«открытие Радиоактивности. Альфа-, бета- и гамма-излучения

Урок № 50 Тема урока: Радиоактивность как свидетельство сложного строения атомов Подготовил: учитель физики Д.А. Мелентьев КУРСК 2013

Слайд 2

Слайд 3

Сегодня мы узнаем: 1. Радиоактивность как свидетельство сложного строения атомов. 2. Открытие явления радиоактивности. 3. Опыт по обнаружению сложного состава радиоактивного излучения. 4. 5.

Слайд 4

Демокрит Древнегреческий философ, основоположник атомистического учения. По Демокриту, существуют только атомы и пустота. Атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различаются формой, положением в пустоте, величиной; движутся в различных направлениях, из их «вихря» образуются как отдельные тела, так и все бесчисленные миры; невидимы для человека; истечения из них, действуя на органы чувств, вызывают ощущения.

Слайд 5

Антуан Анри Беккерель В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. Французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности. Антуан Анри Беккерель родился 15 декабря 1852 года в семье потомственных ученых. Его отец Александр Эдмонд Беккерель был профессором физики и руководителем Национального музея естественной истории. Как и дед Анри, он работал в области фосфоресценции и одновременно занимался вопросами фотографии.

Слайд 6

Фосфоресценция Фосфоресценция – это процесс, в котором энергия, поглощенная веществом, высвобождается относительно медленно в виде света. Фосфоресцентныйпорошок при облучении видимым светом, ультрафиолетовым светом и в полной темноте.

Слайд 7

Слайд 8

Радиоактивность Радиоактивность – способность атомов некоторых химических элементов к самопроизвольному излучению

Слайд 9

Мария Склодовская-Кюри Польско-французский учёный-экспериментатор (физик, химик), педагог, общественный деятель. Дважды лауреат Нобелевской премии: по физике (1903) и по химии (1911), первый дважды нобелевский лауреат в истории.

Слайд 10

«Тогда я занялась изысканиями, не существует ли других элементов, обладающих тем же свойством, и с этой целью изучила все известные в то время элементы, как в чистом виде, так и в соединениях. Я нашла, что среди этих лучей только соединения тория испускают лучи, подобные лучам урана».

Слайд 11

«Тогда я выдвинула гипотезу, - писала Мария Склодовская-Кюри, - что минералы с ураном и торием содержат небольшое количество вещества, гораздо более радиоактивного, чем уран и торий; это вещество не могло принадлежать к известным элементам, потому все они уже были исследованы; это должен был быть новый химический элемент».

Слайд 12

18 июля 1898 года Пьер и Мария Кюри на заседании Парижской Академии наук выступили с сообщением «Оновом радиоактивном веществе, содержащемся в смоляной обманке». «Вещество, которое мы извлекли из смоляной обманки, содержит металл, еще не описанный и являющийся соседом висмута по своим аналитическим свойствам. Если существование нового металла подтвердится, мы предлагаем назвать его полонием, по имени родины одного из нас».

Слайд 13

26 декабря 1898 года появляется следующая статья супругов Кюри: «Об одном новом, сильно радиоактивном веществе, содержащемся в смоляной руде».

Слайд 14

Радиоактивные элементы Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

Слайд 15

Эрнест Резерфорд Британский физик новозеландского происхождения. Известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года. В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Слайд 16

Опыт по обнаружению сложного состава радиоактивного излучения.

Слайд 17

Альфа, бета, и гамма – частицы.

Слайд 18

Альфа, бета, и гамма – частицы.

Слайд 19

Альфа, бета, и гамма – частицы.

Слайд 20

Альфа, бета, и гамма – частицы.

Слайд 21

Проникающая способность радиоактивного излучения.

Слайд 22

Проникающая способность радиоактивного излучения.

Слайд 23

Проникающая способность радиоактивного излучения.

Слайд 24

Проникающая способность радиоактивного излучения.

Слайд 25

Слайд 26

Проникающая способность радиоактивного излучения.

Слайд 27

Проникающая способность радиоактивного излучения.

Слайд 28

Проникающая способность радиоактивного излучения.

Слайд 29

Проникающая способность радиоактивного излучения.

Слайд 30

Слайд 31

До завершения тестирования осталось 5 минут

Слайд 32

До завершения тестирования осталось 4 минуты

Слайд 33

До завершения тестирования осталось 3 минуты

Слайд 34

До завершения тестирования осталось 2 минуты

Слайд 35

До завершения тестирования осталось 1 минута

Слайд 36

ТЕСТИРОВАНИЕ ЗАВЕРШЕНО

Слайд 37

Слайд 38

ПРОВЕРИМ ТЕСТ 1. Переведите с древнегреческого слово «атом». 2. Кто из учёных впервые открыл явление радиоактивности? Маленький Простой Неделимый Твёрдый Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн

Слайд 39

ПРОВЕРИМ ТЕСТ 1. Переведите с древнегреческого слово «атом». 2. Кто из учёных впервые открыл явление радиоактивности? Маленький Простой Неделимый Твёрдый Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн

Слайд 40

Слайд 41

ПРОВЕРИМ ТЕСТ 3. - излучение – это 4.  - излучение – это Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 42

ПРОВЕРИМ ТЕСТ 3. - излучение – это 4.  - излучение – это Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 43

Слайд 44

ПРОВЕРИМ ТЕСТ 5. - излучение – это 6. Что представляет собой  - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 45

ПРОВЕРИМ ТЕСТ 5. - излучение – это 6. Что представляет собой  - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 46

Слайд 47

ПРОВЕРИМ ТЕСТ 7. Что представляет собой - излучение? 6. Что представляет собой - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты

Слайд 48

ПРОВЕРИМ ТЕСТ 7. Что представляет собой - излучение? 6. Что представляет собой - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты

Слайд 49

Критерии оценивания

Слайд 50

Вопросы 1. В чем заключается открытие, сделанное Беккерелем в 1896г? 2. Кто из ученых занимался исследованием данных лучей? 3. Как и кем было названо явление самопроизвольного излучения некоторыми атомами? 4. В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты? 5. Что доказывает опыт Резерфорда? 6. Как были названы частицы, входящие в состав радиоактивного излучения? 7. О чем свидетельствует явление радиоактивности?

Слайд 51

Домашнее задание § 55 (старый учебник), §65 (новый учебник) Ответьте на вопросы после параграфа. Вопрос??? Почему опыт Резерфорда доказывает сложное строение атома?

Посмотреть все слайды

Открытие радиоактивности - страница №1/1

Физика 9 класс.

Тема:

"Открытие радиоактивности"

Учительница физики

МБОУ СОШ № 18

Абдуллаева Зухра Алибековна

Махачкала 2013 г.

Урок физики по теме "Открытие радиоактивности"

Учитель – Абдуллаева Зухра Алибековна

Цели урока:


  • обеспечить в ходе урока усвоение понятий "радиоактивность", альфа-, бета-, гамма - излучение.

  • продолжить формирование у обучающихся научного мировоззрения.

  • развивать навыки культуры речи, творческую активность, творческие способности учащихся.
Оборудование:

  • Компьютер, проектор, интерактивная доска.

  • Компьютерная презентация "Открытие радиоактивности"

  • Рабочая тетрадь ученика
Ход урока

I. Организационный момент (приветствие, проверка готовности обучающихся к уроку)

Изучение нового материала. (Приложение 1. Компьютерная презентация "Открытие радиоактивности")

Сегодня мы начинаем изучать четвертую главу нашего учебника, она называется "Строение атома и атомного ядра. Использование энергии атомных ядер". Тема нашего урока "Открытие радиоактивности" (запись в тетради даты и темы урока).

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были названы атомами, что означает неделимые. Таким названием Демокрит хотел подчеркнуть, что атом - это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица. (Слайд 3) Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру, и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атомов явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896г. Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения.

Лучи Рентгена. В декабре 1895 г Вильгельм Конрад Рентген (Слайд) сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817–1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. (Слайд) Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет – зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba (раньше его называли платиносинеродистым барием). Это вещество дает яркую желто-зеленую люминесценцию под действием ультрафиолетовых, а также катодных лучей. Но катодные лучи на экран не попадали, и более того, когда прибор был закрыт черной бумагой, экран продолжал светиться. Вскоре Рентген обнаружил, что излучение проходит через многие непрозрачные вещества, вызывает почернение фотопластинки, завернутой в черную бумагу или даже помещенной в металлический футляр. Лучи проходили через очень толстую книгу, через еловую доску толщиной 3 см, через алюминиевую пластину толщиной 1,5 см... Рентген понял возможности своего открытия: “Если держать руку между разрядной трубкой и экраном, – писал он, – то видны темные тени костей на фоне более светлых очертаний руки”. Это было первое в истории рентгеноскопическое исследование.

Открытие Рентгена мгновенно облетело весь мир и поразило не только специалистов. В канун 1896 в книжном магазине одного немецкого города была выставлена фотография кисти руки. На ней были видны кости живого человека, а на одном из пальцев – обручальное кольцо. Это была снятая в рентгеновских лучах фотография кисти жены Рентгена.

Лучи Беккереля. Открытие Рентгена вскоре привело к не менее выдающемуся открытию. Его сделал в 1896 французский физик Антуан Анри Беккерель. (Слайд) Он был 20 января 1896 на заседании Академии, на котором физик и философ Анри Пуанкаре рассказал об открытии Рентгена и продемонстрировал сделанные уже во Франции рентгеновские снимки руки человека. Пуанкаре не ограничился рассказом о новых лучах. Он высказал предположение, что эти лучи связаны с люминесценцией и, возможно, всегда возникают одновременно с этим видом свечения, так что, вероятно, можно обойтись и без катодных лучей. Свечение веществ под действием ультрафиолета было знакомо Беккерелю: им занимались и его отец Александр Эдмонд Беккерель (1820–1891), и дед Антуан Сезар Беккерель (1788–1878) – оба физики; физиком стал и сын Антуана Анри Беккереля – Жак, который “по наследству” принял кафедру физики при парижском Музее естественной истории, эту кафедру Беккерели возглавляли 110 лет, с 1838 по 1948.

Беккерель решил проверить, связаны ли лучи Рентгена с флуоресценцией. Яркой желто-зеленой флуоресценцией обладают некоторые соли урана, например, уранилнитрат UO2(NO3)2. Такие вещества были в лаборатории Беккереля, где он работал. С препаратами урана работал еще его отец, который показал, что после прекращения действия солнечного света их свечение исчезает очень быстро – менее чем за сотую долю секунды. Однако никто не проверял, сопровождается ли это свечение испусканием каких-то других лучей, способных проходить сквозь непрозрачные материалы, как это было у Рентгена. Именно это после доклада Пуанкаре решил проверить Беккерель.

(Слайд) Открытие радиоактивности – явления, доказывающего сложный состав атомного ядра, произошло благодаря счастливой случайности. Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления пластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому, пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей.

Но однажды, в феврале 1896 г., провести очередной опыт ему не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение.

Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам

Естественно ученые попытались обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы. В эту работу внесла большой вклад Мария Склодовская-Кюри.

Мария Склодовская-Кюри и Пьер Кюри.
Открытие радия и полония.

(Слайд) В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер
Кюри, доказали радиоактивность тория, выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий, Это был изнурительный труд, в течение долгих четырех лет супруги почти не выходили из своего сырого и холодного сарая. (Слайд) Полоний (Po-84) был назван в честь родины Марии – Польши. Радий (Ra-88)– лучистый, термин радиоактивность предложен был Марией Склодовской. Радиоактивными являются все элементы с порядковыми номерами более 83, т.е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств. Препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации. (Слайд)

Недаром Маяковский сравнивал поэзию с добычей радия:


«Поэзия – та же добыча радия.
В грамм добыча, в год труды.
Изводишь единого слова ради
тысячи тонн словесной руды.»
В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике.

Беккерель и супруги Кюри создали первую научную школу изучения радиоактивности. В ее стенах было сделано немало выдающихся открытий. Судьба оказалась неблагосклонной к основателям школы. Пьер Кюри трагически погиб 17 апреля 1906 г., Анри Беккерель преждевременно скончался 25 августа 1908 г. (Слайд )

Мария Склодовская-Кюри продолжила исследования. Она получила поддержку со стороны государства. В Сорбонне была создана специально для нее Лаборатория радиоактивности. (Слайд)

В 1914 г. закончилось строительство Института радия, и она стала его директором. До последних дней своих она следовала девизу Пьера: "Что бы ни случилось, надо работать".

Марии предстояло завершить радиевую "эпопею": получить металлический радий. Ей помогал ее многолетний сотрудник Андрэ Дебьерн (кстати, именно он открыл новый радиоактивный элемент – актиний).

В мартовском номере "Докладов Парижской академии наук" за 1910 г. появилась их короткая статья, в которой сообщалось о выделении около 0,1 г металла. Позднее это событие включили в число семи наиболее выдающихся научных достижений первой четверти ХХ в.

В 1911 г. Мария Кюри получила свою вторую Нобелевскую премию – по химии.

Свойство элементов непрерывно и без каких -либо внешних воздействий испускать невидимое излучение которое способно проникать сквозь непрозрачные экраны и оказывать фотографическое и ионизирующее действие получило название радиоактивности, а само излучение – радиоактивным излучением.

(слайд )
Свойства радиоактивного излучения (Слайд)


  • Ионизируют воздух;

  • Действуют на фотопластинку;

  • Вызывают свечение некоторых веществ;

  • Проникают через тонкие металлические пластинки;

  • Интенсивность излучения пропорциональна концентрации вещества;

  • Интенсивность излучения не зависит от внешних факторов (давление, температура, освещенность, электрические разряды).
Сложный состав радиоактивного излучения. Опыт Резерфорда

В 1899 году под руководством английского ученого Э. Резерфорда, (Слайд) был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения. В результате опыта, проведенного под руководством английского физика Эрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

На слайде изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно темное пятно - как раз в том месте, куда попадал пучок (Слайд)

Потом опыт изменяли, (Слайд) создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других - по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом - отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные - бета-частицами, а нейтральные - гамма квантами.

Проникающая способность различных видов излучений

Эти три вида излучения очень сильно различаются по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают-лучи. (Слайд) Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего -излучению.

Гораздо меньше поглощаются при прохождении через вещество -лучи. (Слайд) Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают .-лучи.

(Слайд) Интенсивность поглощения -лучей усиливается с увеличением атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении -лучей через такой слой свинца их интенсивность ослабевает лишь вдвое. Видео

Физическая природа -, - и -лучей, очевидно, различна.

Физическая природа различных видов излучения (Слайд)

Гамма-лучи. По своим свойствам -лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводило на мысль, что -лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция -лучей на кристаллах и измерена их длина волны. Она оказалась очень малой - от 10 -8 до 10 -11 см.

На шкале электромагнитных волн -лучи непосредственно следуют за рентгеновскими. Скорость распространения у -лучей такая же, как у всех электромагнитных волн, - около 300 000 км/с.

Бета-лучи. С самого начала - и -лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать c -лучами, так как они сильнее отклоняются как в магнитном, так и в электрическом поле.

Основная задача экспериментаторов состояла в определении заряда и массы частиц. При исследовании отклонения -частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости -частиц, испущенных каким-либо радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями. Это и приводит к расширению пучка -частиц в магнитном поле (см. рис. 13.6).

Альфа-частицы. Труднее было выяснить природу -частиц, так как они слабее отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в 2 раза меньше, чем у протона - ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы 1 . Следовательно, у -частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы.

Но заряд -частицы и ее масса оставались, тем не менее, неизвестными. Следовало измерить либо заряд, либо массу -частицы. С появлением счетчика Гейгера стало возможным проще и точнее измерить заряд. Сквозь очень тонкое окошко - частицы могут проникать внутрь счетчика и регистрироваться им.

Резерфорд поместил на пути -частиц счетчик Гейгера, который измерял число чacтиц, испускавшихся радиоактивным препаратом за определенное время. Затем он поставил на место счетчика металлический цилиндp, соединенный с чувствительным электрометром (рис. 13.7). Электрометром Резерфорд измерял заряд - частиц испущенных источником внутрь цилиндра за такое же время (радиоактивность многих веществ почти не меняется со временем). Зная суммарный заряд -частиц и их число, Резерфод определил отношение этих величин, т. е. заряд одной -частицы. Этот заряд оказался равным двум элементарным.

Таким образом, он устаиовил, что у -частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы. Следовательно, на два элементарных заряда приходится четыре атомные единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что - часчица - это ядро атома гелия.

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном -распаде образуется именно гелий. Собирая -частицы внутри специального резервуара на протяжении нескольких дней, он с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая -частица захватывала два электрона и превращалась в атом гелия).

Итак, явление радиоактивности, т.е. самопроизвольного излучения веществом -, - и - частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав.

Закрепление знаний.

1. Первичное закрепление.

1. В чем заключается открытие, сделанное Беккерелем в 1896г?

2. Кто из ученых занимался исследованием данных лучей?

3. Как и кем было названо явление самопроизвольного излучения некоторыми атомами?

4. В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты

5. Как были названы частицы, входящие в состав радиоактивного излучения?

6. Почему в магнитном поле радиоактивное излучение распалось на три пучка?

7. Какова природа α-частицы? Каков ее заряд и масса?

8. Что представляют собой β-частицы?

9. С какой скоростью распространяются γ-лучи? Какие свойства γ-лучей вы знаете?

Самостоятельная работа. Самостоятельное выполнение заданий в рабочих тетрадях.

1. Кто впервые наблюдал радиоактивное излучение урана? __________________________.

2. Как были названы новые химические элементы, способные к самопроизвольному излучению, обнаруженные супругами Кюри? ____________________________________ .

3. Что такое радиоактивность? ________________________________________ .

4. Кто впервые ввел термин "радиоактивность"? _____________________________ .

5. Что представляет собой -излучение, -излучение, -излучение? __________________________________________________________________________ .

7. Каково направление индукции магнитного поля?

8. Заполните таблицу



Излучение

Заряд

Проник. способность

Примеры

Природа

α

+

min

бумага пробег в воздухе 3-9 см
алюминий – 0,05 мм

Поток атомных ядер гелия 4 2 Не
υ= 14.000 - 20.000 км/с

β

-

чуть > α

Пробег в воздухе 40 см
свинец – 3 см

Поток электронов 0 - 1e
υ≈ 300.000 км/с

γ

0

max

пробег в воздухе неск. сот метров
свинец – до 5 см
тело человека пронизывают насквозь

Поток коротких эл-магн. волн (фотонов)
υ= 300.000 км/с

Учитель. 4. Радиоактивные превращения.
Изучение радиоактивности убеждает нас в том, что радиоактивные излучения испускаются атомными ядрами радиоактивных элементов. Это очевидно в отношении альфа частиц, так как в электронной оболочке их просто нет. Химические исследования обнаружили, что в веществах, испускающих бета излучение, накапливаются атомы элемента с порядковым номером на одну единицу превышающим порядковый номер бета излучателя. Например
20 10 Ne β → 20 11 Na β → 20 12 Mg β → 20 13 Al

Что же происходит с веществом при радиоактивном распаде?

Видео

Радиоактивные излучения испускаются атомными ядрами радиоактивных элементов

Испуская α- и β- излучение, атомы радиоактивного элемента изменяются, превращаясь в атомы нового элемента

В этом смысле испускание радиоактивных излучений называют радиоактивным распадом

Итак, запишите в тетрадь определение: Явление самопроизвольного превращения неустойчивых ядер атомов в ядра других атомов с испусканием частиц и излучением энергии называется естественной радиоактивностью.
radio - излучаю, aсtivus – действенный.

Правила смещения -
это правила, указывающие смещение элемента в периодической системе, вызванное распадом.
Превращение ядер подчиняется правилу смещения, сформулированному впервые английским ученым Ф. Содди.
Сообщение учащихся о Ф. Содди (портрет).
Фредерик Содди (2.09.1877 – 22.09. 1956) – английский физик, один из пионеров радиоактивности, член Лондонского королевского общества.
Вместе с Резерфордом разработал в 1902-1903 г. теорию радиоактивного распада и сформулировал закон радиоактивных превращений. В 1903 г. доказал наличие гелия в продуктах излучения радия. Независимо от других в 1918 г. открыл протактиний. Сформулировал α – правило. В 1913 г. Установил правило смещения при радиоактивном распаде.

Учитель При радиоактивном распаде выполняются законы сохранения массы и зараяда
Учитель. α – распад: Ядро теряет положительный заряд 2ē и масса его убывает на 4 а.е.м. Элемент смещается на 2 клетки к началу

A Z Х → A-4 Z-2 Y + 4 2 He

β – распад: из ядра вылетает электрон, заряд увеличивается на единицу, а масса остается почти неизменной. Элемент смещается на 1 клетку к концу периодической системы. (Слайд)

A Z Х → A Z+1 Y +


  • При испускании ядрами атомов нейтральных γ-квантов ядерных превращений не происходит. Испущенный γ-квант уносит избыточную энергию возбужденного ядра; числа протонов и нейтронов в нем остаются неизменными.
Проблемная ситуация. Вопрос к классу:
Если вы внимательно следите за моими рассуждениями, то должны мне задать вопрос. (Как же из ядра вылетают электроны, если их там нет ?!!!) Ответ: приβ – распаде нейтрон превращается в протон с испусканием электрона
1 0 n → 1 1 p + 0 -1e + υ (υ - антинейтрино)(Слайд)
γ – излучение не сопровождается изменением заряда, масса же ядра меняется ничтожно мало.

Решение задач.

Учитель у доски разбирает решение задач на правило смещения:


Задача 1 : Изотоп тория 230 90 Th испускает α-частицу. Какой элемент при этом образуется?
Решение: 230 90 Th α → 226 98 Ra + 4 2 He
Задача 2 : Изотоп тория 230 90 Th β-радиоактивен. Какой элемент при этом образуется?
Решение: 230 90 Th β → 230 91 Рa + 0-1e
Решение задач учащимися у доски:
Задача : Протактиний 231 91 Рa α –радиоактивен. С помощью правил «сдвига» и таблицы элементов Менделеева определите, какой элемент получается с помощью этого распада.
Решение: 231 91 Рa α → 227 89 Ас + 4 2 Не
Задача : В какой элемент превращения уран 239 92 U после двух β – распадов и одного α – распада?
Решение: 239 92 U β → 239 93 Np β → 239 94 Pu α → 235 92 U
Задача: Написать цепочку ядерных превращений неона 20 10 Ne: β, β, β, α, α, β, α, α
Решение: 20 10 Ne β → 20 11 Na β → 20 12 Mg β → 20 13 Al α → 16 11 Na α → 12 9 F β → 12 10 Ne α → 8 8 O α → 4 6 C
Промежуточное закрепление

1. Что называется радиоактивностью?

2. Какие известные вам законы сохранения выполняются при радиоактивных превращениях?
Самостоятельная работа (индивидуально, по карточкам (дифференциальный подход к учащимся)).

Сообщение ученика
Биологическое действие радиоактивного излучения

Как-то Беккерель, собираясь на одну из лекций, обнаружил, что у него нет урановой соли. Зайдя в лабораторию Кюри, взял пробирку с урановой солью и положил ее в карман костюма. После лекции вновь положил в карман и проходил так до возвращения домой. На следующий день он обнаружил в том месте, где лежала пробирка покраснение кожи. Беккерель показал супругам Кюри, предположив о действии урана на кожу.


Пьер Кюри решил проверить и привязал урановую пластину к предплечью и проходил так 10 часов. Вызванное облучением покраснение перешло в сильную язву и не заживало в течение почти 2 лет. Таким образом, Пьер открыл биологическое действие радиоактивного излучения.

Вот что пишет М.П.Шаскольская: «В те далекие годы, на заре атомного века, первооткрыватели радия не знали о действии излучения. Радиоактивная пыль носилась в их лаборатории. Сами экспериментаторы спокойно брали руками препараты, держали их в кармане, не ведая о смертельной опасности. К счетчику Гейгера поднесен листок из блокнота Пьера Кюри (через 55 лет после того, как в блокноте велись записи!), и ровный гул сменяется шумом, чуть ли не грохотом. Листок излучает, листок как бы дышит радиоактивностью».

Сейчас известно, что радиоактивные излучения при определенных условиях могут представлять опасность для здоровья живых организмов. В чем причина негативного воздействия радиации на живые существа?

Дело в том что, что α-, и β - частицы, проходя через вещество, ионизирует его, выбивая электроны из молекул и атомов. Ионизация живой ткани нарушает жизнедеятельность клеток, из которых эта ткань состоит, что отрицательно сказывается на здоровье всего организма.

Степень и характер отрицательного воздействия радиации зависит от нескольких факторов, в частности, от того, какая энергия передана потоком ионизирующих частиц данному телу и какова масса этого тела. Чем больше энергии получает человек от действующего на него потока частиц и чем меньше при этом масса человека (т.е чем большая энергия приходится на каждую единицу массы),тем к более серьезным нарушениям в его организме это приведет.

Поглощенная доза-энергия ионизирующего излучения, поглощенная облучаемым теплом (тканями организма), в пересчете на единицу массы.

Эквивалентная доза - поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма.

В СИ единице поглощенной дозы излучения является 1 грэй (1Гр).

Известно, что чем больше поглощенной дозы излучения, тем больший вред может нанести организму это излучение.

Необходимо учитывать также, что при одинаковой поглощенной дозе разные виды излучений вызывают разные по величине биологические эффекты.

Например, при одной и той же поглощенной дозе биологический эффект от действия α- излучения будет в 20 раз больше, чем от γ- излучения, от действия быстрых нейтронов эффект может быть в 10 раз больше, чем от γ- излучения.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, необходимо учитывать соответствующие коэффициенты чувствительности тканей.

0,03- костная ткань

0,03- щитовидная железа

0,12- красный костный мозг

0,12- легкие

0,15- молочная железа

0,25- яичники и семенники

0,30- другие ткани

1,00- организм в целом

Даже малые дозы радиации не безвредны. Радиация может вызвать, прежде всего, генные и хромосомные мутации. Установлено, что вероятность заболевания раком возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяется лейкозы. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушением, а в больших дозах приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Учитель: Сегодня 26 апреля исполняется 27 лет со дня Чернобыльской трагедии. И мы, конечно, не могли обойти вниманием эту страшную дату.

Сообщение ученика об аварии на Чернобыльской АЭС


  • Чернобыльская авария - разрушение 26 апреля 1986 года 4 энергоблока ЧАЭС, расположенной на территории Украины. Разрушение носило взрывной характер, реактор был разрушен, и в окружающую среду было выброшено много радиоактивных веществ.

  • Около 200000 человек было эвакуировано из зон, подвергшихся загрязнению.

  • Излучение которым подверглись люди ведет к серьёзным дефектам, которые проявляются у детей и внуков человека, подвергшегося облучению, или у его отдаленных потомков.

    • Итог урока: Домашнее задание.

    • Во время подведения итога урока 2 учащихся проверяют самостоятельную работу.

Вопрос к классу:



6 июня 1905г. Пьер выступил на заседании Академии наук. Свою Нобелевскую речь он закончил следующими словами:

"Легко, далее, понять, что в преступных руках радий может представить серьезную опасность, и встает вопрос: выиграет ли человечество от познания тайн природы, достаточно ли оно созрело, чтобы ими пользоваться, или это познание обратиться ему во вред? Пример открытий Нобеля показателен в этом отношении: мощные взрывчатые вещества позволили человеку выполнять замечательные работы, но они же стали ужасным разрушительным средством в руках великих преступников, толкающих народы к войне. Я отношусь к числу тех, кто думает вместе с Нобелем, что человечество извлечет больше пользы, чем вреда из новых открытий".

В окно смотрели двое:

Один увидел дождь и грязь,

Другой листвы зелёной вязь

И небо голубое.

В окно смотрели двое.

За каждым открытием стоят люди. Человек во многом бывает сам виноват в своих бедах и трагедиях.

Прав ли был Прометей, давший людям огонь?

Мир рванулся вперед, мир сорвался с пружин.

Из прекрасного лебедя вырос дракон,

Из запретной бутылки был выпущен джин.

Радиоактивность-это природное явление, не зависящее от того, открыли его ученые или нет. Радиоактивными являются почва, осадки, горные породы, вода. Ядерная энергия - источник всего существующего. Солнце и звезды сияют благодаря ядерным реакциям, происходящим в их недрах. Открытие этого явления повлекло за собой его использование на пользу и во вред. Ученые больше чем кто- либо осознают ответственность, которую они несут перед обществом, вмешиваясь в дела Природы.

В настоящее время идет много споров на тему: радиация - это добро или зло, радиация - наш друг или враг? Так что же это такое?

Так, что же такое радиоактивность: подарок или проклятие? Мы начинали урок с ваших ассоциаций со словом радиоактивность. Какой вы представляете себе радиоактивность теперь? Что бы вы могли рассказать о радиоактивности, например, младшим школьникам.

Творческая работа учащихся.

В вашей власти, в вашей власти.

Что бы все не раскололось

На бессмысленные части.

Человек всегда должен помнить, что Природа мудра, и, вторгаясь в ее тайны, нельзя нарушать ее законы. В своих действиях нужно руководствоваться правилом: «Не навреди!”, быть осмотрительным, внимательным, просчитывать десятки связей и ходов наперед, а главное - всегда помнить о других людях, ценности жизни, уникальности нашей планеты. Радиоактивность отнюдь не новое явление, новизна лишь состоит в том, как люди пытались ее использовать

Жизнь на Земле хрупка и беззащитна перед человеком. Один неверный шаг, и она прервется. Первый человек планеты, кому посчастливилось увидеть землю из Космоса, Ю.А.Гагарин сравнил цветовую гамму красок Земли с красками полотен Николая Рериха. Но он же поведал о том, какой хрупкой и беззащитной кажется из Космоса наша планета…

Тема: Радиоактивность, альфа-, бета-, гамма излучения, правило смещения, период полураспада, закон радиоактивного распада. Цель: Познакомить учеников с исторической хронологией открытия явления естественной радиоактивности и свойствами радиоактивного излучения. Раскрыть природу радиоактивного распада и его закономерности. Развивать умение анализировать научный материал, исследование, используя дополнительную литературу. Воспитывать личную ответственность за то, что происходит вокруг, чуткость и человечность. Задачи урока Образовательные задачи: объяснить и закрепить новый материал, познакомить с историей открытия, показать презентацию по теме урока Развивающие задачи: активизировать мыслительную деятельность учащихся на уроке; реализовать успешное овладение новым материалом, развивать речь, умение делать выводы. Воспитательные задачи: заинтересовать и увлечь темой урока; создать личную ситуацию успеха; вести коллективный поиск по сбору материалов о радиации, создать условия для развития у школьников умения структурировать информацию. Оборудование и материалы:Знак радиоактивной опасности; портреты ученых, раздаточный материал, справочники, проектор, рефераты учащихся, презентация. Тип урока: урок изучения нового материала. Понятия и определения: радиоактивность, α-, β- частицы, γ- излучение, период полраспада, радиоактивный ряд, радиоактивное превращение, закона радиоактивного распада. "Лишь поняв природу, человек поймет сам себя" Р.Едберг (шведский писатель) Ход урока I. Организационный момент. Приветствие учеников. II. Мотивация учебной деятельности учеников. Объявление темы урока, заданий и ожидаемых результатов. Человек тысячи лет боролся за свое существование, выжил в эпидемиях, голодоморах, в пятнадцати тысячах войн, которые же сама и развязала. Выжила и всегда верила в лучшую жизнь. Ради этого человек развивал науку, культуру, медицину, новые социальные системы. И вот через свои ошибочные моральные принципы, духовное обнищание, деградацию экологического сознания и совести, мы опять очутились на пороге нового, чуть ли не более ужасного этапа выживания. Радиация - это необычные лучи, которые глазом не видно и вообще нельзя никак почувствовать, но которые могут проникать даже через стены и пронизывать человека. III. Этап подготовки к изучению новой темы Актуализация наличных знаний учащихся в форме проверки домашнего задания и беглого фронтального опроса учащихся. 1. Что означает слово "атом"? 2. Кто ввел это понятие в физику? 2 3. Из чего состоит атом? 3 4. Какое строение атомного ядра? Что такое нуклон? 4 5. Что такое электрон? Какой его заряд? 6. Чем ядерные силы отличаются от электрических и гравитационных? 7. Модель атома Томсона. 8. Планетарная модель атома. 9. В чем суть опыта резерфорда? IV. Создание проблемной ситуации. Показать знак радиоактивной опасности. Ответить вопрос: " Что означает этот знак? В чем опасность радиоактивного излучения?" "Ничего не надо бояться - надо лишь понять неизвестное" Мария Склодовская- Кюри. V. Этап усвоения знаний. 1) Сообщения учащегося. Открытие радиоактивности Анри Беккерелем. Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. Он завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Беккерель думал, что излучение урана возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану. Затем подобное качество было обнаружено и у тория. Слайд №1 Беккерель Антуан Анри французский физик. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. (1903, совместно с П. Кюри и М. Склодовской-Кюри). 2) Сообщения учащегося. Открытие радия и полония. В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий, Это был изнурительный труд, в течение долгих четырех лет супруги почти не выходили из своего сырого и холодного сарая. Полоний (Po-84) был назван в честь родины Марии - Польши. Радий (Ra-88)- лучистый, термин радиоактивность предложен был Марией Склодовской. Радиоактивными являются все элементы с порядковыми номерами более 83, т.е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки - в плохо оборудованной лаборатории и при отсутствии необходимых средств Препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации. Недаром Маяковский сравнивал поэзию с добычей радия: "Поэзия - та же добыча радия. В грамм добыча, в год труды. Изводишь единого слова ради тысячи тонн словесной руды." В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике. Явление самопроизвольного превращения неустойчивых ядер атомов в ядра других атомов с испусканием частиц и излучением энергии называется естественной радиоактивностью. Слайд №2 Мария Склодовская-Кюри - польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина - профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии - Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г. Слайд №3 - Пьер Кюри - французский физик, один из создателей учения о радиоактивности. Открыл (1880) и исследовал пьезоэлектричество. Исследования по симметрии кристаллов (принцип Кюри), магнетизму (закон Кюри, точка Кюри). Совместно с женой М. Склодовской-Кюри открыл (1898) полоний и радий, исследовал радиоактивное излучение. Ввел термин "радиоактивность". Нобелевская премия (1903, совместно со Склодовской-Кюри и А. А. Беккерелем). Слайд №4 3) Сообщения учащегося Сложный состав Радиоактивного излучения.В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения. В результате опыта, проведенного под руководством английского физика, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Слайд № 5. Резерфорд Эрнст (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член-корреспондент РАН (1922) и почетный член АН СССР (1925). Директор Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совместно с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую искусственную ядерную реакцию. Предсказал (1921) существование нейтрона. Нобелевская премия (1908). Слайд № 6 Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения. Препарат радия помещали в свинцовый контейнер с отверстием. Напротив отверстия помещали фотопластинку. На излучение действовало сильное магнитное поле. Почти 90 % известных ядер нестабильны. Радиоактивные ядра могут испускать частицы трех видов: положительно заряженные (α-частицы - ядра гелия), отрицательно заряженные (β-частицы - электроны) и нейтральные (γ-частицы - кванты коротковолнового электромагнитного излучения). Магнитное поле позволяет разделить эти частицы. 4) Проникающая способность α .β. γ излучения Слайд № 7 α -лучи обладают наименьшей проникающей способностью. Слой бумаги толщиной 0.1мм для них уже непрозрачен. . β-лучи полностью задерживает алюминиевая пластинка толщиной несколько мм. . γ-лучи при прохождении через слой свинца в 1см уменьшают интенсивность в 2 раза. 5) Физическая природа α .β. γ излучения Слайд № 8 γ-излучение электромагнитные волны 10-10-10-13м β-лучи-поток электронов, движущихся со скоростями близкими к скорости света. α -лучи- ядра атома гелия (краткое описание исследований Резерфорда) Резерфорд измерил отношение заряда частицы к массе по отклонению в магнитном поле. Электрометром измерил заряд.. испущенный частицами источника, счетчиком Гейгера измерил их число. Резерфорд установил. что на каждый из двух элементарных зарядов приходится две атомные единицы массы. То есть α-частица - это ядро атома гелия. 6) Правило смещения. Слайд № 9 Альфа-распад. При альфа-распаде ядро испускает одну α-частицу, и из одного химического элемента образуется другой, расположенный на две клетки левее в периодической системе Менделеева: Слайд № 10 Вета-распад.При бета-распаде испускается один электрон, и из одного химического элемента образуется другой, расположенный на клетку правее: При бета-распаде из ядра вылетает еще одна частица, называемая электронным антинейтрино. Эта частица обозначается символом * При испускании ядрами атомов нейтральных γ-квантов ядерных превращений не происходит. Испущенный γ-квант уносит избыточную энергию возбужденного ядра; числа протонов и нейтронов в нем остаются неизменными. Настоящая модель демонстрирует различные типы ядерных превращений. Ядерные превращения возникают как вследствие процессов радиоактивного распада ядер, так и вследствие ядерных реакций, сопровождающихся делением или синтезом ядер. Закончить запись распада 1. 2. 3. 4. 7) Закон радиоактивного распада. Слайд. № 11 Время, за которое распадается половина из начального числа радиоактивных атомов, называют периодом полураспада. За это время активность радиоактивного вещества уменьшается вдвое. Период полураспада - основная величина. определяющая скорость радиоактивного распада. Чем меньше период полураспада. тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет разные значения. Слайд. № 12 Закон радиоактивного распада установлен Ф. Содди. По формуле находят число нераспавшихся атомов в любой момент времени. Пусть в начальный момент времени число радиоактивных атомов N0. По истечении периода полураспада их будет N0./2. Спустя t=nT их останется N0/2п VI. Этап закрепления новых знаний. Задача 1. Количество радиоактивного радона уменьшилось в 8 раз за 11,4 суток. Определите период полураспада радона? Дано: t=11.4 сут Т-? ; Ответ: Т= 3,8 сут. Задача2. Период полураспада (радон) равен 3,8 суток. Через какое время масса радона уменьшится в 4 раза? Дано: Т=3,8 сут;t-?T=2Т=7,6 сут Тест. "Радиоактивность" (Получает каждый ученик). 1 вариант 1. Кто из перечисленных ученых назвал явление самопроизвольного излучения радиоактивностью? А. Супруги Кюри В. Резерфорд С. Беккерель 2. -лучи представляют собой.... А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате - распада элемент смещается: А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Время, в течение которого распадается половина радиоактивных атомов, называется... А.временем распада В. периодом полураспада С. периодом распада 5. Имеется 109атомов радиоактивного изотопа йода 53128I, период его полураспада25мин. Какое примерно количество ядер изотопа останется нераспавшимся через 50 мин? А. 5108 В. 109 С. 2,5108 2 вариант 1. Кто из перечисленных ниже ученых является первооткрывателем радиоактивности? А. Супруги Кюри В. Резерфорд С. Беккерель 2. - лучи представляют собой... А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате - распада элемент смещается А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Какое из перечисленных ниже выражений соответствует закону радиоактивного распада. А.N=N02-t/T В. N=N0/2 С. N=N02-T 5. Имеется 109атомов радиоактивного изотопа цезия 55137Cs, период его полураспада 26 лет. Какое примерно количество ядер изотопа останется не распавшимся через 52 года? А. 5108 В. 109 С. 2,5108 Ответы 1 вариант 2 вариант 1А, 2А, 3В, 4С, 5С 1С, 2С, 3А, 4А, 5С VII. Этап подведения итогов, информация о домашнем задании. VIII. Рефлексия. Рефлексия деятельности на уроке Закончить фразу 1. сегодня я узнал... 2. мне было интересно... 3. я понял, что... 4. теперь я могу... 5. я научился... 6. у меня получилось... 7. меня удивило... 8. урок дал мне для жизни... 9. мне захотелось... Домашнее задание §§ 100,101.102, №1192,№1201 Дополнительная необходимая информация В помощь учителю 1. Использованные источники и литература (если имеются)Мякишев Г.Я., Буховцев Б.Б. Физика -11:. - М.:: Просвещение, 2005 2. Корякин Ю. И Биография атома. Москва 1961 3. Энциклопедический словарь юного физика / сост. В.А.Чуянов..: Педагогика, 1984 4. Касьянов В.А. Физика 11 класс. - М.: Дрофа, 2006. 5. Рымкевич А.П. Сборник задач по физике. - М.: Просвещение, 2002. 6. Марон А.Е., Марон Е.А. Физика 11 класс: Дидактические материалы - М.: Дрофа, 2004. Раздаточный материал Тест. "Радиоактивность" 1 вариант 1. Кто из перечисленных ученых назвал явление самопроизвольного излучения радиоактивностью? А. Супруги Кюри В. Резерфорд С. Беккерель 2. -лучи представляют собой.... А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате - распада элемент смещается: А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Время, в течение которого распадается половина радиоактивных атомов, называется... А.временем распада В. периодом полураспада С. периодом распада 5. Имеется 109атомов радиоактивного изотопа йода 53128I, период его полураспада25мин. Какое примерно количество ядер изотопа останется не распавшимся через 50 мин? А. 5108 В. 109 С. 2,5108 Тест. "Радиоактивность" 2 вариант 1. Кто из перечисленных ниже ученых является первооткрывателем радиоактивности? А. Супруги Кюри В. Резерфорд С. Беккерель 2. - лучи представляют собой... А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате - распада элемент смещается А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Какое из перечисленных ниже выражений соответствует закону радиоактивного распада. А.N=N02-t/T В. N=N0/2 С. N=N02-T 5. Имеется 109атомов радиоактивного изотопа цезия 55137Cs, период его полураспада 26 лет. Какое примерно количество ядер изотопа останется нераспавшимся через 52 года? А. 5108 В. 109 С. 2,5108 Рефлексия деятельности на уроке Закончить фразу 1. сегодня я узнал... 2. мне было интересно... 3. я понял, что... 4. теперь я могу... 5. я научился... 6. у меня получилось... 7. меня удивило... 8. урок дал мне для жизни... 9. мне захотелось...

Урок физики в 9-м классе по теме

"Радиоактивность как свидетельство сложного

строения атомов"

Тип урока – урок изучения нового материала

Форма изучения нового материала – лекция учителя с активным привлечением обучающихся.

Методы урока – словесные, наглядные, практические

Цели урока:

    (дидактические или образовательные) обеспечить в ходе урока усвоение понятий “радиоактивность”, альфа-, бета-, гамма излучений. В ходе подготовки к итоговой аттестации повторить понятия: электрический ток, сила тока, напряжение, сопротивление, закон Ома для участка цепи. Продолжать совершенствовать навыки сборки электрических цепей. Продолжить формирование общеучебных умений: планирования рассказа, работы с дополнительной литературой

    (воспитательные задачи ставятся на год) продолжать формировать у обучающихся научное мировоззрение.

    (развивающие задачи ставятся на год) развивать навыки культуры речи, в целях развития познавательного интереса обучающихся к предмету на уроке планируются интересные исторические справки.

Демонстрация. Портреты ученых: Демокрита, А. Беккереля, Э. Резерфорда, М. Склодовской – Кюри, П. Кюри.

Таблица “Опыт по изучению радиоактивности”

Ход урока

I. Организационный момент . (приветствие, проверка готовности обучающихся к уроку)

II. Вступительное слово учителя. (1 – 3 минуты)

Сегодня на уроке продолжаем повторять ранее изученный материал, и готовимся к итоговой аттестации. Сегодня мы повторяем такие понятия, как

    Электрический ток.

    Сила электрического тока.

    Электрическое напряжение.

    Электрическое сопротивление.

    Закон Ома для участка цепи.

и совершенствуем навыки сборки простейших электрических цепей.

III. Повторение, подготовка к итоговой аттестации . (8-10 минут)

Учитель дает индивидуальные задания для слабых учащихся в виде карточек и для выполнения задания им разрешается пользоваться учебниками

Обучающиеся, которые выбрали физику на итоговую аттестацию, получают практические задания по сборке электрических цепей.

Решение экспериментальной задачи. Собрать электрическую цепь из источника тока, резистора, ключа, амперметра, вольтметра. По показаниям приборов определить сопротивление резистора.

Остальные обучающиеся участвуют во фронтальном опросе

    Что такое электрический ток?

    Какие заряженные частицы вы знаете?

    Что нужно создать в проводнике, чтобы в нем возник и существовал электрический ток?

    Перечислите источники электрического тока.

    Перечислите действия электрического тока.

    Какой величиной определяется сила тока в электрической цепи?

    Как называется единица силы тока?

    Как называется прибор для измерения силы тока, и как включают его в цепь?

    Что характеризует напряжение, и что принимают за единицу напряжения?

    Как называется прибор для измерения напряжения, какое напряжение используют в городской осветительной цепи?

    Что является причиной электрического сопротивления, и что принимают за единицу сопротивления проводника?

    Сформулируйте закон Ома для участка цепи и запишите его формулу.

Поставить оценки обучающимся за повторение изученного материала.

IV. Записать домашнее задание: параграф 55, ответить на вопросы стр. 182 Повторить 8 кл. гл 4 “Электромагнитные явления”

V. Изучение нового материала.

Сегодня мы начинаем изучать четвертую главу нашего учебника, она называется “Строение атома и атомного ядра. Использование энергии атомных ядер”.

Тема нашего урока “Радиоактивность как свидетельство сложного строения атомов” (запись в тетради даты и темы урока).

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были названы атомами, что означает неделимые. Таким названием Демокрит хотел подчеркнуть, что атом – это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица.

Информационная справка (сообщения делают обучающиеся).

Демокрит – годы жизни 460-370 до н.э. Древнегреческий ученый, философ – материалист, главный представитель древней атомистики. Считал, что во Вселенной существует бесконечное множество миров, которые возникают, развиваются и гибнут.

Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру, и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атомов явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896г.

Информационная справка

Беккерель Антуан Анри французский физик родился 15 декабря 1852 г. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. Умер 25 августа 1908 г.

Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. К таким веществам принадлежат соли урана, с которыми экспериментировал Беккерель. И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи? Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое – то излучение, которое пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам.

Естественно ученые попытались обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы. В эту работу внесла большой вклад Мария Склодовская-Кюри.

Информационная справка

Мария Склодовская-Кюри – польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина – профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии – Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г.

В 1898г М. Склодовская-Кюри и др. ученые обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты М. Склодовской-Кюри и ее мужем П. Кюри. Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый неизвестный ранее химический элемент – полоний № 84, названный так в честь родины М. Склодовской-Кюри – Польши. Был открыт еще один элемент, дающий интенсивное излучение – радий № 88, т.е. лучистый. Само же явление произвольного излучения было названо супругами Кюри радиоактивностью.

Записать в тетради “радиоактивность” – (лат) radio – излучаю, aсtivus – действенный.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными

В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Информационная справка

Эрнест Резерфорд английский физик, родился 30 августа 1871 г. в Новой Зеландии. Его исследования посвящены радиоактивности, атомной и ядерной физике. Своими фундаментальными открытиями в этих областях Резерфорд заложил основы современного учения о радиоактивности и теории строения атома. Умер 19 октября 1937 г.

В результате опыта, проведенного под руководством английского физикаЭрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

На рисунке 1 изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно (рис. 1) темное пятно – как раз в том месте, куда попадал пучок.

Потом опыт изменяли (рис.2), создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других – по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом – отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные – бета-частицами, а нейтральные – гамма (рис. 2) квантами. Некоторое время спустя в результате исследования некоторых физических характеристик и свойств этих частиц (электрического заряда, массы, проникающей способности) удалось установить, что гамма – кванты или лучи – это коротковолновое электромагнитное излучение, скорость распространения электромагнитного излучения такая же, как и у всех электромагнитных волн – 300000 км/с. Гамма – лучи проникают в воздух на сотни метров.

Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м.

Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц

20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см.

Итак, явление радиоактивности, т.е. самопроизвольного излучения веществом? -, ? – и? – частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав.

V. Закрепление знаний.

VII. Подведение итога урока.

В статье рассказывается о том, кто открыл явление радиоактивности, когда это произошло и при каких обстоятельствах.

Радиоактивность

Современный мир и промышленность уже вряд ли смогут обойтись без атомной энергетики. Ядерные реакторы питают подводные лодки, обеспечивают электричеством целые города, а специальные источники энергии, основанные на устанавливают на искусственные спутники и роботов, которые изучают другие планеты.

Радиоактивность была открыта в самом конце XIX века. Впрочем, как и многие другие важнейшие открытия в различных областях науки. Но кто из ученых впервые открыл явление радиоактивности и как это произошло? Об этом мы и поговорим в данной статье.

Открытие

Это очень важное для науки событие произошло в 1896 году и совершил его А. Беккерель при изучении возможной связи люминесценции и недавно открытых так называемых рентгеновских лучей.

По воспоминаниям самого Беккереля, ему пришла мысль о том, что, может быть, любая люминесценция также сопровождается рентгеновскими лучами? Для того чтобы проверить свою догадку, он использовал несколько химических соединений, в том числе и одну из солей урана, которая светилась в темноте. Далее, подержав ее под солнечными лучами, ученый завернул соль в темную бумагу и убрал в шкаф на фотопластинку, которая, в свою очередь, также была упакована в светонепроницаемую обертку. Позже, проявив ее, Беккерель заменил точное изображение куска соли. Но поскольку люминесценция преодолеть бумагу не могла, то значит, засветило пластинку именно рентгеновское излучение. Так что теперь мы знаем, кто впервые открыл явление радиоактивности. Правда, сам ученый тогда еще не до конца понимал, какое открытие совершил. Но обо всем по порядку.

Заседание Академии наук

Чуть позже в том же году, на одном из заседаний в Академии наук Парижа, Беккерель сделал доклад «Об излучении, производимом фосфоресценцией». Но спустя некоторое время в его теорию и выводы пришлось внести корректировки. Так, во время одного из опытов, не дождавшись хорошей и солнечной погоды, ученый положил на фотопластинку соединение урана, которое светом не облучалось. Тем не менее на пластинке все равно отразилась четкая его структура.

Второго марта того же года Беккерель представил заседанию Академии наук новую работу, в которой рассказывалось о радиации испускаемой фосфоресцирующими телами. Теперь нам известно, кто из ученых открыл явление радиоактивности.

Дальнейшие опыты

Занимаясь дальнейшими исследованиями явления радиоактивности, Беккерель перепробовал много веществ, в том числе и металлический уран. И всякий раз на фотопластинке неизменно оставались следы. А поместив между источником излучения и пластинкой металлический крестик, ученый получил, как сейчас сказали бы, его рентгеновский снимок. Так что мы разобрали вопрос о том, кто открыл явление радиоактивности.

Именно тогда стало понятно, что Беккерель открыл совершенно новый тип невидимых лучей, которые способны проходить сквозь любые предметы, но в то же время они не являлись рентгеновскими.

Также было выяснено то, что интенсивность зависит от количества самого урана в химических препаратах, а не от их видов. Именно Беккерель поделился своими научными достижениями и теориями с супругами Пьером и Марией Кюри, которые впоследствии установили радиоактивность, испускаемую торием, и открыли два совершенно новых элемента, позже названых полонием и радием. И при разборе вопроса «кто открыл явление радиоактивности» часто многие ошибочно приписывают эту заслугу супругам Кюри.

Влияние на живые организмы

Когда стало известно, что испускают все соединения урана, Беккерель постепенно вернулся к изучению люминофора. Но он успел сделать еще одно важнейшее открытие - влияние радиоактивных лучей на биологические организмы. Так что Беккерель был не только первым, кто открыл явление радиоактивности, но и тем, кто установил его влияние на живых существ.

Для одной из лекций он одолжил радиоактивное вещество у супругов Кюри и положил его в карман. После лекции, вернув его владельцам, ученый заметил сильное покраснение кожи, которое имело форму пробирки. выслушав его догадки, решился на эксперимент - в течении десяти часов носил привязанную к руке пробирку, содержащую радий. И в итоге получил сильнейшую язву, которая не заживала несколько месяцев.

Так что мы разобрали вопрос о том, кто из ученых впервые открыл явление радиоактивности. Именно так было открыто влияние радиоактивности на биологические организмы. Но несмотря на это, супруги Кюри, кстати, продолжали заниматься изучением радиационных материалов, а погибла именно от лучевой болезни. Ее личные вещи до сих пор содержатся в специальном освинцованном хранилище, поскольку накопленная ими доза радиации почти сотню лет назад до сих пор остается слишком опасной.