Получение предельных углеводородов в лаборатории и промышленности. Способы получения предельных углеводородов

1.1 АЛКАНЫ (предельные углеводороды).

1.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКАНОВ.

1.3 ПРЕДСТАВИТЕЛИ АЛКАНОВ.

2.1 АЛКЕНЫ (этиленовые углеводороды).

2.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКЕНОВ.

2.3 ПРЕДСТАВИТЕЛИ АЛКЕНОВ.

3.1 АЛКИНЫ (ацетиленовые углеводороды).

3.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКИНОВ.

3.3 ПРЕДСТАВИТЕЛИ АЛКИНОВ.

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКЕНОВ, АЛКИНОВ.

1.1 ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (алканы).

Предельными углеводородами (алканами) называются соединения, состоящие из атомов углерода и водорода, соединенных между собой только Q-связями, и не содержащие циклов. В алканах атомы углерода находятся в степени гибридизации sp3.
1.2 Методы получения алканов.
Главным природным источником предельных углеводородов является нефть, а для первых членов гомологического ряда - природный газ. Однако выделение индивидуальных соединений из нефти или продуктов ее крекинга- весьма трудоемкая, а часто и невыполнимая задача, поэтому приходится прибегать к синтетическим методам получения.
1. Алканы образуются при действии металлического натрия на моногалогенпроизводные - реакция Вюрца:
НзС-СН2-Вг + Вг-СН2-СH3 СНз-СН2-СН2-СНз + 2NaBr
Если взяты разные галогенпроизводные, то образуется смесь трех различных алканов, так как вероятность встречи в реакционном комплексе молекул одинаковых или разных равна, а реакционная способность их близка:
3C2H5I + 3CH3CH2CH2IС4Н10 + С5Н12 + С6Н14 + 6NaI
2. Алканы могут быть получены при восстановлении алкенов или алкинов водородом в присутствии катализаторов:
НзС-СН=СН-СНз НзС-СН2-СН2-СНз

3. Самые разнообразные производные алканов могут быть восстановлены при высокой температуре иодистоводородной кислотой:

H3C H3C
CHBr +2HI CH2 + HBr + I2
H3C H3C

Однако в этих случаях иногда наблюдается частичная изомеризация углеродного скелета - образуются более разветвленные алканы.

4. Алканы могут быть получены при сплавлении солей карбоновых кислот со щелочью. Образующийся при этом алкан содержит на один атом углерода меньше, чем исходная карбоновая кислота:

O
СНз-С +NaOH CH4+Na2C03
ONa
1.3 Представители алканов
Согласно теории строения А. М. Бутлерова, физические свойства веществ зависят от их состава и строения. Рассмотрим на примере предельных углеводородов изменение физических свойств в гомологическом ряду.
Четыре первых члена гомологического ряда, начиная с метана, газообразные вещества. Начиная с пентана и выше, нормальные углеводороды представляют собой жидкости. Метан сгущается в жидкость лишь при -162 °С. У последующих членов ряда температура кипения возрастает, причем при переходе к следующему гомологу она возрастает приблизительно на 25°.
Плотность углеводородов при температуре кипения для нижних членов ряда увеличивается сначала быстро, а затем все медленнее: от 0,416 у метана до величины, несколько большей 0,78.Температура плавления нормальных углеводородов в гомологическом ряду увеличивается медленно. Начиная с углеводорода С16Н34, высшие гомологи при обычной температуре - вещества твердые.
Температура кипения у всех разветвленных алканов ниже, чем у нормальных алканов, и притом тем ниже, чем более разветвлена углеродная цепь молекулы. Это видно, например, из сравнения температур кипения трех изомерных пентанов. Наоборот, температура плавления оказывается самой высокой у изомеров с максимально разветвленной углеродной цепью. Так, из всех изомерных октанов лишь гекса-метилэтап (СН3)3С-С (СНз)3 является твердым веществом уже при обычной температуре (т. пл. 104° С). Эти закономерности объясняются следующими причинами.
Превращению жидкости в газ препятствуют ван-дер-ваальсовы силы взаимодействия между атомами отдельных молекул. Поэтому чем больше атомов в молекуле, тем выше температура кипения вещества, следовательно, в гомологическом ряду температура кипения должна равномерно расти. Если сравнить силы взаимодействия молекул н-пентана и неопентана, то ясно, что эти силы больше для молекулы с нормальной цепью углеродных атомов, чем для разветвленных, так как в молекуле неопентана центральный атом вообще выключен из взаимодействия.
Главным фактором, влияющим на температуру плавления вещества, является плотность упаковки молекулы в кристаллической решетке. Чем симметричнее молекула, тем плотнее ее упаковка в кристалле и тем выше температура плавления (у н-пентана -132° C, у неопентана -20° С)

2.1 АЛКЕНЫ (этиленовые углеводороды, олефины)
Углеводороды, в молекуле которых помимо простых Q-связей углерод - углерод и углерод - водород имеются углерод-углеродные
-связи, называются непредельными. Так как образование -связи формально эквивалентно потере молекулой двух атомсв годорода, то непредельные углеводороды содержат на 2п атомов иодорода меньше, чем предельные, где n число - связей

С6H14 C6H12C6H10C6H8C6H6

Ряд, члены которого отличаются друг от друга на (2Н)n, называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексан, гексены, гексадиены, гексины, гексатриены и бензол.
Углеводороды, содержащие одну - связь (т. е. двойную связь), называваются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда - CnH2n

2.2 Методы получения алкенов
При действии спиртовых растворов едких щелочей на галогенпроизводные:отщепляется галогенводород и образуется двойная связь:

H3C-CH2-CH2BrH3C-CH=CH2+NaBr+H2O
Бромистый пропил Пропилен

Если в?-положении к атому углерода, связанному с галогеном, находится третичный, вторичный и первичный атомы водорода, то преимущественно отщепляется третичный атом водорода, в меньшей степени вторичный и тем более первичный (правило Зайцева):

H3C-C-CI H3C-C + KCL + H2O

H3C CH3 H3C CH3
2,3-Диметил-3-хлорпентан 2,3-Диметелпентен-2

Это связано с термодинамической устойчивостью образующихся алке-нoв. Чем больше заместителей имеет алкен у винильных атомов углерода, тем выше его устойчивость.
2. Действием на спирты водоотнимающих средств: а) при пропускании спиртов над окисью алюминия при 300-400° С.

НзС-СН-СН2.-СНзНзС-СН=СН-СНз
OH Бутен-2
Втор-Бутиловый спирт

Б) при действии на спирты серной кислоты в мягких условиях реакция идет через промежуточное образование эфиров серной кислоты:

НзС-СН-СНз НзС-СН-СН3 H3C-CH=CH2
OH O-SO3H
изопропнлопып спирт
При дегидратации спиртов в жестких условиях в кислых средах наблюдается та же закономерность в отщеплении водородных атомов разного типа, как и при отщеплении галогенводорода.
Первой стадией этого процесса является протонирование спирта, после чего отщепляется молекула воды и образуется карбкатион:

СНз-СН2-СН-СНз + H CH3-CH2-CH-CH3 CH3-CH-CH-
OH O H
H H
CH3CH3-CH-CH-CH3CH3-CH=CH-CH3

Образовавшийся карбкатион стабилизируется выбросом протона из соседнего положения с образованием двойной связи (?-элиминирование). В этом случае тоже образуется наиболее разветвленный алкен (термодинамически более устойчивыи). При этом процессе часто наблюдаются перегруппировки карбкатионов связанные с изомеризацией углеродного скелета:

CH3 CH3
CH3 C-CH – CH3 CH3 C-CH-CH3
CH3 OH CH3

CH3 CH3 CH3 CH3
C-CH C=C
CH3 CH3 CH3 CH3

3. При действии Zn или Mg на дигалогенпроизводные с двумя
атомами галогена у соседних атомов углерода:

H3C – C CH2CIH3C - C - CH2+MgCI2

CH3 CH3
1,2-дихлор-2-метал- изобутилен
пропан

4. Гидрированием ацетиленовых углеводородов над катализаторами с пониженной активностью (Fe или «отравленные», т. е. обработанные серусодержащнми соединениями для понижения каталитической активности, Pt и Pd):
НСС-СН(СНз)2Н2С=СН-СН(СНз)2

2.3 Представители алкенов.
Как и алкаиы, низшие гомологи ряда простейших алкенов при обычных условиях - газы, а начиная с С5 - низкокипящие жидкости (см. табл.).

Т.пл., Т. d4
Формула Название °с Кип.,°С
Ch2=CH2 Этилен -169 -104 0,5660 (при -102° С)
СН3СН=СН3 Пропилен -185 -47 0,6090 (при -47" С)
СНзСНзСН=СН2 СНз-СН=СН-СНз (цис)Бутен-1 -130 -5 0,6696 (при -5° С) 0,6352 (приО°С)
-139 +4
(цис)
СНз-СН=СН-СНз (транс)-Бутеп-2 -105 +1 0,6361 (при 0°С)
(транс)
(СНз)зС=СН2 Иэобутилен -140 -7 0,6407 (при 0°С)

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворителях, за исключением метилового спирта; все они имеют меньшую плотность, чем вода.

3.1 АЛКИНЫ (ацетиленовые углеводороды)

Алкинами называются углеводороды, содержащие кроме Q-связей две
-связи (тройную связь) у одной пары углеродных атомов. Общая формула гомологического ряда ацетиленовых углеводородов СnН2n-2 образование одной-связи формально эквивалентно потере двух атомов водорода.
Различными физическими методами доказано, что ацетилен C2H2 - I простейший представитель гомологического ряда алкинов - имеет линейную молекулу, в которой длина углерод-углеродной тройной связи равна 1,20 А, а длина связей углерод-водород 1,06 A.
Связи С-Н в ацетилене относятся к числу Q-связей, образованных путем перекрывапия s-орбитали водорода с гибридизованной sp- орбиталью углерода; в молекуле имеется одна углерод-углеродная а-связь (образованная перекрыванием двух гибридизованных sp-орби-талей углерода) и две углерод-углеродные -связи - результат перекрывания двух взаимно перпендикулярных пар «чистых» p-орбиталей (Р иР) соседних атомов углерода. Валентные углы в ацетилене на основании этой модели равны 180° и молекула имеет линейную конформацию, что делает невозможной цис-транс-изомерию при тройной связи.

3.2Методы получения алкинов.
Наиболее общим способом получения ацетиленовых углеводородов является действие спиртового раствора щелочей на дигалогенпроиз-водные предельных углеводородов с вицинальным (а) или геминаль-ным (б) расположением атомов галогена
a) CH2Br –CH2Br -> СНСН + 2НВг
б) СНз-СН2-СНСl2 ->СHз-ССН+2ИСl
CH3-CH2-CCl2-CH3 -> СНз-С С-СНз + 2НС1
Так как вицинальные дигалогенпроизводные обычно получают присоединением галогенов к этиленовым углеводородам, то реакцию (а) можно рассматривать как реакцию превращения этиленовых углеводородов в ацетиленовые.
Геминальные дигалогенпроизводные (оба атома галогена у одного атома углерода) являются производными кетонов или альдегидов и, следовательно, с помощью реакций (б) можно осуществить переход от карбонильных соединений к алкинам. При отщеплении галогенводородов действует уже известное правило Зайцева, что водород отщепляется от углеродного атома, содержащего меньшее количество атомов водорода.
Ацетилен можно получать непосредственно при высокотемпературном крекинге (термическом или электротермическом) метана или более, сложных углеводородов:
2СН4Н-СС-Н + ЗН2

3.3 Представители алкинов.

Как у алканов и алкенов, низшие члены гомологического ряда алкинов в обычных условиях-газообразные вещества. Данные табл. 22 показывают, что основные физико-химические характеристики углеводородов рассмотренных классов мало отличаются друг от друга (см. таблицу).

Формула Название Т. пл., °С Т кип., °С D4
HCCHCH3CCHHCC- CH2CH3 СНзСCСНз Ацетилен ПропинБутин-1Бутин-2 -82-105-137-33 -84(возг,-23) 927 0,6200 (при-84° С) 0,6785 (при -27° С) 0;669б (при -10° С) 0,6880 (при 25° С)

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКИНОВ, АЛКЕНОВ

Алкены вместе с алканами, ацетиленом и ароматическими углеводородами являются одним из главных сырьевых источников промышленности тяжелого (многотоннажного) органического синтеза.
Этилен в громадных количествах используется для переработки в полиэтилен и этиловый спирт, он идет на переработку в этилен-гликоль и употребляется в теплицах для ускорения вызревания плодов.
Пропилен перерабатывается в полипропилен, ацетон, изопропиловый спирт.
Ацетилен играет исключительно важную роль в промышленности. Его мировое производство достигает нескольких миллионов тонн. Громадное количество ацетилена используется для сварки металлов, при его горении
в кислороде температура достигает 2800° С. Это значительно более высокая температура, чем при сгорании водорода в кислороде, не говоря уже о сгорании метана. Причина этого в значительно меньшей теплоемкости СО2 по сравнению с Н2О, которой образуется больше при сгорании алканов, чем алкинов:
2СзН6 + 7O2 -> 4СО2 + 6Н2О
2С2 Н2 + 5O2 -> 4СО2 + ЗН2О
Неприятный запах ацетилена, получаемого из карбида, обусловлен примесями PH3 и AsH3, чистый ацетилен пахнет, как и все низшие углеводороды (бензин). Ацетилен и его смеси с воздухом крайне взрывчаты; ацетилен хранят и транспортируют в баллонах в виде ацетоновых растворов, пропитывающих пористые материалы.
НЕФТЬ И ЕЕ ПЕРЕРАБОТКА
Состав нефти. Главным природным источником предельных углеводородов является нефть. Состав нефтей различается в зависимости от месторождения, однако все нефти при простой перегонке обычно разделяются на следующие фракции: газовая фракция, бензин, реактивное топливо, керосин, дизельное топливо, парафин, нефтяной гудрон.
Газовая фракция (т. кип. до40?C) содержит нормальные и разветвленные алканы до С, в основном пропан и бутаны. Природный газ из газовых месторождений состоит в основном из метана и этана.
Бензин авиационный (т. кип. 40-180 °С) содержит углеводороды С6 - С10 В бензине обнаружено более 100 индивидуальных соединений, в число которых входят нормальные и разветвленные алканы, циклоалканы и алкилбензолы (арены).
Реактивное топливо (т. кип. 150-280°С).
Керосин тракторный (т, кип. 110-300 °С) содержит углеводороды С7-С14.
Дизельное топливо (т. кип. 200-330 °С), в состав которого входят углеводороды C13 - C18, в больших масштабах подвергается крекингу, превращаясь в алканы (и алкены) с меньшей молекулярной массой (см. ниже).
Смазочные масла (т. кип. 340-400°С) содержат углеводороды C18 - C25.
Парафин нефтяной (т. кип. 320-500 °С), в его состав входят углеводороды С26-С38, из которых выделяют вазелин. Остаток после перегонки обычно называют асфальтом или гудроном.
Помимо углеводородов самых различных классов в нефти содержатся кислородные, сернистые и азотсодержащие вещества; иногда их суммарное содержание доходит до нескольких процентов.
В настоящее время наиболее признанной является теория органического происхождения нефти как продукта превращения растительных и животных остатков. Это подтверждается тем, что в образцах нефтей были найдены остатки порфиринов, стероиды растительного и животного происхождения и так называемый «хемофоссилий» - самые разнообразные фрагменты, содержащиеся в планктоне.
Хотя общепризнанно, что нефть является наиболее ценным природным источником химического сырья, до сих пор основное количество нефти и нефтепродуктов сгорает в двигателях внутреннего сгорания (бензин), дизелях и реактивных двигателях (керосин).
Моторное топливо. Октановое число. Бензины различного происхождения по-разному ведут себя в двигателях внутреннего сгорания.
Стремясь к максимальному повышению мощности двигателя при малых габаритах и массе, стараются увеличить степень сжатия горючей смеси в цилиндре. Однако в быстроходных четырехтактных двигателях, работающих с принудительным зажиганием, при этом иногда происходит преждевременное воспламенение смеси - детонация. Это снижает мощность мотора и ускоряет его износ. Это явление связано с составом жидкого топлива, так как углеводороды разного строения при использовании их в качестве моторного топлива ведут себя различно. Наихудшие показатели - у парафинов нормального строения.
За стандарт горючего вещества с большой способностью к детонации принят нормальный гептан. Чем больше разветвлена углеродная цепь парафинового углеводорода, тем лучше протекает сгорание его в цилиндре и тем большей степени сжатия горючей смеси можно достичь. В качестве стандарта моторного топлива принят 2, 2, 4-триметилпентан (который обычно называют изооктаном) с хорошими антидетонационными свойствами. Составляя в различных пропорциях смеси этого октана с я-гептапом, сравнивают их поведение в моторе с поведением испытуемого бензина. Если смесь, содержащая 70% изооктана, ведет себя так же, как исследуемый бензин, то говорят, что последний имеет октановое число 70 (октановое число изооктана принято за 100; октановое число н-гептана принято равным нулю).
Одним из путей повышения детонационной стойкости топлив для двигателей с зажиганием от искры является применение антидетонаторов.
Антидетонаторы - это вещества, которые добавляют к бензинам (не более 0,5%) для улучшения аптидетопацнонных свойств. Достаточно эффективным антидетонатором является тетраэтилсвинец (ТЭС) РЬ (C2H5)4
Однако бензин с ТЭС и продукты его сгорания очень токсичны. В настоящее время найдены новые антидетонаторы на основе марганец-органических соединений типа циклопентадиеиклпснтакарбонилмарганца С5Н5Мn (СО)5: они менее токсичны и обладают лучшими антидетонационными свойствами. Добавление этих антидетонаторов к хорошим сортам бензина позволяет получать топливо с октановым числом до 135.
Для ракетных и дизельных двигателей, наоборот, наиболее ценны топлива с нормальной цепью углеродных атомов, обладающие наиболее низкой температурой воспламенения. Эту характеристику принято
оценивать в цетановых числах. Цетановое число 100 имеет углеводород н-Сц,Нд4, а цетаповое число 0 - 1-метилнафталин.
Синтез углеводородов из CO+H2. Пропуская над мелко раздробленным никелем смесь окиси углерода (II) и водорода при 250° С, можно получить метан:
СО+ЗН2СН4+Н2О
Если эту реакцию проводить при давлении 100-200 атм и температуре до 400°С, получается смесь, состоящая главным образом из кислородсодержащих продуктов, среди которых преобладают спирты; смесь эта была названа счшполом.
При применении железо-кобальтовых катализаторов и температуре 200° С образуется смесь алканов - синтин.
nСО + (2n + 1) Н2 СnН2n + 2 + H2О
Синтин и синтол являются продуктами многотоннажного органического синтеза и широко используются в качестве сырья для многих химических производств.
Клатраты. Синтин и бензиновые фракции нефти состоят из смесей углеводородов нормального строения и с разветвленными цепями. Недавно был найден эффективный метод разделения органических соединений с нормальными цепями и разветвленных, получивший в общем случае название метода клатратного разделения. Для разделения углеводородов была использована мочевина. Кристаллы мочевины построены таким образом, что внутри кристаллов имеются узкие шестигранные каналы. Диаметр этих каналов таков, что внутрь их может пройти и задержаться за счет адсорбционных сил только углеводород нормального строения. Поэтому при обработке смеси органических соединений мочевиной (или некоторыми другими соединениями) вещества с нормальной цепью углеродных атомов кристаллизуются вместе с ней в виде комплексов. Этот метод имеет, безусловно, очень большое будущее - когда будет найдено большее число эффективных клатратообразователей.

Министерство образования Р.Ф.

Курская государственная сельскохозяйственная

академия им. Проф. И. И. Иванова

РЕФЕРАТ ПО

Органической химии

ПОЛУЧЕНИЕ АЛКАНОВ,АЛКЕНОВ,АЛКИНОВ.

ВАЖНЕЙШИЕ ПРЕДСТАВИТЕЛИ.

ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ.

Выполнил:

КУРСК-2001

План.

1.1 АЛКАНЫ (предельные углеводороды).

1.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКАНОВ.

1.3 ПРЕДСТАВИТЕЛИ АЛКАНОВ.

2.1 АЛКЕНЫ (этиленовые углеводороды).

2.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКЕНОВ.

2.3 ПРЕДСТАВИТЕЛИ АЛКЕНОВ.

3.1 АЛКИНЫ (ацетиленовые углеводороды).

3.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКИНОВ.

3.3 ПРЕДСТАВИТЕЛИ АЛКИНОВ.

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКЕНОВ, АЛКИНОВ.

1.1 ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (алканы).

Предельными углеводородами (алканами) называются соединения, состоящие из атомов

углерода и водорода, соединенных между собой только Q-связями, и не содержащие

циклов. В алканах атомы углерода находятся в степени гибридизации sp3.

1.2 Методы получения алканов.

Главным природным источником предельных углеводородов яв­ляется нефть, а для

первых членов гомологического ряда - природный газ. Однако выделение

индивидуальных соединений из нефти или продуктов ее крекинга- весьма

трудоемкая, а часто и невыполнимая задача, поэтому приходится прибегать к

синтетическим методам полу­чения.

1. Алканы образуются при действии металлического натрия на

моногалогенпроизводные - реакция Вюрца:

НзС-СН2-Вг + Вг-СН2-СH3 СНз-СН2-СН2-СНз + 2NaBr

Если взяты разные галогенпроизводные, то образуется смесь трех различных

алканов, так как вероятность встречи в реакционном комплексе молекул

одинаковых или разных равна, а реакционная способность их близка:

3C2H5I + 3CH3CH2CH2IС4Н10 + С5Н12 + С6Н14 + 6NaI

2. Алканы могут быть получены при восстановлении алкенов или алкинов

водородом в присутствии катализаторов:

НзС-СН=СН-СНз НзС-СН2-СН2-СНз

3. Самые разнообразные производные алканов могут быть восста­новлены при

высокой температуре иодистоводородной кислотой:

CHBr +2HI CH2 + HBr + I2

Однако в этих случаях иногда наблюдается частичная изомеризация углеродного

скелета - образуются более разветвленные алканы.

4. Алканы могут быть получены при сплавлении солей карбоновых кислот со

щелочью. Образующийся при этом алкан содержит на один атом углерода меньше,

чем исходная карбоновая кислота:

СНз-С +NaOH CH4+Na2C03

1.3 Представители алканов

Согласно теории строения А. М. Бутлерова, физические свойства веществ зависят

от их состава и строения. Рассмотрим на примере предельных углеводородов

изменение физических свойств в гомоло­гическом ряду.

Четыре первых члена гомологического ряда, начиная с метана, газообразные

вещества. Начиная с пентана и выше, нормальные угле­водороды представляют

собой жидкости. Метан сгущается в жидкость лишь при -162 °С. У последующих

членов ряда температура кипения возрастает, причем при переходе к следующему

гомологу она воз­растает приблизительно на 25°.

Плотность углеводородов при температуре кипения для нижних членов ряда

увеличивается сначала быстро, а затем все медленнее: от 0,416 у метана до

величины, несколько большей 0,78 .Температура плавления нормальных

углеводородов в гомологичес­ком ряду увеличивается медленно. Начиная с

углеводорода С16Н34, высшие гомологи при обычной температуре - вещества

Температура кипения у всех разветвленных алканов ниже, чем у нормальных

алканов, и притом тем ниже, чем более разветвлена углеродная цепь молекулы.

Это видно, например, из сравнения температур кипения трех изомерных пентанов.

Наоборот, температура плавления оказывается самой высокой у изомеров с

макси­мально разветвленной углеродной цепью. Так, из всех изомерных октанов

лишь гекса-метилэтап (СН3)3С-С (СНз)3 является твердым веществом уже при

обычной темпе­ратуре (т. пл. 104° С). Эти закономерности объясняются

следующими причинами.

Превращению жидкости в газ препятствуют ван-дер-ваальсовы силы взаимодей­ствия

между атомами отдельных молекул. Поэтому чем больше атомов в молекуле, тем выше

температура кипения вещества, следовательно, в гомологическом ряду тем­пература

кипения должна равномерно расти. Если сравнить силы взаимодействия молекул

н-пентана и неопентана, то ясно, что эти силы больше для молекулы с

нор­мальной цепью углеродных атомов, чем для разветвленных, так как в молекуле

неопентана центральный атом вообще выключен из взаимодействия.

Главным фактором, влияющим на температуру плавления вещества, является плотность

упаковки молекулы в кристаллической решетке. Чем симметричнее моле­кула, тем

плотнее ее упаковка в кристалле и тем выше температура плавления (у н

Пентана -132° C, у неопентана -20° С)

2.1 АЛКЕНЫ (этиленовые углеводороды, олефины)

Углеводороды, в молекуле которых помимо простых Q-связей углерод - углерод и

углерод - водород имеются углерод-углеродные

Связи, называются

непредельными. Так как образование -

связи формально эквивалентно потере молекулой двух атомсв годорода, то

непредельные углеводороды содержат на 2п атомов иодорода меньше, чем

предельные, где n число

С6H14 C6H12C6H10C6H8C6H6

Ряд, члены которого отличаются друг от друга на (2Н)n, называется

изологическим рядом. Так, в приведенной выше схеме изологами являются

гексан, гексены, гексадиены, гексины, гексатриены и бензол.

Углеводороды, содержащие одну

Связь (т. е. двойную связь), называваются алкенами (олефинами) или, по

первому члену ряда - этилену, этиленовыми углеводородами. Общая формула

их гомологического ряда - CnH2n

2.2 Методы получения алкенов

При действии спиртовых растворов едких щелочей на галогенпроизводные:

отщепляется галогенводород и образуется двойная связь:

H3C-CH2-CH2BrH3C-CH=CH2+NaBr+H2O

Бромистый пропил Пропилен

Если в α-положении к атому углерода, связанному с галогеном, находится

третичный, вторичный и первичный атомы водорода, то преимущественно отщепляется

третичный атом водорода, в меньшей степени вторичный и тем более первичный

(правило Зайцева):

H3C-C-CI H3C-C + KCL + H2O

2,3-Диметил-3-хлорпентан 2,3-Диметелпентен-2

Это связано с термодинамической устойчивостью образующихся алке-нoв. Чем

больше заместителей имеет алкен у винильных атомов углерода, тем выше его

устойчивость.

2. Действием на спирты водоотнимающих средств: а) при про­пускании

спиртов над окисью алюминия при 300-400° С.

НзС-СН-СН2.-СНзНзС-СН=СН-СНз

Втор -Бутиловый спирт

б) при действии на спирты серной кислоты в мягких условиях реакция идет

через промежуточное образование эфиров серной кислоты:

НзС-СН-СНз НзС-СН-СН3 H3C-CH=CH2

изопропнлопып спирт

При дегидратации спиртов в жестких условиях в кислых средах наблюдается та же

закономерность в отщеплении водородных атомов разного типа, как и при

отщеплении галогенводорода.

Первой стадией этого процесса является протонирование спирта, после чего

от­щепляется молекула воды и образуется карбкатион:

СНз-СН2-СН-СНз + H CH3-CH2-CH-CH3 CH3-CH-CH-

CH3CH3-CH-CH-CH3CH3-CH=CH-CH3

Образовавшийся карбкатион стабилизируется выбросом протона из соседнего

поло­жения с образованием двойной связи (β-элиминирование). В этом

слу­чае тоже образуется наиболее разветвленный алкен (термодинамически более

устойчивыи). При этом процессе часто наблюдаются перегруппировки карбкатионов

связанные с изомеризацией углеродного скелета:

CH3 C-CH – CH3 CH3 C-CH-CH3

CH3 CH3 CH3 CH3

3. При действии Zn или Mg на дигалогенпроизводные с двумя

атомами галогена у соседних атомов углерода:

H3C – C CH2CIH3C - C - CH2+MgCI2

1,2-дихлор-2-метал- изобутилен

4. Гидрированием ацетиленовых углеводородов над катализато­рами с

пониженной активностью (Fe или «отравленные», т. е. обрабо­танные

НСС-СН(СНз)2Н2С=СН-СН(СНз)2

2.3 Представители алкенов.

Как и алкаиы, низшие гомологи ряда простейших алкенов при обычных условиях -

газы, а начиная с С5 - низкокипящие жидкости (см. табл.).

т.пл., Т. d4
Формула Название °с Кип.,°С
Ch2=CH2 Этилен -169 -104 0,5660 (при -102° С)
СН3СН=СН3 Пропилен -185 -47 0,6090 (при -47" С)
СНзСНзСН=СН2 СНз-СН=СН-СНз (цис)Бутен-1 -130 -5 0,6696 (при -5° С) 0,6352 (приО°С)
-139 +4

(цис)

СНз-СН=СН-СНз (транс)-Бутеп-2 -105 +1 0,6361 (при 0°С)

(транс)

(СНз)зС=СН2 Иэобутилен -140 -7 0,6407 (при 0°С)

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы

в других органических растворителях, за исключением метилового спирта; все

они имеют меньшую плотность, чем вода.

3.1 АЛКИНЫ (ацетиленовые углеводороды)

Алкинами называются углеводороды, содержащие кроме Q-связей две

Связи (тройную

связь) у одной пары углеродных атомов. Общая формула гомологического ряда

ацетиленовых углеводородов СnН2n-2 образование одной

Связи формально эквивалентно потере двух атомов водорода.

Различными физическими методами доказано, что ацетилен C2H2 - I простейший

представитель гомологического ряда алкинов - имеет линейную молекулу,

в которой длина углерод-углеродной тройной связи равна 1,20 А, а длина связей

углерод-водород 1,06 A.

Связи С-Н в ацетилене относятся к числу Q-связей, образованных путем

перекрывапия s-орбитали водорода с гибридизованной sp- орбиталью

углерода; в молекуле имеется одна углерод-углеродная а-связь (образованная

перекрыванием двух гибридизованных sp-орби- талей углерода) и две

углерод-углеродные

Связи - результат перекрывания двух взаимно перпендикулярных пар «чистых»

p-орбиталей

соседних атомов углерода. Валентные углы в ацетилене на основании этой модели

равны 180° и молекула имеет линейную конформацию, что делает невозможной

цис-транс-изомерию при тройной связи.

3.2Методы получения алкинов.

Наиболее общим способом получения ацетиленовых углеводородов является

действие спиртового раствора щелочей на дигалогенпроиз-водные предельных

углеводородов с вицинальным (а) или геминаль-ным (б) расположением атомов

галогена

a) CH2Br –CH2Br -> СНСН + 2НВг

б) СНз-СН2-СНСl2 -> СHз-ССН+2ИСl

CH3-CH2-CCl2-CH3 -> СНз-С С-СНз + 2НС1

Так как вицинальные дигалогенпроизводные обычно получают присоединением

галогенов к этиленовым углеводородам, то реакцию (а) можно рассматривать как

реакцию превращения этиленовых угле­водородов в ацетиленовые.

Геминальные дигалогенпроизводные (оба атома галогена у одного атома углерода)

являются производными кетонов или альдегидов и, следовательно, с помощью

реакций (б) можно осуществить переход от карбонильных соединений к алкинам.

При отщеплении галогенводородов действует уже известное правило Зайцева, что

водород отщеп­ляется от углеродного атома, содержащего меньшее количество

атомов водорода.

Ацетилен можно получать непосредственно при высокотемператур­ном крекинге

(термическом или электротермическом) метана или более, сложных

углеводородов:

2СН4Н-СС-Н + ЗН2

3.3 Представители алкинов.

Как у алканов и алкенов, низшие члены гомологического ряда алкинов в обычных

условиях-газообразные вещества. Данные табл. 22 показывают, что основные

физико-химические характеристики углеводородов рассмотренных классов мало

отличаются друг от друга (см. таблицу).

Формула Название Т. пл., °С Т кип., °С D4

HCC- CH2CH3 СНзСCСНз

Ацетилен Пропин

(возг,-23) 9

0,6200 (при-84° С) 0,6785 (при -27° С) 0;669б (при -10° С) 0,6880 (при 25° С)

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКИНОВ, АЛКЕНОВ

Алкены вместе с алканами, ацетиленом и ароматическими уг­леводородами

являются одним из главных сырьевых источников промышленности тяжелого

(многотоннажного) органического син­теза.

Этилен в громадных количествах используется для переработки в полиэтилен и

этиловый спирт, он идет на переработку в этилен-гликоль и употребляется в

теплицах для ускорения вызревания плодов.

Пропилен перерабатывается в полипропилен, ацетон, изопропиловый спирт.

Ацетилен играет исключи­тельно важную роль в про­мышленности. Его мировое

производство достигает не­скольких миллионов тонн. Громадное количество

ацети­лена используется для свар­ки металлов, при его горении

в кислороде температура достигает 2800° С. Это значительно более высокая

температура, чем при сгорании водорода в кислороде, не говоря уже о сгорании

метана. Причина этого в значительно меньшей теплоемкости СО2 по сравнению с

Н2О, которой образуется больше при сгорании алканов, чем алкинов:

2СзН6 + 7O2 -> 4СО2 + 6Н2О

2С2 Н2 + 5O2 -> 4СО2 + ЗН2О

Неприятный запах ацетилена, получаемого из карбида, обусловлен примесями PH3

и AsH3, чистый ацетилен пахнет, как и все низшие углеводороды (бензин).

Ацетилен и его смеси с воздухом крайне взрывчаты; ацетилен хранят и

транспортируют в баллонах в виде ацетоновых растворов, пропитывающих

пористые материалы.

НЕФТЬ И ЕЕ ПЕРЕРАБОТКА

Состав нефти. Главным природным источником предельных углеводородов

является нефть. Состав нефтей различается в зависимости от месторождения,

однако все нефти при простой перегонке обычно разделяются на следующие фракции:

газовая фракция, бензин, реак­тивное топливо, керосин, дизельное топливо,

парафин, нефтяной гудрон.

Газовая фракция (т. кип. до40◦C) содержит нормальные и

развет­вленные алканы до С, в основном пропан и бутаны. Природный газ из

газовых месторождений состоит в основном из метана и этана.

Бензин авиационный (т. кип. 40-180 °С) содержит углеводороды

С6 - С10 В бензине обнаружено более 100 индивидуальных соедине­ний,

в число которых входят нормальные и разветвленные алканы, циклоалканы и

алкилбензолы (арены).

Реактивное топливо (т. кип. 150-280°С).

Керосин тракторный (т, кип. 110-300 °С) содержит углеводороды С7-С14.

Дизельное топливо (т. кип. 200-330 °С), в состав которого входят

углеводороды C13 - C18, в больших масштабах подвергается крекингу, превращаясь

в алканы (и алкены) с меньшей молекулярной массой (см. ниже).

Смазочные масла (т. кип. 340-400°С) содержат углеводороды C18 - C25.

Парафин нефтяной (т. кип. 320-500 °С), в его состав входят угле­водороды

С26-С38, из которых выделяют вазелин. Остаток после перегонки обычно называют

асфальтом или гудроном.

Помимо углеводородов самых различных классов в нефти содер­жатся кислородные,

сернистые и азотсодержащие вещества; иногда их суммарное содержание доходит

до нескольких процентов.

В настоящее время наиболее признанной является теория органического

происхождения нефти как продукта превращения растительных и животных

остатков. Это подтверждается тем, что в образцах нефтей были найдены остатки

порфиринов, стероиды растительного и животного происхождения и так называемый

«хемофоссилий» - самые разнообразные фрагменты, содержащиеся в планк­тоне.

Хотя общепризнанно, что нефть является наиболее ценным природ­ным источником

химического сырья, до сих пор основное количество нефти и нефтепродуктов

сгорает в двигателях внутреннего сгорания (бензин), дизелях и реактивных

двигателях (керосин).

Моторное топливо. Октановое число. Бензины различного проис­хождения

по-разному ведут себя в двигателях внутреннего сгорания.

Стремясь к максимальному повышению мощности двигателя при малых габаритах и

массе, стараются увеличить степень сжатия горючей смеси в цилиндре. Однако в

быстроходных четырехтактных двигателях, работающих с принудительным зажиганием,

при этом иногда происхо­дит преждевременное воспламенение смеси -

детонация. Это снижает мощность мотора и ускоряет его износ. Это явление

связано с составом жидкого топлива, так как углеводороды разного строения при

исполь­зовании их в качестве моторного топлива ведут себя различно. Наихуд­шие

показатели - у парафинов нормального строения.

За стандарт горючего вещества с большой способностью к детона­ции принят

нормальный гептан. Чем больше разветвлена углеродная цепь парафинового

углеводорода, тем лучше протекает сгорание его в цилиндре и тем большей степени

сжатия горючей смеси можно достичь. В качестве стандарта моторного топлива

принят 2, 2, 4-триметилпентан (который обычно называют изооктаном) с хорошими

антидетонационными свойствами. Составляя в различных пропорциях смеси этого

октана с я-гептапом, сравнивают их поведение в моторе с поведением испытуемого

исследуемый бензин, то говорят, что последний имеет октановое число 70

принято равным нулю).

Одним из путей повышения детонационной стойкости топлив для двигателей с

зажиганием от искры является применение антидетона­торов.

Антидетонаторы - это вещества, которые добавляют к бензинам (не более 0,5%) для

улучшения аптидетопацнонных свойств. Доста­точно эффективным антидетонатором

является тетраэтилсвинец (ТЭС) РЬ (C2H5)4

Однако бензин с ТЭС и продукты его сгорания очень токсичны. В настоящее время

найдены новые антидетонаторы на основе марганец-органических соединений типа

циклопентадиеиклпснтакарбонилмарганца С5Н5Мn (СО)5: они менее токсичны и

обладают лучшими анти­детонационными свойствами. Добавление этих

антидетонаторов к хоро­шим сортам бензина позволяет получать топливо с

октановым числом до 135.

Для ракетных и дизельных двигателей, наоборот, наиболее ценны топлива с

нормальной цепью углеродных атомов, обладающие наиболее низкой температурой

воспламенения. Эту характеристику принято

оценивать в цетановых числах. Цетановое число 100 имеет углеводород

н-Сц,Нд4, а цетаповое число 0 - 1-метилнафталин.

Синтез углеводородов из CO+H2. Пропуская над мелко раздробленным нике­лем

смесь окиси углерода (II) и водорода при 250° С, можно получить метан:

СО+ЗН2СН4+Н2О

Если эту реакцию проводить при давлении 100-200 атм и температуре до 400°С,

получается смесь, состоящая главным образом из кислородсодержащих продуктов,

среди которых преобладают спирты; смесь эта была названа счшполом.

При применении железо-кобальтовых катализаторов и температуре 200° С образуется

смесь алканов - синтин.

nСО + (2n + 1) Н2 СnН2n + 2 + H2О

Синтин и синтол являются продуктами многотоннажного органического синтеза и

широко используются в качестве сырья для многих химических производств.

Клатраты. Синтин и бензиновые фракции нефти состоят из смесей углеводо­родов

нормального строения и с разветвленными цепями. Недавно был найден эффек­тивный

метод разделения органических соединений с нормальными цепями и развет­вленных,

получивший в общем случае название метода клатратного разделения. Для

разделения углеводородов была использована мочевина. Кристаллы мочевины

построены таким образом, что внутри кристаллов имеются узкие шестигранные

ка­налы. Диаметр этих каналов таков, что внутрь их может пройти и задержаться

за счет адсорбционных сил только углеводород нормального строения. Поэтому при

обработке смеси органических соединений мочевиной (или некоторыми другими

соеди­нениями) вещества с нормальной цепью углеродных атомов кристаллизуются

вместе с ней в виде комплексов. Этот метод имеет, безусловно, очень большое

будущее - когда будет найдено большее число эффективных клатратообразователей.

Выделение углеводородов из природного сырья

Источниками предельных углеводородов являются нефть и природный газ .

Основной компонент при­родного газа - простейший углеводород метан, который используется непосредственно или подвергается переработ­ке. Нефть, извлеченная из земных недр, также под­вергается переработке, ректификации, крекингу.

Больше всего углеводородов получают при пере­работке нефти и других природных ресурсов. Но значительное количество ценных углеводородов по­лучают искусственно, синтетическими способами.

Наличие катализаторов изомеризации ускоряет образование углеводородов с разветвленным скелетом из линейных углеводородов:

Добавление катализаторов позволяет несколько уменьшить температуру, при которой протекает реакция.

Гидрирование (присоединение водорода) алкенов

В результате крекинга образуется большое коли­чество непредельных углеводородов с двойной свя­зью - алкенов. Уменьшить их количество можно, добавив в систему водород и катализаторы гидри­рования - металлы (платина, палладий, никель):

Крекинг в присутствии катализаторов гидриро­вания с добавлением водорода называется восста­новительным крекингом . Основными его продук­тами являются предельные углеводороды.

Таким образом, повыше­ние давления при крекинге (крекинг высокого давления) позволяет уменьшить коли­чество газообразных (СН 4 - С 4 Н 10) углеводородов и по­высить содержание жидких углеводородов с длиной цепи 6-10 атомов углерода, которые составляют основу бензинов.

Это были промышленные способы получения алканов, которые являются основой промышлен­ной переработки основного углеводородного сы­рья - нефти.

Теперь рассмотрим несколько лабораторных способов получения алканов.

Нагревание натриевой соли уксусной кисло­ты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образова­нию метана:

Если вместо ацетата натрия взять пропионат натрия , то образуется этан, из бутаноата натрия - пропан и т. д.

При взаимодействии галогеналканов со щелоч­ным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, на­пример:

Действие щелочного металла на смесь галоген­углеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропа­на и бутана).

Реакция, на которой ос­нован синтез Вюрца, хорошо протекает только с галоген-алканами, в молекулах которых атом галогена присоединен к первичному атому углерода .

При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Основные способы получения кислородсодержащих соединений

Образование галокеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов , содержащих более одного атома галогена в молекуле. Например:

Присоединение воды по π-связи молекулы алкена, например:

Приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрирова­нии (востановлении водородом, присоединении во­дорода) альдегидов и кетонов:

Гликоли, как уже отмечалось, могут быть полу­чены при окислении алкенов водным раствором пер­манганата калия . Например, этиленгликоль (этан- диол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в про­мышленности получают ре­акцией взаимодействия водо­рода с оксидом углерода (II) (угарным газом) при повы­шенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного га­за и водорода, называемую также «синтез-газ», получа­ют при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов. При окислении или дегидрировании первичных спир­тов могут быть получены альдегиды, а вторичных спиртов - кетоны:

2. . Из ацетилена в результате реакции получается уксусный альдегид, из гомо­логов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и кар­бонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

2. Ароматические карбоновые кислоты образу­ются при окислении гомологов бензола :

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и ги­дролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием во­дного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль:

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Работа добавлена на сайт сайт: 2015-07-10

Заказать написание уникльной работы

А17. Основные способы получения углеводородов (в лаборатории). Основные способы получения кислородсодержащих соединений (в лаборатории).

">Получение алканов

Промышленные способы:

  1. Выделяют из природных источников (природный и попутный газы, нефть, каменный уголь).
  2. ">Гидрирование алкенов и непредельных углеводородов.

;text-decoration:underline">Лабораторные способы получения метана:

  1. ">Термокаталитическое восстановление оксидов углерода(t, " xml:lang="en-US" lang="en-US">Ni ">):

CO + 3H 2 → CH 4 + H 2 O

CO 2 + 4H 2 → CH 4 + 2H 2 O

  1. ">Синтез из простых веществ: С + 2Н ;vertical-align:sub">2 ">→ СН ;vertical-align:sub">4
  2. ">Гидролиз карбида алюминия: " xml:lang="en-US" lang="en-US">Al ;vertical-align:sub">4 " xml:lang="en-US" lang="en-US">C ;vertical-align:sub">3 "> + 12 " xml:lang="en-US" lang="en-US">H ;vertical-align:sub">2 " xml:lang="en-US" lang="en-US">O "> → 4 " xml:lang="en-US" lang="en-US">Al ">(" xml:lang="en-US" lang="en-US">OH ">) ;vertical-align:sub">3 "> + 3 " xml:lang="en-US" lang="en-US">CH ;vertical-align:sub">4

;text-decoration:underline">Лабораторные способы получения гомологов метана:

  1. ">Декарбоксилирование натриевых солей карбоновых кислот (реакция Дюма). Образующийся алкан содержит на один атом углерода меньше, чем исходная соль.

" xml:lang="en-US" lang="en-US">CH ;vertical-align:sub" xml:lang="en-US" lang="en-US">3 " xml:lang="en-US" lang="en-US">COONa + NaOH → CH ;vertical-align:sub" xml:lang="en-US" lang="en-US">4 " xml:lang="en-US" lang="en-US"> + Na ;vertical-align:sub" xml:lang="en-US" lang="en-US">2 " xml:lang="en-US" lang="en-US">CO ;vertical-align:sub" xml:lang="en-US" lang="en-US">3 " xml:lang="en-US" lang="en-US">

  1. ">Синтез Вюрца (удвоение цепи); проводят с целью получения алканов с более длинной углеродной цепью.

">2 " xml:lang="en-US" lang="en-US">CH ;vertical-align:sub">3 " xml:lang="en-US" lang="en-US">Cl "> + 2 " xml:lang="en-US" lang="en-US">Na "> → " xml:lang="en-US" lang="en-US">C ;vertical-align:sub">2 " xml:lang="en-US" lang="en-US">H ;vertical-align:sub">6 "> + 2 " xml:lang="en-US" lang="en-US">NaCl ">

  1. Электролиз ацетата натрия:

электролиз

2 CH 3 COONa +2H 2 O → С2 Н6 + 2СО2 + Н2 + 2 NaOH

Получение алкенов

В лаборатории:

1. Дегидрогалогенирование галогеноалканов производится спиртовым раствором щёлочи:

CH 3 – CH 2 Cl + KOH(спирт.) → CH 2 = CH 2 + KCl + H 2 O

CH 3 – CH – CH 2 – CH 3 + KOH (спирт) → CH 3 – CH = CH – CH 3 + KI + H 2 O

Правило А.М. Зайцева: «Водород отщепляется от менее гидрогенизированного атома углерода».

2.Дегидратация спиртов протекает в присутствии концентрированной серной кислоты или безводного оксида алюминия при нагревании (t > 150о С) с образованием алкенов.

CH 3 – CH 2 – CH 2 OH → CH 3 – CH = CH 2 + H 2 O

3.Дегалогенирование дигалогенопроизводных производят с помощью мелкораздробленного цинка или магния:

CH 3 – CH – CH 2 + Zn → CH 3 – CH = CH 2 + ZnCl 2

Cl Cl

В промышленности:

1, Основной способ получения алкенов – крекинг алканов, приводящий к образованию смеси низкомолекулярных алкенов и алканов, которую можно разделить перегонкой.

С5 Н12 → С2 Н4 + С3 Н8 (или С3 Н6 + С2 Н6 ) и др.

2 Дегидрирование алканов. (катализаторы: Pt ; Ni ; AI 2 O 3 ;Cr 2 O 3 )

Ni , 450 – 5000 C

СН3 – СН3 → СН2 = СН2 + Н2

550 – 6500 С

2CH 4 → CH 2 = СН2 + 2Н2

3. Каталитическое гидрирование алкинов (катализаторы: Pt ; Ni ; Pd )

СН ≡ СН + Н2 → СН2 = СН2

Получение циклоалканов

  1. Действием активного металла на дигалогеналкан:

t , p , Ni

Br – C Н2 -C Н2 -C Н2 -Br + Mg → + Mg Br 2

1,3-дибромпропан

  1. Гидрирование аренов (t , p , Pt )

С6 Н6 + 3 Н2 →

Получение алкинов

Ацетилен:

а) метановый способ:

2СН4 С2 Н2 + 3Н2

б) гидролиз карбида кальция (лабораторный способ):

CaC 2 + 2H 2 O C 2 H 2 + Ca(OH) 2

CaO + 3C CaC 2 + CO

Вследствие большой энергоемкости этот метод экономически менее выгоден.

Синтез гомологов ацетилена:

а) каталитическое дегидрирование алканов и алкенов:

Сn H 2 n +2 C n H 2 n -2 + 2H 2

Сn H 2 n C n H 2 n -2 + H 2

б) дегидрогалогенирование дигалогеналканов спиртовым раствором щелочи (щелочь и спирт берутся в избытке):

Сn H 2 n Г2 + 2KOH (сп) C n H 2 n -2 + 2K Г + 2H 2 O

Получение алкадиенов

  1. Дегидрированием алканов, содержащихся в природном газе и газах нефтепереработки, при пропускании их над нагретым катализатором
    t, Cr 2 O 3 ,Al 2 O 3

CH 3 –CH 2 –CH 2 –CH 3 → CH 2 =CH–CH=CH 2 + 2H 2
t, Cr 2 O 3 ,Al 2 O 3

CH 3 –CH–CH 2 –CH 3 → CH 2 = C–CH=CH 2 + 2H 2

CH 3 CH 3

  1. Дегидрированием и дегидратацией этилового спирта при пропускании паров спирта над нагретыми катализаторами (метод акад. С.В.Лебедева):
    t, ZnO , Al 2 O 3

2CH 3 CH 2 OH → CH 2 = CH–CH = CH 2 + 2H 2 O + H 2

Получение аренов

Бензол

  1. Тримеризация алкинов над активированным углем (Зелинский ):

акт. С, 600 С

3НCCH С6 H 6 (бензол)

  1. В лаборатории сплавлением солей бензойной кислоты со щелочами:

С6 Н5 – СООNa + Na ОН → С6 Н6 + Na 2 СО3

Бензол и гомологи

  1. При коксовании каменного угля образуется каменноугольная смола, из которой выделяют бензол, толуол, ксилолы, нафталин и многие другие органические соединения.
  2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора:

Cr 2 O 3

CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 C 6 H 6 + 4H 2

Из гексана получается бензол, а из гептана- толуол.

  1. Дегидрирование циклоалканов

→ С6 Н6 + 3 Н2

  1. Получение гомологов - алкилирование бензола галогеналканами или алкенами в присутствии безводного хлорида алюминия:

AlCl 3

C 6 H 6 + C 2 H 5 Cl C 6 H 5 C 2 H 5 + HCl

хлорэтан этилбензол

Получение предельных одноатомных спиртов

Общие способы

  1. Гидратация алкенов (по правилу Марковникова):

t , H 2 SO 4

СН3 -СН=СН2 + Н-ОН→ СН3 -СН-СН3

ОН (пропанол-2)

  1. Гидролиз галогеналканов при действии водного раствора щёлочи:

C 2 H 5 I + Na ОН (водн.) → C 2 H 5 -O Н + NaI

  1. Восстановление (гидрирование) альдегидов и кетонов.

При гидрировании альдегтдов образуются первичные спирты:

t , Ni

СН3 -СН2 -СНО + Н2 → СН3 -СН2 - СН2 -ОН

пропанол-1

При гидрировании кетонов образуются вторичные спирты:

t , Ni

СН3 -С-СН3 + Н2 → СН3 -СН-СН3

О ОН (пропанол-2)

Специфические способы получения

  1. Метанол – из синтез-газа:

t , р, кат

СО + 2Н2 → СН3 ОН

  1. Этанол – спиртовым брожением глюкозы (ферментативное):

C6 H12 O6 → 2C2 H5 OH + 2CO2

Этиленгликоль

  1. В лаборатории - реакция Вагнера.

Окисление этилена перманганатом калия в нейтральной среде приводит к образованию двухатомного спирта – этиленгликоля.

Упрощённо:

KMnO 4 , H 2 O

CH 2 = CH 2 + НОН + → CH 2 – CH 2

OH OH

3 CH 2 = CH 2 + 2KMnO 4 + 4H 2 O → 3 CH 2 – CH 2 + 2MnO 2 + 2KOH

OH OH

  1. В промышленности – гидролизом 1,2 –дихлорэтана:

СН2 Cl - СН2 Cl + 2NaOH → СН2 (ОН)-СН2 ОН + 2NaCl

Глицерин

  1. Гидролиз жиров:
  1. Из пропена:

а) СН2 = СН-СН3 + Cl 2 → СН2 = СН-СН2 Cl

3-хлорпропен-1

б) СН2 = СН-СН2 Cl + NaOH (водн.)→ СН2 = СН-СН2 -ОН + N аCl

аллиловый спирт

в) СН2 = СН-СН2 -ОН + Н2 О2 → СН2 -СН- СН2

Получение фенолов

  1. Выделение из каменноугольной смолы.
  2. Гидролиз хлорбензола:

С6 Н5 -Cl + Н2 О (пар) → С6 Н5 -ОН + НCl

  1. Окисление изопропилбензола (кумола) кислородом воздуха:

Получение простых эфиров

  1. Межмолекулярная дегидратация этанола:

t, H2 SO4

2C2 H5 ОH → C2 H5 -O-C2 H5 +Н2 О

  1. Взаимодействием алкоголята металла с галогенпроизводными алканов:

C 2 H 5 I + C 2 H 5 ONa → C 2 H 5 -O-C 2 H 5 + NaI

Получение альдегидов

Общий способ

  1. Окисление спиртов. Первичные спирты окисляются до альдегидов, а вторичные – до кетонов:

t, Cu

2C 2 H 5 OH + O 2 → 2CH 3 CHO + 2H 2 О

T , Cu

СН3 -СН-СН3 + O 2 → СН3 -С-СН3

ОН (пропанол-2) О

Специфические способы

  1. Формальдегид получают каталитическим окислением метана:

CH 4 + O 2 → НC НO + H 2 O

  1. Уксусный альдегид (ацетальдегид):

а) реакцией Кучерова

Н+ , Hg 2+

HCCH + Н2 О СН3 -СНО

б) катилитическим окислением этилена

2СН2 =СН2 + О2 → 2СН3 -СНО

Получение карбоновых кислот

Общие способы

  1. Окисление альдегидов под действием различных окислителей:

R-CHO + Ag 2 O (амм.) → R-C ОOH +2Ag↓

" xml:lang="en-US" lang="en-US"> t

R- CHO + 2Cu(OH) 2 →R-COOH + Cu 2 O↓ + 2H 2 O

  1. ">Каталитическое окисление - гомологи метана окисляются с разрывом С-С цепи и образованием карбоновых кислот:

"> 2 " xml:lang="en-US" lang="en-US">C ;vertical-align:sub">4 " xml:lang="en-US" lang="en-US">H ;vertical-align:sub">10 ">+ 5 " xml:lang="en-US" lang="en-US">O ;vertical-align:sub">2 "> → 4СН ;vertical-align:sub">3 " xml:lang="en-US" lang="en-US">COO ">Н+ 2 " xml:lang="en-US" lang="en-US">H ;vertical-align:sub">2 " xml:lang="en-US" lang="en-US">O ">

Специфические способы

  1. Муравьиную кислоту получают нагреванием под давлением порошкообразного гидроксида натрия и угарного газа с последующей обработкой полученного формиата натрия сильной кислотой:

NaOH + CO → HCOONa

H 2 SO 4 + 2HCOONa→ HCOO Н + Na 2 SO 4

  1. Уксусную кислоту:

а) Для пищевых целей получают ферментативным брожением (окислением) жидкостей, содержащих спирт (вино, пиво):

ферменты

C 2 H 5 OH + О2 → CH 3 C ОOH + H 2 О

б) В лаборатории из ацетатов:

2СН3 COONa + H 2 SO 4 → 2СН3 COO Н + Na 2 SO 4

Получение сложных эфиров

  1. Реакция этерификации при нагревании кислоты и спирта в присутствии серной кислоты или других минеральных кислот. Изотопными исследованиями показано, что в реакции этерификации от молекулы спирта отделяется атом водорода, а от молекулы кислоты - гидроксильная группа.

Эта реакция обратима и подчиняется правилу Ле-Шателье. Для увеличения выхода

сложных эфиров необходимо удалять из реакционной среды образующуюся воду.

CH3 -CООН + НOCН2 CH3 → CH3-CО-O- CН2 CH3 + H2 O

Получение мыла

  1. ">Щелочной гидролиз (омыление жиров происходит под действием щелочей необратимо):
  1. ">Нейтрализация карбоновых кислот, полученных каталитическим окислением высших парафинов нефти:

">2 С ;vertical-align:sub">32 ">Н ;vertical-align:sub">66 "> + 5О ;vertical-align:sub">2 ">→ 4 С ;vertical-align:sub">15 ">Н ;vertical-align:sub">31 ">СООН + 2Н ;vertical-align:sub">2 ">О

"> пальмитиновая кислота

">С ;vertical-align:sub">15 ">Н ;vertical-align:sub">31 ">СООН + " xml:lang="en-US" lang="en-US">NaOH "> → С ;vertical-align:sub">15 ">Н ;vertical-align:sub">31 ">СОО " xml:lang="en-US" lang="en-US">Na "> ">+ Н ;vertical-align:sub">2 " xml:lang="en-US" lang="en-US">O ">

"> пальмитат натрия (твёрдое мыло)

">С ;vertical-align:sub">15 ">Н ;vertical-align:sub">31 ">СООН + К " xml:lang="en-US" lang="en-US">OH "> → С ;vertical-align:sub">15 ">Н ;vertical-align:sub">31 ">СОО ">К ">+ Н ;vertical-align:sub">2 " xml:lang="en-US" lang="en-US">O ">

"> пальмитат калия (жидкое мыло)

Получение углеводов

  1. Глюкозу - гидролизом крахмала или целлюлозы:

(C6 H10 O5 )n + nH2 O nC6 H12 O6

  1. Сахарозу - из сахарной свеклы и сахарного тростника.