакуироваться на Землю в случае возникновения нештатной ситуации, с которой невозможно справиться своими силами. Вследствие вышеизложенного, просто для выживания на Марсе колония должна иметь гарантированный срок автономии не менее трёх земных лет. С учётом возможности в течение этого срока самых различных нештатных ситуаций, аварий оборудования, природных катаклизмов ясно, что для обеспечения выживаемости колония должна иметь значительный резерв оборудования, производственных мощностей во всех отраслях собственной промышленности и, что на первых порах самое главное - энергогенерирующих мощностей, так как и всё производство, и вся сфера жизнеобеспечения колонии будет остро зависеть от наличия электроэнергии в достаточных количествах.

Условия обитания

Без защитного снаряжения человек не сможет прожить на поверхности Марса и нескольких минут. Тем не менее, по сравнению с условиями на жарких Меркурии и Венере, холодных внешних планетах и лишённых атмосферы Луне и астероидах, условия на Марсе гораздо более пригодные для освоения. На Земле есть такие разведанные человеком места, в которых природные условия во многом похожи на марсианские. Атмосферное давление Земли на высоте 34 668 метров - рекордная по высоте точка, которой достиг воздушный шар с командой на борту (4 мая 1961 г.) - приблизительно вдвое превышает максимальное давление на поверхности Марса.

Результаты последних исследований показывают, что на Марсе имеются значительные и при этом непосредственно доступные залежи водяного льда, почва, в принципе, пригодна для выращивания растений, а в атмосфере присутствует в достаточно большом количестве диоксид углерода. Всё это в совокупности позволяет рассчитывать (при наличии достаточного количества энергии) на возможность производства растительной пищи, а также добычи воды и кислорода из местных ресурсов, что значительно снижает потребность в технологиях замкнутого цикла жизнеобеспечения, который был бы необходим на Луне, астероидах или на удалённой от Земли космической станции.


Основные сложности

Главные опасности, подстерегающие космонавтов во время полета к Марсу и пребывания на планете, следующие:
-высокий уровень космической радиации.
-сильные сезонные и суточные колебания температуры.
-метеоритная опасность.
-низкое атмосферное давление.
-пыль с высоким содержанием перхлоратов и гипса.
-высочайшая сложность посадки на поверхность, включающая в себя как минимум четыре обязательных стадии:

торможение двигателями до входа в атмосферу
торможение об атмосферу
торможение двигателями в атмосфере
посадка на огромные сложные подушки безопасности или с помощью уникального крана

Возможные физиологические проблемы при нахождении на Марсе у экипажа будут следующие:
-стресс;
-адаптация к марсианской гравитации;
-ортостатическая неустойчивость после посадки на планету;
-нарушения деятельности сенсорных систем;
-нарушения сна;
-снижение работоспособности;
-изменения метаболизма;
-отрицательные эффекты от воздействия космической радиации.

Основные задачи для терраформирования Марса

Повышение давления атмосферы до уровня, при котором вода могла бы существовать в жидком виде - необходимое условие для создания биосферы земного типа. Это также резко снизит опасность для людей, так как позволит отказаться от скафандров, заменив их на высотно-компенсационный костюм и кислородный аппарат (при имеющемся давлении на поверхности Марса в случае серьёзного повреждения оболочки скафандра или разгерметизации убежища у человека практически нет шансов на спасение).
Повышение температуры в экваториальной части планеты до +10° - +20°С (с помощью парникового эффекта, созданного перфторуглеродными соединениями).
Создание аналога озонового слоя для защиты от ультрафиолетового излучения.
Создание биосферы.
Усиление магнитного поля планеты.
Создание и поддержание условий для работы терраформеров.
Селекционирование человека для способности адаптироваться к условиям Марса.

Управляемое обрушение на поверхность Марса кометы, астероида из Главного пояса (например, Цереры) или одного из спутников Юпитера, с целью разогреть атмосферу и пополнить её водой и газами.

Церера слева внизу

Вывод на орбиту спутника Марса массивного тела, астероида из Главного пояса (например, Весты) с целью активации эффекта планетарного «динамо», и усиления собственного магнитного поля Марса.

Веста, диаметр 530 км по длинной оси,

летает вокруг солнца между Марсом и Юпитером в Поясе астероидов

Изменение магнитного поля с помощью прокладки вокруг планеты кольца из проводника или сверхпроводника с подключением к мощному источнику энергии.
Взрыв на полярных шапках нескольких ядерных бомб. Недостаток метода - возможное радиоактивное заражение выделенной воды.
Помещение на орбиту Марса искусственных спутников, способных собирать и фокусировать солнечный свет на поверхность планеты для её разогрева.
Колонизация поверхности архебактериями и другими экстремофилами в том числе генно-модифицированными, для выделения необходимых количеств парниковых газов или получения необходимых веществ в больших объёмах из уже имеющихся на планете. В апреле 2012 г. Германский центр авиации и космонавтики сделал доклад о том, что в лабораторных условиях симуляции атмосферы Марса (Mars Simulation Laboratory) некоторые виды лишайников и цианобактерии после 34 дней пребывания приспособились и показали возможность фотосинтеза.
Способы воздействия, связанные с выводом на орбиту или падением астероида требуют основательных расчётов, направленных на изучение подобного воздействия на планету, её орбиту, скорость вращения и многое другое.

Необходимо отметить, что практически все вышеперечисленные действия по терраформированию Марса на текущий момент являются не более чем «мысленными экспериментами», так как в большинстве своём не опираются на какие-либо существующие в реальности и хотя бы минимально проверенные технологии, а по приблизительным энергозатратам многократно превышают возможности современного человечества. Например, для создания давления, достаточного хотя бы для выращивания в открытом грунте, без герметизации, наиболее неприхотливых растений, требуется увеличить имеющуюся массу марсианской атмосферы в 5-10 раз, то есть доставить на Марс либо испарить с его поверхности массу порядка 1017 - 1018 кг. Нетрудно посчитать, что, например, для испарения такого количества воды потребуется приблизительно 2,25*1012ТДж, что более чем в 4500 раз превышает всё современное ежегодное энергопотребление на Земле.

Связь с Землей

Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин. при максимальном удалении планет. Задержка сигналов от Марса к Земле и наоборот обусловлена скоростью света. Однако использование электромагнитных волн (в том числе световых) не даёт возможности поддерживать связь с Землей напрямую (без спутника ретрансляции), когда планеты находятся в противоположных точках орбит относительно Солнца.

Возможные места основания колоний

Наилучшие места для колонии тяготеют к экватору и низменностям. В первую очередь это:

Впадина Эллада - имеет глубину 8 км, и на её дне давление наивысшее на планете, благодаря чему в этой местности наименьший уровень фона от космических лучей на Марсе.

можете ткнуть на картинку ниже=)


-Долина Маринера - не столь глубока, как впадина Эллада, но в ней наибольшие минимальные температуры на планете, что расширяет выбор конструкционных материалов.


Долина Маринера, 4500 км в длину, 210 в ширину и почти 11 км глубиной

В случае терраформирования первый открытый водоём появится в долине Маринера.

Колония (Прогноз)

Предполагаемый вид будущей колонии на Марсе


Хотя до сих пор проектирование марсианских колоний не зашло дальше эскизов, из соображений близости к экватору и высокого атмосферного давления их обычно планируют основывать в разных местах долины Маринера. Каких бы высот в будущем ни достиг космический транспорт, законы сохранения механики определяют высокую цену доставки грузов между Землёй и Марсом, и ограничивают периоды полётов привязывая их к планетарным противостояниям.

Высокая цена доставки и 26-месячные межполётные периоды определяют требования:
Гарантированное трёхлетнее самообеспечение колонии (дополнительные 10 месяцев на полёт и изготовление заказа). Его можно выполнить только накопив к первоначальному прилёту людей конструкции и материалы на территории будущей колонии.
Производство в колонии основных конструкционных и расходных материалов из местных ресурсов.
Это означает необходимость создания цементного, кирпичного, ЖБИ, воздушного и водного производств, а также разворачивания чёрной металлургии, металлообработки и оранжерей. Экономия продуктов питания потребует вегетарианства. Вероятное отсутствие коксующихся материалов на Марсе потребует прямого восстановления оксидов железа электролизным водородом - и, соответственно, производства водорода. Марсианские пылевые бури могут на месяцы сделать непригодной для использования солнечную энергетику, что при отсутствии природного топлива и окислителей делает единственно надёжной, на данный момент, только ядерную энергетику. Крупномасштабное производство водорода и впятеро большее содержание дейтерия во льдах Марса по сравнению с земными приведёт к дешевизне тяжёлой воды, что при добыче урана на Марсе сделает самыми эффективными и рентабельными тяжеловодные ядерные реакторы.

Высокая научная или экономическая продуктивность колонии. Похожесть Марса на Землю определяет большую ценность Марса для геологии , и при наличии жизни - для биологии. Экономическая выгодность колонии возможна исключительно при обнаружении крупных богатых месторождений золота, платиноидов или драгоценных камней.
Первая экспедиция должна еще разведать удобные пещеры, пригодные к герметизации и накачке воздуха для массового заселения городов строителями. Обживание Марса начнется из-под его поверхности.

Целью колонии нельзя считать лишь экономическую выгоду акционеров, но и путь к вечной жизни всей цивилизации.. И чем раньше человечество решится на колонизацию космоса, тем раньше будет освоена вся вселенная.
Другое действие от грот-колоний на Марсе будет в консолидации землян, подъем глобального осознания на Земле, планетарная синхронизация.

Физический образ человека перерождения поселенца - подсушенное от тройной потери веса тело, облегчение скелета и мышечной массы. Перемена походки, манер передвижения. Опасность набора веса. Смена режима питания к сокращению еды.
Питание колонистов может сместиться к молочно-кислому, продуктом от коров на местных гидропонных конвейерных пастбищах устроенных в шахтах.

Собрано из статей с любимой вики, иллюстрации взяты с сайтов интернета.

Снова для развития — скорость чтения взрослого человека 120-150 слов в минуту. В статье 4030 слов.

В качестве целей колонизации Марса называются следующие:

  • Создание постоянной базы для научных исследований самого Марса и его спутников, в перспективе - для изучения пояса астероидов и дальних планет Солнечной Системы .
  • Промышленная добыча ценных полезных ископаемых.
  • Решение демографических проблем Земли .
  • Основной целью является создание «Колыбели Человечества» на случай глобального катаклизма на Земле .

Основным ограничивающим фактором является, прежде всего, крайне высокая стоимость доставки колонистов и грузов на Марс .

На текущий момент и ближайшее будущее, очевидно, актуальна только первая цель. Ряд энтузиастов идеи колонизации Марса считает, что при больших первоначальных затратах на организацию колонии в перспективе, при условии достижения высокой степени автономии и организации производства части материалов и предметов первой необходимости (прежде всего - кислород , вода , продукты питания) из местных ресурсов этот путь ведения исследований окажется в целом экономически эффективнее, чем отправка возвращаемых экспедиций или создание станций-поселений для работы вахтовым методом. Кроме того, в перспективе Марс может стать удобным полигоном для проведения масштабных научных и технических экспериментов, опасных для земной биосферы .

Что касается добычи полезных ископаемых, то, с одной стороны, Марс может оказаться достаточно богат минеральными ресурсами, причём из-за отсутствия свободного кислорода в атмосфере возможно наличие на нём богатых месторождений самородных металлов , с другой - на текущий момент стоимость доставки грузов и организации добычи в агрессивной среде (непригодная для дыхания разрежённая атмосфера и большое количество пыли) настолько велика, что никакое богатство месторождений не обеспечит окупаемости добычи.

Для решения демографических проблем потребуется, во-первых, переброска с Земли населения в масштабах, несопоставимых с возможностями современной техники (как минимум - миллионы человек), во-вторых - обеспечение полной автономии колонии и возможности более или менее комфортной жизни на поверхности планеты, для чего потребуется создание на ней пригодной для дыхания атмосферы , гидросферы , биосферы и решение проблем защиты от космического излучения . Сейчас всё это можно рассматривать лишь умозрительно, как перспективу на отдалённое будущее.

Пригодность для освоения

Сходство с Землёй

Различия

  • Сила тяжести на Марсе примерно в 2,63 раза меньше, чем на Земле (0,38 g). До сих пор неизвестно, достаточно ли этого, чтобы избежать проблем для здоровья, возникающих при невесомости .
  • Температура поверхности Марса гораздо ниже земной. Максимальная отметка составляет +30 °C (в полдень на экваторе), минимальная - −123 °C (зимой на полюсах). При этом температура приповерхностного слоя атмосферы - всегда ниже нуля.
  • В силу того, что Марс находится дальше от Солнца , количество достигающей его поверхности солнечной энергии примерно вдвое меньше, чем на Земле.
  • Орбита Марса имеет больший эксцентриситет , что увеличивает годовые колебания температуры и количества солнечной энергии.
  • Атмосферное давление на Марсе слишком мало, чтобы люди могли выжить без пневмокостюма . Жилые помещения на Марсе придётся оборудовать шлюзами , наподобие устанавливаемых на космических кораблях, которые могли бы поддерживать земное атмосферное давление .
  • Марсианская атмосфера состоит в основном из углекислого газа (95 %). Поэтому, несмотря на её малую плотность, парциальное давление CO 2 на поверхности Марса в 52 раза больше, чем на Земле, что, возможно, позволит поддерживать растительность .
  • У Марса есть два естественных спутника, Фобос и Деймос . Они гораздо меньше и ближе к планете, чем Луна к Земле. Эти спутники могут оказаться полезными [ ] при проверке средств колонизации астероидов .
  • Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разреженной (в 100-160 раз в сравнении с Землёй) атмосферой это существенно увеличивает количество достигающего его поверхности ионизирующего излучения . Магнитное поле Марса не способно защитить живые организмы от космической радиации, а атмосферу (при условии её искусственного восстановления) - от рассеивания солнечным ветром.
  • Обнаружение аппаратом Феникс , приземлившимся вблизи Северного полюса Марса в 2008 году, в грунте Марса перхлоратов ставит под сомнение возможность выращивания в марсианской почве земных растений без дополнительных экспериментов либо без искусственного грунта .
  • Радиационный фон на Марсе в 2,2 раза превышает радиационный фон на Международной космической станции и приближается к установленным пределам безопасности для космонавтов.
  • Вода, вследствие низкого давления, закипает на Марсе уже при температуре +10 °C . Другими словами, вода изо льда, почти минуя жидкую фазу, быстро превращается в пар.

Принципиальная достижимость

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе . В принципе, доставка на Марс необходимого минимума снаряжения и припасов на начальный период существования небольшой колонии не выходит за пределы возможностей современной космической техники, с учётом перспективных разработок, срок реализации которых оценивается в одно-два десятилетия. На текущий момент принципиальной нерешённой проблемой остаётся защита от излучений во время перелёта; в случае её решения сам перелёт (в особенности, если он будет производиться «в одну сторону») вполне реален, хотя и требует вложения огромных финансовых средств и решения целого ряда научных и технических вопросов различного масштаба.

При этом необходимо заметить, что «стартовое окно» для полёта между планетами открывается один раз в 26 месяцев. С учётом времени перелёта даже в самых идеальных условиях (удачное расположение планет и наличие транспортной системы в состоянии готовности) ясно, что, в отличие от околоземных станций или лунной базы, марсианская колония в принципе не будет иметь возможности получить оперативную помощь с Земли или эвакуироваться на Землю в случае возникновения нештатной ситуации, с которой невозможно справиться своими силами. Вследствие вышеизложенного, просто для выживания на Марсе колония должна иметь гарантированный срок автономии не менее трёх земных лет . С учётом возможности возникновения в течение этого срока самых различных нештатных ситуаций, аварий оборудования, природных катаклизмов ясно, что для обеспечения выживаемости колония должна иметь значительный резерв оборудования, производственных мощностей во всех отраслях собственной промышленности и, что на первых порах самое главное - энергогенерирующих мощностей, так как и всё производство, и вся сфера жизнеобеспечения колонии будет остро зависеть от наличия электроэнергии в достаточных количествах.

Условия обитания

Без защитного снаряжения человек не сможет прожить на поверхности Марса и нескольких минут. Тем не менее, по сравнению с условиями на жарких Меркурии и Венере , холодных внешних планетах и лишённых атмосферы Луне и астероидах , условия на Марсе гораздо более пригодные для освоения. На Земле есть такие разведанные человеком места, в которых природные условия во многом похожи на марсианские. Атмосферное давление Земли на высоте 34 668 метров - рекордная по высоте точка, которой достиг воздушный шар с командой на борту (4 мая г. ) - приблизительно вдвое превышает максимальное давление на поверхности Марса.

Результаты последних исследований показывают, что на Марсе имеются значительные и при этом непосредственно доступные залежи водяного льда, почва, в принципе, пригодна для выращивания растений, а в атмосфере присутствует в достаточно большом количестве диоксид углерода . Всё это в совокупности позволяет рассчитывать (при наличии достаточного количества энергии) на возможность производства растительной пищи, а также добычи воды и кислорода из местных ресурсов, что значительно снижает потребность в технологиях замкнутого цикла жизнеобеспечения , который был бы необходим на Луне, астероидах или на удалённой от Земли космической станции .

Основные сложности

Главные опасности, подстерегающие космонавтов во время полета к Марсу и пребывания на планете, следующие:

Возможные физиологические проблемы при нахождении на Марсе у экипажа будут следующие:

Способы терраформирования Марса

Основные задачи

Способы

  • Управляемое обрушение на поверхность Марса кометы , одного крупного или множества малых ледяных астероидов из Главного пояса или одного из спутников Юпитера , с целью разогреть атмосферу и пополнить её водой и газами .
  • Вывод на орбиту спутника Марса массивного тела, астероида из Главного пояса (например, Цереры) с целью активации эффекта планетарного «динамо», и усиления собственного магнитного поля Марса .
  • Изменение магнитного поля с помощью прокладки вокруг планеты кольца из проводника или сверхпроводника с подключением к мощному источнику энергии. Директор научного отдела НАСА Джим Грин считает, что естественное магнитное поле Марса восстановить нельзя, во всяком случае, сейчас или даже в очень отдаленном будущем человечеству это не по силам. А вот создать искусственное поле можно. Правда, не на самом Марсе, а рядом с ним. Выступая с докладом «Будущее окружающей среды Марса для исследований и науки» на мероприятии Planetary Science Vision 2050 Workshop, Грин предложил создать магнитный щит. Этот щит, Mars L1, по замыслу авторов проекта, закроет Марс от солнечного ветра, и планета начнет восстанавливать свою атмосферу. Расположить щит планируется между Марсом и Солнцем, где он находился бы на стабильной орбите. Создать поле планируется при помощи громадного диполя или же двух равных и противоположно заряженных магнитов.
  • Взрыв на полярных шапках нескольких ядерных бомб. Недостаток метода - радиоактивное заражение выделенной воды .
  • Помещение на орбиту Марса искусственных спутников, способных собирать и фокусировать солнечный свет на поверхность планеты для её разогрева .
  • Колонизация поверхности архебактериями (см. археи) и другими экстремофилами , в том числе генно-модифицированными, для выделения необходимых количеств парниковых газов или получения необходимых веществ в больших объёмах из уже имеющихся на планете. В апреле г. Германский центр авиации и космонавтики сделал доклад о том, что в лабораторных условиях симуляции атмосферы Марса (Mars Simulation Laboratory) некоторые виды лишайников и цианобактерии после 34 дней пребывания приспособились и показали возможность фотосинтеза .

Способы воздействия, связанные с выводом на орбиту или падением астероида, требуют основательных расчётов, направленных на изучение подобного воздействия на планету, её орбиту, скорость вращения и многое другое.

Серьёзной проблемой на пути колонизации Марса является отсутствие магнитного поля, защищающего от солнечной радиации. Для полноценной жизни на Марсе без магнитного поля не обойтись.

Необходимо отметить, что практически все вышеперечисленные действия по терраформированию Марса на текущий момент являются не более чем «мысленными экспериментами», так как в большинстве своём не опираются на какие-либо существующие в реальности и хотя бы минимально проверенные технологии, а по приблизительным энергозатратам многократно превышают возможности современного человечества. Например, для создания давления, достаточного хотя бы для выращивания в открытом грунте, без герметизации, наиболее неприхотливых растений, требуется увеличить имеющуюся массу марсианской атмосферы в 5-10 раз, то есть доставить на Марс либо испарить с его поверхности массу порядка 10 17 - 10 18 кг. Нетрудно посчитать, что, например, для испарения такого количества воды потребуется приблизительно 2,25 10 12 ТДж, что более чем в 4500 раз превышает всё современное ежегодное энергопотребление на Земле (см. ).

Радиация

Пилотируемый полёт на Марс

Создание космического корабля для полёта к Марсу - сложная задача. Одной из главных проблем является защита космонавтов от потоков частиц солнечной радиации . Предлагается несколько путей решения этой задачи, например, создание особых защитных материалов для корпуса или даже разработка магнитного щита, подобного по механизму действия планетарному .

Mars One

«Mars One» - частный проект по сбору средств, руководимый Басом Лансдорпом , предполагающий полет на Марс с последующим основанием колонии на его поверхности и трансляцией всего происходящего по телевидению.

Inspiration Mars

«Inspiration Mars Foundation» - американская некоммерческая организация (фонд), основанная Деннисом Тито , планирующая отправить в январе 2018 года пилотируемую экспедицию для облёта Марса .

Столетний космический корабль

«Столетний космический корабль» (англ. Hundred-Year Starship ) - проект, общей целью которого является подготовка в течение века к экспедиции в одну из соседних планетарных систем. Одним из элементов подготовки является реализация проекта безвозвратного направления людей на Марс с целью колонизации планеты. Проект разрабатывает с 2010 года Исследовательский центр имени Эймса - одна из основных научных лабораторий НАСА . Основная идея проекта состоит в том, чтобы отправлять людей на Марс для того, чтобы они основали там колонию и продолжали жить в этой колонии, не возвращаясь на Землю. Отказ от возвращения приведёт к значительному сокращению стоимости полета, появится возможность взять больше груза и экипаж. Дальнейшие полёты будут доставлять новых колонистов и пополнять их запасы. Возможность обратного перелёта появится лишь тогда, когда колония своими силами сможет организовать на месте производство достаточного количества необходимых для этого предметов и материалов из местных ресурсов (прежде всего, речь идёт о топливе и запасах кислорода, воды и пищи).

Связь с Землей

Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин при максимальном удалении планет; см. Конфигурация (астрономия) . Задержка сигналов от Марса к Земле и наоборот обусловлена скоростью света. Однако использование электромагнитных волн (в том числе световых) не даёт возможности поддерживать связь с Землей напрямую (без спутника ретрансляции), когда планеты находятся в противоположных точках орбит относительно Солнца.

Возможные места основания колоний

Наилучшие места для колонии тяготеют к экватору и низменностям. В первую очередь это:

  • впадина Эллада - имеет глубину 8 км, и на её дне давление наивысшее на планете, благодаря чему в этой местности наименьший уровень фона от космических лучей на Марсе [ ] .
  • Долина Маринера - не столь глубока, как впадина Эллада, но в ней наибольшие минимальные температуры на планете, что расширяет выбор конструкционных материалов [ ] .

В случае терраформирования первый открытый водоём появится в долине Маринера.

Колония (Прогноз)

Хотя до сих пор проектирование марсианских колоний не зашло дальше эскизов, из соображений близости к экватору и высокого атмосферного давления их обычно планируют основывать в разных местах долины Маринера. Каких бы высот в будущем ни достиг космический транспорт, законы сохранения механики определяют высокую цену доставки грузов между Землёй и Марсом, и ограничивают периоды полётов, привязывая их к планетарным противостояниям.

Высокая цена доставки и 26-месячные межполётные периоды определяют требования:

  • Гарантированное трёхлетнее самообеспечение колонии (дополнительные 10 месяцев на полёт и изготовление заказа). Это возможно только при условии накопления конструкций и материалов на территории будущей колонии до первоначального прилёта людей.
  • Производство в колонии основных конструкционных и расходных материалов из местных ресурсов.

Это означает необходимость создания цементного, кирпичного, ЖБИ , воздушного и водного производств, а также разворачивания чёрной металлургии, металлообработки и оранжерей. Экономия продуктов питания потребует вегетарианства [ ] . Вероятное отсутствие коксующихся материалов на Марсе потребует прямого восстановления оксидов железа электролизным водородом - и, соответственно, производства водорода. Марсианские пылевые бури могут на месяцы сделать непригодной для использования солнечную энергетику, что при отсутствии природного топлива и окислителей делает единственно надёжной, на данный момент, только ядерную энергетику . Крупномасштабное производство водорода и впятеро большее содержание дейтерия во льдах Марса по сравнению с земными приведёт к дешевизне тяжёлой воды, что при добыче урана на Марсе сделает самыми эффективными и рентабельными тяжеловодные ядерные реакторы .

  • Высокая научная или экономическая продуктивность колонии. Похожесть Марса на Землю определяет большую ценность Марса для геологии, и при наличии жизни - для биологии. Экономическая выгодность колонии возможна исключительно при обнаружении крупных богатых месторождений золота, платиноидов или драгоценных камней.
  • Первая экспедиция должна ещё разведать удобные пещеры, пригодные к герметизации и накачке воздуха для массового заселения городов строителями. Обживание Марса начнется из-под его поверхности.
  • Другим вероятным эффектом от создания грот-колоний на Марсе может стать консолидация землян, подъём глобального осознания на Земле; планетарная синхронизация.
  • Физический образ человека перерождения поселенца - «подсушенное» от тройной потери веса тело, облегчение скелета и мышечной массы. Перемена походки, манер передвижения. Существует также опасность набора избыточного веса. Есть вероятность смены режима питания в сторону уменьшения потребления еды.
  • Питание колонистов может сместиться к молочно-кислому, продуктам от коров с местных гидропонных конвейерных пастбищ, устроенных в шахтах.

Критика

Помимо основных аргументов критики идеи колонизации космоса человеком (см. Колонизация космоса), имеются и возражения, специфичные для Марса:

  • Колонизация Марса не является эффективным способом решения каких-либо стоящих перед человечеством проблем, которые можно рассматривать как цели этой колонизации. На Марсе пока не обнаружено ничего настолько ценного, что оправдало бы риск для людей и расходы на организацию добычи и транспортировку, а для колонизации на Земле всё ещё остаются огромные незаселённые территории, условия на которых гораздо благоприятнее, чем на Марсе, и освоение которых обойдётся намного дешевле, в том числе Сибирь , огромные пространства приэкваториальных пустынь и даже целый материк - Антарктида . Что же касается самого исследования Марса, то его экономичнее вести с использованием роботов .
  • В качестве одного из основных аргументов против колонизации Марса приводится довод о его чрезвычайно малом ресурсе ключевых элементов, необходимых для жизни (в первую очередь это водород , азот , углерод). Впрочем, в свете последних исследований, обнаруживших на Марсе, в частности, огромные запасы водяного льда, по крайней мере, по водороду и кислороду вопрос снимается.
  • Условия на поверхности Марса требуют разработки для жизни на нём инновационных проектов систем жизнеобеспечения. Но поскольку на земной поверхности не встречаются условия, достаточно близкие к марсианским, то проверить их экспериментально не представляется возможным. Это, в некотором отношении, ставит под сомнение практическую ценность большинства из них .
  • Также не изучено долгосрочное влияние марсианской силы тяжести на людей (все опыты проводились либо в среде с земным притяжением, либо в невесомости). Степень влияния гравитации на здоровье людей при её изменении от невесомости до 1g не изучена. На земной орбите предполагается провести эксперимент («Mars Gravity Biosatellite») на мышах с целью исследования влияния марсианской (0,38g) силы притяжения на жизненный цикл млекопитающих .
  • Вторая космическая скорость Марса - 5 км/с - довольно высока, хоть и в два раза меньше земной, что при нынешнем уровне космической техники делает невозможным достижение уровня безубыточности колонии за счёт экспорта материалов. Однако, плотность атмосферы , форма (радиус горы около 270 км) и высота (21,2 км от основания) горы Олимп позволяют использовать разного рода электромагнитные ускорители масс (электромагнитную катапульту или маглев , или пушку Гаусса и т. д.) для вывода грузов в космос. Атмосферное давление на вершине Олимпа составляет лишь 2 % от давления, характерного для среднего уровня марсианской поверхности. Учитывая, что на поверхности Марса давление составляет менее 0,01 атмосферы , разреженность среды на вершине Олимпа почти не отличается от космического вакуума.
  • Вызывает опасение также и психологический фактор. Длительность перелета на Марс и дальнейшая жизнь людей в замкнутом пространстве на нём могут стать серьёзными препятствиями на пути освоения планеты.
  • У некоторых вызывает беспокойство факт возможного «загрязнения» планеты земными формами жизни. Вопрос о существовании (в настоящее время или в прошлом) жизни на Марсе до сих пор не решён .
  • До сих пор отсутствует технология получения технического кремния без использования древесного угля, как и технология производства полупроводникового кремния без технического. Это означает огромные трудности с производством солнечных батарей на Марсе. Не существует другой технологии получения технического кремния, так как технология с использованием древесного угля самая дешёвая в плане дешевизны этого материала и затрат энергии. На Марсе же можно использовать металлотермическое восстановление кремния из его диоксида магнием до силицида магния , с последующим разложением силицида соляной или уксусной кислотой с получением газообразного моносилана SiH4 , который можно очистить от примесей разными способами, а затем разложить на водород и чистый кремний.
  • Недавние исследования на мышах показали, что длительное пребывание в условиях невесомости (космоса) вызывает дегенеративные изменения печени, а также симптомы сахарного диабета. У людей после возвращения с орбиты наблюдались аналогичные симптомы, но причины этого явления были неизвестны.

В искусстве

  • Советская песня «На марсе будут яблони цвести» (музыка В. Мурадели , слова Е. Долматовский) .
  • «Место жительства - Марс» (англ. Living on Mars ) - научно-популярный фильм, снятый National Geographic в 2009 г.
  • Песня группы Otto Dix - Утопия так же имеет упоминание («… И яблони будут цвести на Марсе, как на Земле…»)
  • Песня исполнителя Noize MC - «На Марсе классно».
  • В фантастическом фильме 1990-го года «Вспомнить всё » действие сюжета происходит на Марсе.
  • Песня исполнителя David Bowie - «Life on Mars», а также Зигги Стардаст (англ. Ziggy Stardust ) - вымышленный персонаж, созданный Дэвидом Боуи и являющийся центральной фигурой его концептуального глэм-рок-альбома «The Rise and Fall of Ziggy Stardust and the Spiders From Mars » .
  • Рей Бредбери - «Марсианские хроники ».
  • Айзек Азимов - Серия «Лакки Старр». Книга 1 - «Дэвид Старр, космический рейнджер».
  • Фильм «Красная планета » рассказывает о начале терроформирования Марса ради спасения землян.
  • На колонизированном Марсе происходит действие OVA Armitage III.
  • Процессу колонизации и (во втором случае) терраформирования Марса посвящены настольные ролевые игры «Mars Colony» и «Марс: Новый воздух» .
  • Терраформирование и колонизация Марса составляет основной фон событий «Марсианской трилогии» Кима Стэнли Робинсона .
  • Серия книг Эдгара Берроуза о фантастическом мире Марса .
  • В британском телесериале Доктор Кто в серии Воды Марса на поверхности Марса была освоенная первая колония в кратере Гусева «Bowie Base One ».
  • Научно-фантастический рассказ Гарри Гаррисона «Тренировочный полет» рассказывает о первой пилотируемой экспедиции на Марс. Особое внимание уделено психологическому состоянию человека, пребывающего в замкнутой дискомфортной среде.
  • Роман писателя Энди Уира «Марсианин » повествует о полуторагодичной борьбе за жизнь астронавта оставленного в одиночестве на Марсе. В 2015 году вышла экранизация этого произведения.
  • «Джон Картер » (англ. John Carter) - фантастический приключенческий боевик режиссёра Эндрю Стэнтона, поставленный по книге Эдгара Райса Берроуза «Принцесса Марса».
  • «Марсианин » - фильм режиссёра