Школьная энциклопедия.

НЕ МОЖЕТ ЗАБЛУЖДАТЬСЯ ПИСАНИЕ, НО ЗАБЛУЖДАТЬСЯ МОГУТ НЕКОТОРЫЕ ЕГО ИСТОЛКОВАТЕЛИ И ИЗЪЯСНИТЕЛИ

Пятнадцатого февраля исполняется 450 лет со дня рождения Галилео Галилея (†1642) — итальянского физика, астронома и математика, одним из первых, как написано в любой энциклопедии, применившего телескоп для наблюдения неба. Многим рассказывали в школе, что этот ученый открыл фазы Венеры, вращение Солнца вокруг своей оси, формы лунного рельефа, Млечный Путь как скопление звезд, а за распространение учения Коперника был преследуем инквизицией. Что из наследия этого теперь уже далекого предшественника современных ученых может оказаться нам полезным? В чем Галилей обогнал свое время, а в чем непоправимо заблуждался? На эти вопросы нам отвечает историк науки профессор философского факультета Санкт-Петербургского государственного университета, доктор химических наук Игорь Дмитриев.

— Игорь Сергеевич, часто говорят о революционном влиянии Галилея на развитие не только точных и естественных наук, но и на развитие современной цивилизации. Так ли это, на ваш взгляд?

— Галилею принадлежит ряд замечательных открытий в физике: закон равноускоренного движения, закон движения тела, брошенного под углом к горизонту, закон независимости периода собственных колебаний маятника от амплитуды этих колебаний (закон изохронности колебаний маятника) и т.д. Кроме того, с помощью сконструированного им телескопа он сделал несколько важных астрономических открытий: фазы Венеры, спутники Юпитера и др. Однако, сколь бы ни были велики его заслуги в конкретных науках, не менее, а в исторической перспективе даже более значимо другое — в его трудах рождалась методология новой науки, стиль современного научного мышления. Достижения Галилея — это не просто совокупность, пусть и очень важных, открытий в области астрономии и механики, но труд, запечатлевший глубокие изменения в отношении теоретика к своему предмету во всей его радикальности и культурной обусловленности.

В основе Галилеевой методологии лежит представление о том, что исследователь изобретает нереальные (часто экстремальные) ситуации, к которым применимы его понятия (масса, скорость, мгновенная скорость и т.д.) и тем самым понимает физическую суть реальных процессов и явлений. Опираясь на этот подход, Галилей выстраивал здание классической механики. Если обратиться к трактату Галилея «Диалог о двух главнейших системах мира», сразу обращает на себя внимание: речь в нем идет о принципиальном разрыве с прошлым, что, кстати, проявилось не только в содержании и фразеологии трактата, но и в выборе гравюры для титульного листа, особенно во втором и последующих его изданиях (1635, 1641, 1663 и 1699/1700). Если в первом издании (1632) на титульном листе были изображены три персонажа (Аристотель, Птолемей и Коперник), беседующие на равных на фоне Венецианского арсенала, то в лейденском издании 1699/1700 года престарелый и немощный Аристотель сидит на скамье, Птолемей стоит в тени, а перед ними стоит моложавый Коперник в позе победителя в споре.

Традиционно натурфилософ изучал то, что стояло за реальностью, и потому его главная задача состояла в том, чтобы эту реальность (уже данную!) объяснить в причинно-следственных терминах, а не описывать ее. Описание — дело различных (конкретных) дисциплин. Однако по мере открытия новых объектов и явлений (географических открытий Колумба, астрономических открытий Тихо, Кеплера и Галилея и т.д.) выяснилось, что далеко не все они могут быть удовлетворительно объяснены с помощью традиционных схем. Поэтому нараставший эпистемологический кризис был прежде всего кризисом натурфилософским: традиционный объяснительный потенциал оказался недостаточным для охвата новой реальности (точнее, ее фрагментов, ранее неизвестных). Когда же в научных кругах Западной Европы заговорили об альтернативе «Птолемей — Коперник», речь уже шла не только о выборе между двумя (или тремя, если учесть теорию Тихо Браге) астрономическими (космологическими) теориями, но и о двух соперничавших натурфилософских системах, поскольку «новая астрономия» стала частью — и символом! — «новой натурфилософии (новой физики)», а шире — нового мировоззрения. Решающим событием, в корне изменившим ситуацию, на мой взгляд, следует считать телескопические открытия Галилея. Формально они не имели отношения к космологической тематике (во всяком случае из них никак не следовала физическая истинность теории Коперника), однако они заставили современников Галилея почти в буквальном смысле взглянуть на небеса другими глазами. Предметом дискуссий стали не движения светил, но сама «природа небес». Чисто математические аргументы отошли на второй план.

— Как повлияли идеи, исследования и открытия Галилея на осознание индивидуумом своей роли в мироздании? Сохраняется ли в мире, на ваш взгляд, это осознание сейчас?

— Начало Нового времени, XVI-XVII века — эпоха бунта. Человек стал своевольным и опасным, о чем блестяще писал российский искусствовед Александр Якимович. Творческому человеку Нового времени всего мало. Он тянется к новым смыслам, ценностям, фактам, образам, системам, но не для того, чтобы на них успокоиться, а для того, чтобы их тоже подвергнуть своей убийственной неудовлетворенности и в конечном счете уничтожить. И это неверие в способности человека, осознание его моральной, интеллектуальной и эмоциональной недостаточности стало движущей силой новоевропейской культуры. Да, человек плох, он слаб, неспособен ни познать истину, ни достойно устроить свою жизнь. А теперь за дело! Будем исправлять положение, раз уж у нас хватило мужества увидеть себя такими, какие мы есть! Надо рисковать, дерзать и дерзить! И если вернуться к Галилею, то он является результатом («продуктом») этой антропологической революции Нового времени. Он, как никто, умел и дерзать, и дерзить, нарушая традиции и подрывая устои.

Но есть и другая сторона. Галилей, закладывая основы новой науки и научной методологии, создавал модель мира природы, в котором человеку отводится роль внешнего, стороннего наблюдателя, который, познавая мир, отказывается черпать истины исключительно из трудов древних авторитетов — Аристотеля, Птолемея и др. Познавательный импульс выводит человека из мира традиционной книжной учености, но куда? В вольную природу? Нет, там можно многое увидеть, подметить кое-какие закономерности, но не познать глубинные законы явлений. Галилей выстраивает воображаемый мир, мир идеализированных объектов, который является порождением человека, но в котором человеку места нет. Это мир мысленных конструкций (материальных точек, абсолютно твердых тел и т.п.).

По мере развития науки и философии роль познающего субъекта изменилась. Многие мыслители нашего времени говорят о существовании фундаментальной согласованности основных законов и свойств Вселенной с существованием в ней жизни и разума. Это утверждение называется антропным принципом, который имеет множество формулировок. Исследования в астрофизике показывают: если бы в самые первые доли секунды Вселенная расширялась со скоростью, отличающейся от той, с которой она расширялась миллионы лет назад, то людей не было бы, поскольку не хватило бы углерода.

— Галилей много сделал для отделения науки от лженауки. Какова его роль в формировании современно-критичного отношения к научным версиям, требующего от них оформления в виде гипотез, подтверждения экспериментом и встраивания в научную теорию? Можно ли говорить, что Галилей и здесь стал реформатором, или же он следовал общему дискурсу познания мира своей эпохи?

— Галилей был скептиком и полемистом. Как любой ученый, он отстаивал свои идеи с привлечением всех доступных аргументов. При этом он не боялся идти против устоявшихся мнений и против мнений, представлявшихся ему ложными. Оба главных сочинения Галилея — «Диалог о двух главнейших системах мира» и «Беседы и математические доказательства» — пример его полемики с аристотелианцами по разным вопросам. Если говорить о лженауке и отделении ее от науки, то для Галилея лженаука — прежде всего перипатетическая натурфилософия. И, вступая в полемику, Галилей обращался к трем основным типам аргументов: к реальным наблюдениям и экспериментам (своим и чужим), мысленным экспериментам и математическим (прежде всего геометрическим) доводам. Такое сочетание аргументов было для многих его современников новым и непривычным. Поэтому многие оппоненты Галилея предпочитали переносить центр тяжести полемики в теологическую плоскость.

— Насколько серьезно, на ваш взгляд, Галилей повлиял на мировоззрение церковных людей? Был ли он верующим христианином или бунтарем-одиночкой?

— Галилей был правоверным католиком. Вместе с тем он искренне полагал, что его миссия (возложенная на него Богом) — открыть людям новый взгляд на мир и уберечь Католическую Церковь от поспешного осуждения гелиоцентрической теории Коперника по теологическим основаниям. В теологической полемике по поводу гелиоцентризма, в которую Галилей был вовлечен вопреки своей воле, он опирался на два положения: тезис кардинала Чезаре Баронио (C.Baronio; 1538-1607) «Дух Святой научает не тому, как перемещаются небеса, а тому, как нам туда переместиться» и тезис святого Августина «Истина заключена в сказанном Божественным авторитетом, а не в том, что полагается слабым человеческим разумением. Но если кто-либо невзначай сможет поддержать это утверждение таким доказательством, в коем невозможно усомниться, то тогда мы должны будем доказать, что сказанное в наших книгах о шатре небесном не противоречит этим истинным утверждениям» . При этом первый тезис используется Галилеем для обоснования второго в контексте представления о данных Всевышним двух книгах — Книге Божественного откровения, то есть Библии, и Книге Божественного творения, то есть Книге природы.

Однако все эти замечательные рассуждения имели мало ценности в глазах теологов. Фактически Галилей, при всей его искренней правоверности, когда речь заходила о демаркации между наукой и религией (точнее, теологией), отводил последней весьма скромную роль: теологические воззрения должны были временно заполнять пробелы в нашем познании мира. Теологи быстро разглядели, куда могут завести выступления «рысьеглазого» флорентийского патриция. Церковь видела в науке ту сформировавшуюся в контексте христианской культуры универсализирующую силу, которой была она сама, силу, посягающую на изучение и объяснение всего, что есть в мире. Идея разделения сфер компетенции науки и религии, которую отстаивал Галилей — мол, Дух Святой научает не тому, как перемещаются небеса, а тому, как нам туда переместиться, а следовательно, «весьма благоразумно не позволять никому использовать каким-либо образом священный текст для доказательства истинности любых натурфилософских утверждений», — теологически была совершенно неприемлема.

Вопросы о «перемещении неба» и о перемещении души на небо разделить, конечно, можно. Но остается реальная угроза, что рано или поздно найдется какой-нибудь кандидат физико-математических наук, который заявит, что и по поводу второго вопроса у него есть кое-какие соображения, и начнет писать формулы. А почему бы и нет, если Галилей в Dialogo убеждал читателя, что «хотя Божественный разум знает в них [в математических науках] бесконечно больше истин, ибо он объемлет их все, но в тех немногих, которые постиг человеческий разум, его познание по объективной достоверности равно Божественному». Был ли он бунтарем-одиночкой? Не сказал бы. Многие даже среди прелатов сочувствовали его взглядам, не говоря уже о многих математиках и астрономах в разных странах Европы, но предпочитали помалкивать. Как писал Евгений Евтушенко,

Ученый, сверстник Галилея,

Был Галилея не глупее.

Он знал, что вертится земля,

но у него была семья.

— Внес ли Галилей вклад в секуляризацию сознания, сопутствующую наступившей затем эпохе Просвещения? Можно ли назвать его предтечей просветителей?

— Думаю, внес. Действительно, обратимся к тексту его знаменитого письма своему ученику и другу Бенедетто Кастелли от 21 декабря 1613 года. В нем Галилей четко и ясно формулирует свои взгляды: «Хотя не может заблуждаться Писание, но заблуждаться могут иной раз некоторые его истолкователи и изъяснители. Ошибки эти могут быть различными, и одна из них является очень серьезной и очень распространенной; именно ошибочно было бы, если б мы захотели держаться буквального смысла слов, ибо, таким образом, получились бы не только различные противоречия, но и тяжкие ереси и даже богохульства, ибо тогда пришлось бы с необходимостью предположить, что Бог имеет руки, ноги, уши, что Он подвержен человеческим страстям, как, например, гневу, раскаянию, ненависти; что Он также иногда забывает прошлое и не знает будущего.

Итак, в Писании, правда, содержатся многие предложения, которые, взятые в буквальном смысле слова, кажутся ложными, но они выражены таким образом для того, чтобы приспособиться к невосприимчивости простонародья. Поэтому для тех немногих, которые достойны подняться над чернью, ученые истолкователи должны разъяснять истинный смысл этих слов и приводить основания, по которым этот смысл преподносится именно в таких словах.

Таким образом, если Писание, как мы выяснили, во многих местах не только допускает, но и с необходимостью требует истолкования, отличного от кажущегося смысла его слов, то мне представляется, что в научных спорах оно [Писание] должно привлекаться в последнюю очередь; ибо от слова Божия произошли и Священное Писание и Природа, первое как дар Святого Духа, а вторая во исполнение предначертаний Господа; но, как мы приняли, в Писании, чтобы приноровиться к пониманию большинства людей, высказываются многие положения, несогласные с истиной, если судить по внешности и брать буквально его слова, тогда как Природа, напротив, непреклонна и неизменна, и совершенно не заботится о том, будут или не будут ее скрытые основы и образ действия доступны пониманию людей, так что она никогда не преступает пределы законов, на нее наложенных».

Иными словами, Галилей предлагал в случае несоответствия научных утверждений буквальному смыслу священного текста отойти от его буквального понимания и воспользоваться иными (метафорическими, аллегорическими и прочими) его толкованиями. Однако теологам все эти остроумные рассуждения Галилея представлялись малоубедительными. Их контраргументы могли сводиться (и сводились) к следующему: возможно, буквалистское истолкование библейского текста и наивно, но это всё же текст Святого Духа, а не спекулятивные утверждения Галилея, в риторике которого никаких доводов, «обладающих силой необходимости и доказательности», не просматривается. Да, «две истины никогда не могут друг другу противоречить», но пока-то в наличии только одна — Священное Писание, тогда как утверждение, будто движение Солнца по небосводу — не более, чем иллюзия, еще нельзя считать «достоверным в силу опыта и неопровержимых доказательств». Я напомню, что гелиоцентрическая теория Коперника в то время еще не получила убедительных доказательств и Галилей явно переоценивал убедительность своих аргументов. Ведь что, собственно, он хотел сказать? Что геоцентрическая теория Птолемея противоречит буквальному смыслу Писания, а потому следует принять недоказанную теорию Коперника, которая тоже противоречит буквальному смыслу священного текста; к тому же, чтобы свести концы с концами, предлагается принять также некое аллегорическое толкование ряда фрагментов Библии. А чего ради?

Однако позиция Церкви по отношению к теории Коперника и науке вообще не была монолитной. Кардинал Беллармино, к примеру, делал акцент на недоказанности гелиоцентрической теории. А Папа Урбан VIII — на недоказуемости любой научной теории. Урбана VIII не устраивала не сама по себе теория Коперника и даже не то, что кто-то предпочитал ее системе Птолемея, но то, как Галилей трактовал любую научную теорию. В глазах Урбана VIII Галилей был виновен не в том, что теории Птолемея он предпочитал теорию Коперника, а в том, что он посмел утверждать, будто научная теория (любая!) может описывать реальность и раскрывать реальные причинно-следственные связи, что, по мнению Верховного понтифика, прямо вело к тяжкой доктринальной ереси — отрицанию важнейшего атрибута Бога: Его всемогущества (Potentia Dei absoluta), а если вдуматься, то и Его всеведения. В силу этого он обвинялся Церковью в распространении формальной ереси, поскольку налицо все необходимые условия для такого обвинения: «error intellectus contra aliquam fidei veritatem» («ошибка разума против какой-либо истины веры», причем ошибка, допущенная по собственной воле, — «voluntarius»), а также отягчающее обстоятельство: «cum pertinacia assertus», то есть упорство в ереси.

Не существует, по глубокому убеждению Урбана, физически истинных (и, соответственно, физически ложных) — актуально или потенциально — утверждений и теорий. Есть теории, которые лучше «спасают явления» и которые делают это хуже, есть теории более удобные для вычислений и менее удобные, есть теории, в которых больше внутренних противоречий и в которых их меньше, и т.д. Урбан полемизировал не с Галилеем (точнее, не только с ним)! Он на заре того, что часто называют научной революцией Нового времени, вел диалог (разумеется, по обстоятельствам эпохи и своего статуса, с позиции силы и в теологических терминах), если можно так выразиться, с самой методологией зарождающейся классической науки. Галилей спасал атрибуты новой науки, Урбан — атрибуты Бога. Вот что лежало в основе процесса над Галилеем 1633 года.

Папа, стоя на позициях «теологического скептицизма», требовал от Галилея признания:

— необходимости учета наряду с естественной причинностью также «причинности» иного рода, а именно учета действия некой сверхъестественной (Божественной) «каузальности», причем речь фактически шла не просто об эксклюзивном нарушении Богом «обычного хода Природы», но о детерминации естественного хода вещей сверхъестественными факторами;

— принципиальной непознаваемости истинных причин природных явлений (а не только ограниченности человеческого понимания природной реальности).

Получалось, по Урбану VIII, что даже если существует единственная непротиворечивая теория, «спасающая» явления, то есть описывающая их так, как мы их наблюдаем, то ее истинность всё равно остается в принципе недоказуемой в силу догмата о Божественном всемогуществе, который фактически лишал любую теорию ее когнитивной значимости. Человеку не дано построить истинную «систему мира». Поэтому, если натурфилософское утверждение противоречит библейскому тексту и это противоречие оказывается неразрешимым для человеческого разума, в этом случае, по мнению Папы, следует отдать предпочтение теории, наилучшим образом согласующейся с текстом Священного Писания и с теологической традицией, ибо Библия является единственным источником достоверного знания.

Вместе с тем, хотя аргумент Урбана и был облечен в теологическую форму (что естественно для Верховного понтифика), он не является чисто богословским. Если рассуждать отвлеченно-логически, позиция Папы сводилась к следующему: сколько бы наблюдаемых данных ни свидетельствовало в пользу некоторой теории, всегда можно представить некий мир, в котором все эти наблюдения будут истинными, но теория — ложной. Галилей в принципе понимал это затруднение, но ученого смущало обращение Папы именно к сверхъестественному миру. И смущало Галилея это обстоятельство, разумеется, не в силу его якобы недостаточной крепости в вере, а в силу убежденности, что Бог не иллюзионист и не обманщик, что Он создал упорядоченный мир, явления которого подчинены определенным, математически выражаемым законам, и задача науки — постичь эти законы (историк философии, разумеется, сразу уловит здесь картезианскую тему и будет прав). Если же ход естественных явлений определяется сверхъестественными причинами, то тогда в «естестве» (то есть в Природе) не остается ничего «естественного».

Галилео Галилей родился в Пизе, в дворянской семье. Его отец Винченцо преподавал музыку (и разрабатывал ее математическую теорию), а также помогал семье жены в их небольшом бизнесе. Он желал своему сыну лучшей, чем их скромная, если не сказать бедная, жизни. Но вместо того, чтобы делать карьеру в бизнесе, как советовал ему отец, 17летний Галилео поступил в Пизанский университет, собираясь изучать медицину. Спустя четыре года он покинул университет без диплома, но с багажом знаний по математике и физике Аристотеля. Возвратившись домой к родителям, которые в то время жили во Флоренции, Галилео начал писать работы по математике, давать частные уроки и читать публичные лекции.

Он помогал своему отцу в музыкальных опытах со струнами различной длины, толщины и натяжения. Интересно, что основатель экспериментальной физики занимался опытами, похожими на первые известные количественные опыты ранних пифагорейцев, обнаруживших, что при целочисленном отношении длин струн у лиры повышается ее благозвучие.

Галилей познакомился с трудами Архимеда

Галилей познакомился с трудами Архимеда, переведенными на латинский язык в XVI веке. Это побудило его к изучению разделов статистической механики, например вопроса о центре тяжести тела. Благодаря небольшой работе, написанной на эту тему, он был временно назначен на должность профессора математики в Пизанском университете. Через три года в возрасте 28 лет он переехал в Падую для преподавания математики и астрономии. Галилей прожил там 18 лет, проделав большинство своих знаменитых работ по изучению движения тел.

Наблюдение и эксперимент Галилео Галилея

Книги Галилея демонстрируют современный подход к изучению природы. В древности очень ценились наблюдения, но не возникало идеи проведения эксперимента с определенной целью. Вспомним главу 2: Аристотель утверждал, что мы понимаем явление только в том случае, если знаем его особую причину, окончательную цель. Только зная «мотивацию», мы можем сказать, почему это случилось. Например, камень падает, потому что его цель — приблизиться к своему естественному положению, к центру Вселенной. По мнению Аристотеля, наблюдение случайных, а не специально созданных процессов важно для их понимания.
Современная наука, напротив, считает, что если известно начальное состояние системы и все действующие силы, то можно понять, каким будет последующее состояние, не предполагая какого-либо естественного конца. Эта причинная связь делает эксперимент эффективным средством изучения природы. Изменяя в эксперименте начальное состояние, можно изучить законы, связывающие причину с результатом. Важнейшей задачей эксперимента является проверка теории, пытающейся объяснить явление. Эксперимент и теория идут рука об руку в том смысле, что хорошая теория имеет практическое значение, поскольку способна предсказывать ход природных явлений в разных ситуациях. Если говорить о прикладном значении, то взять хотя бы телевизор: мы подтверждаем лежащую в его основе теорию каждый раз, когда нажимаем кнопку «Вкл.».



Основные результаты опытов Галилея в области динамики можно сформулировать в виде нескольких законов.

1. Свободное горизонтальное движение происходит с постоянной скоростью, без изменения направления.
В нашей повседневной жизни на Земле трение всегда останавливает движение любого тела, например катящегося по ровной поверхности шара. Но благодаря своим экспериментам и интуиции Галилей пришел к заключению, что шар никогда бы не остановился, если бы трение можно было полностью устранить, то есть если бы движение было «свободным».

2. Свободно падающее тело испытывает постоянное
ускорение.
Ускорением называют изменение скорости тела за единицу времени. У равномерно ускоряющегося тела, которое вначале было неподвижным, через некоторое время скорость V становится равной ускорению а, умноженному на время г (о = а1). Для тела, падающего у поверхности Земли, ускорение равно 9,8 м/с2. Через 1 секунду скорость тела будет равна 9,8 м/с, через 2 секунды — 19,6 м/с, и т. д. В результате исследований в колледже Мертон (Оксфорд) еще в XIV веке возникло предположение, что расстояние 5, пройденное равномерно ускоренным телом за время г, равно половине произведения ускорения на квадрат времени (5 = 1/2 аг2). Галилео показал, что эта формула верна, изучая движение шара, катящегося с малым ускорением вниз по наклонной плоскости. Экстраполируя этот опыт на случай вертикального движения, он пришел к выводу, что свободно падающее тело подчиняется этому же закону, то есть имеет постоянное (но большее) ускорение. Вернемся к ускорению 9,8 м/са. Через 1 секунду тело упадет на 4,4 м. Через 2 секунды оно уже пройдет расстояние 17,6 м, вчетверо большее, чем за первую секунду, и т. д.
3. Все тела падают одинаково быстро.
Результат, обычно приписываемый опыту Галилея, бросавшего предметы с наклонной Пизанской башни, в действительности был получен раньше датскобельгийским математиком Симоном Стевином. В 1586 году он заявил, что тела с различными массами падают с одинаковым ускорением. Галилей был согласен с этим мнением и мог попытаться провести подобный эксперимент с двумя плотными телами различной массы. Конечно, если бы можно было убрать воздух, то молоток и перо падали бы с одинаковой скоростью и одновременно упали бы на землю. Астронавты из экспедиции «Аполлон» на безвоздушной поверхности Луны доказали, что это действительно так.
4. Принцип относительности Галилея. Траектория и скорость движения тела зависят от системы отсчета, в которой они наблюдаются .
Одним из аргументов, которые приводились против вращения , было утверждение, что если бы Земля вращалась, то тело, брошенное с вершины башни, не должно было бы упасть прямо к подножию, поскольку поверхность вращающейся Земли должна немного передвинуться за время падения. Обоснованность этого аргумента можно проверить в аналогичной ситуации, бросив камень с верхушки мачты плывущего корабля. Отклонится ли траектория камня к корме корабля?

Французский философ Пьер Гассенди (15921655) проделал такой опыт и обнаружил, что камень всегда падает на палубу рядом с основанием мачты и никакого отклонения нет! Даже падая, объект перемещается вместе с кораблем. Галилей заключил, что наблюдатель, участвующий в равномерном движении, не может обнаружить это движение в эксперименте со свободным падением. Интересно, что, с точки зрения наблюдателя, стоящего на берегу, падающий камень движется по параболической траектории. Какая же из этих траекторий «настоящая» — прямая вертикальная линия или кривая парабола? Галилей говорил, что обе траектории правильные, так как они зависят от системы отчета, которую можно связать либо с берегом, либо с равномерно движущимся кораблем, в зависимости от положения наблюдателя.

Во времена Галилея важность этих законов движения определялась двумя обстоятельствами

Во времена Галилея важность этих законов движения определялась двумя обстоятельствами. Вопервых, они четко отрицали старые взгляды, основанные на физике Аристотеля. Во вторых, они помогали понять, что Земля может быть подвижной без каких либо драматических последствий кроме ежедневных восходов и заходов Солнца и других небесных светил. Атмосфера может двигаться вместе с Землей, не производя сильного ветра и не улетая в космос.

Галилей видео

Судя по сохранившимся документам и письмам, научные темы на процессе не обсуждались. Основными были два вопроса: сознательно ли Галилей нарушил эдикт 1616 года, и раскаивается ли он в содеянном . Три эксперта инквизиции дали заключение: книга нарушает запрет на пропаганду «пифагорейской» доктрины. В итоге учёный был поставлен перед выбором: либо он покается и отречётся от своих «заблуждений», либо его постигнет участь Джордано Бруно .

16 июня инквизиция провела пленарное заседание с участием Урбана VIII, где постановила :

Ознакомившись со всем ходом дела и выслушав показания, Его Святейшество определил допросить Галилея под угрозой пытки и, если устоит, то после предварительного отречения как сильно подозреваемого в ереси… приговорить к заключению по усмотрению Святой Конгрегации. Ему предписано не рассуждать более письменно или устно каким-либо образом о движении Земли и о неподвижности Солнца… под страхом наказания как неисправимого.

Последний допрос Галилея состоялся 21 июня. Галилей подтвердил, что согласен произнести требуемое от него отречение; на этот раз его не отпустили в посольство и снова взяли под арест. 22 июня был объявлен приговор: Галилей виновен в распространении книги с «ложным, еретическим, противным Св. Писанию учением» о движении Земли :

Вследствие рассмотрения твоей вины и сознания твоего в ней присуждаем и объявляем тебя, Галилей, за всё вышеизложенное и исповеданное тобою под сильным подозрением у сего Св. судилища в ереси, как одержимого ложною и противною Священному и Божественному Писанию мыслью, будто Солнце есть центр земной орбиты и не движется от востока к западу, Земля же подвижна и не есть центр Вселенной. Также признаем тебя ослушником церковной власти, запретившей тебе излагать, защищать и выдавать за вероятное учение, признанное ложным и противным Св. Писанию… Дабы столь тяжкий и вредоносный грех твой и ослушание не остались без всякой мзды и ты впоследствии не сделался бы ещё дерзновеннее, а, напротив, послужил бы примером и предостережением для других, мы постановили книгу под заглавием «Диалог» Галилео Галилея запретить, а тебя самого заключить в тюрьму при Св. судилище на неопределённое время.

Галилей был осуждён к тюремному заключению на срок, который установит Папа. Его объявили не еретиком, а «сильно заподозренным в ереси»; такая формулировка также была тяжким обвинением, однако спасала от костра. После оглашения приговора Галилей на коленях произнёс предложенный ему текст отречения . Копии приговора по личному распоряжению Папы Урбана были разосланы во все университеты католической Европы .

Послед ние годы

Папа не стал долго держать Галилея в тюрьме. После вынесения приговора Галилея поселили на одной из вилл Медичи, откуда он был переведён во дворец своего друга, архиепископа Пикколомини в Сиене. Спустя пять месяцев Галилею было разрешено отправиться на родину, и он поселился в Арчетри, рядом с монастырём, где находились его дочери. Здесь он провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции.

Режим содержания Галилея не отличался от тюремного, и ему постоянно угрожали переводом в тюрьму за малейшее нарушение режима . Галилею не дозволялось посещение городов, хотя тяжелобольной узник нуждался в постоянном врачебном наблюдении. В первые годы ему запрещено было принимать гостей под страхом перевода в тюрьму; впоследствии режим был несколько смягчён, и друзья смогли навещать Галилея - правда, не более чем по одному .

Инквизиция следила за пленником до конца его жизни; даже при кончине Галилея присутствовали два её представителя . Все его печатные работы подлежали особо тщательной цензуре . Отметим, что в протестантской Голландии издание «Диалога» продолжалось (первая публикация: 1635 год , в переводе на латинский).

В 1634 году умерла 33-летняя старшая дочь Вирджиния (в монашестве Мария-Челеста), любимица Галилея, которая преданно ухаживала за больным отцом и остро переживала его злоключения . Галилей пишет, что им владеют «безграничная печаль и меланхолия… постоянно слышу, как моя дорогая дочурка зовёт меня» . Состояние здоровья Галилея ухудшилось, но он продолжает энергично работать в разрешённых для него областях науки.

Сохранилось письмо Галилея к его другу Элиа Диодати (1634 ), где он делится новостями о своих злоключениях, указывает на их виновников (иезуитов) и делится планами будущих исследований. Письмо было послано через доверенное лицо, и Галилей в нём вполне откровенен:

В Риме я был приговорён Святой инквизицией к заточению по указанию Его Святейшества… местом заточения для меня стал этот маленький городок в одной миле от Флоренции, со строжайшим запрещением спускаться в город, встречаться и беседовать с друзьями и приглашать их… Когда я вернулся из монастыря вместе с врачом, посетившим мою больную дочь перед её кончиной, причём врач сказал мне, что случай безнадёжный и что она не переживёт следующего дня (как оно и случилось), я застал дома викария-инквизитора. Он явился, чтобы приказать мне, по распоряжению Св. инквизиции в Риме…, что я не должен был обращаться с просьбой разрешить мне вернуться во Флоренцию, иначе меня посадят в настоящую тюрьму Св. инквизиции… Это происшествие и другие, о которых писать было бы слишком долго, показывает, что ярость моих весьма могущественных преследователей постоянно возрастает. И они в конце концов пожелали раскрыть своё лицо: когда один из моих дорогих друзей в Риме, тому около двух месяцев, в разговоре с падре Христофором Гринбергом, иезуитом, математиком этой коллегии, коснулся моих дел, этот иезуит сказал моему другу буквально следующее: «Если бы Галилей сумел сохранить расположение отцов этой коллегии, он жил бы на свободе, пользуясь славой, не было бы у него никаких огорчений и он мог бы писать по своему усмотрению о чём угодно - даже о движении Земли» и т. д. Итак, Вы видите, что на меня ополчились не из-за того или иного моего мнения, а из-за того, что я в немилости у иезуитов .

В конце письма Галилей высмеивает невежд, которые «подвижность Земли объявляют ересью» и сообщает, что намерен анонимно опубликовать новый трактат в защиту своей позиции, но прежде хочет закончить давно задуманную книгу по механике . Из этих двух планов он успел осуществить только второй - написал книгу по механике, подытожившую ранее сделанные им открытия в этой области (см. ниже).

Вскоре после смерти дочери Галилей полостью потерял зрение, но продолжал научные исследования, опираясь на верных учеников: Кастелли , Торричелли и Вивиани (автора первой биографии Галилея). В письме 30 января 1638 года Галилей заявляет :

Я не прекращаю, даже в охватившей меня темноте, строить рассуждения по поводу то одного, то другого явления природы, и я не смог бы дать своему беспокойному уму отдыха, даже если бы пожелал того.

Последней книгой Галилея стали «Беседы и математические доказательства двух новых наук» , где излагаются основы кинематики и сопротивления материалов . Фактически содержание книги представляет собой разгром аристотелевой динамики; взамен Галилей выдвигает свои принципы движения, проверенные на опыте. Бросая вызов инквизиции, Галилей вывел в новой книге тех же трёх персонажей, что и в запрещённом ранее «Диалоге о двух главнейших системах мира». В мае 1636 года учёный ведёт переговоры об издании своего труда в Голландии , а затем тайно переправляет туда рукопись. В доверительном письме другу, графу де Ноэлю (которому он посвятил эту книгу) Галилей пишет, что новый труд «снова ставит меня в ряды борцов» . «Беседы…» вышли в свет в июле 1638 года , а в Арчетри книга попала почти через год - в июне 1639 года . Этот труд стал настольной книгой Гюйгенса и Ньютона , завершивших начатое Галилеем построение оснований механики.

Только один раз, незадолго до смерти (март 1638 года ), инквизиция разрешила слепому и тяжело больному Галилею покинуть Арчетри и поселиться во Флоренции для лечения. При этом ему под страхом тюрьмы было запрещено выходить из дома и обсуждать «про́клятое мнение» о движении Земли . Однако спустя несколько месяцев, после появления нидерландского издания «Бесед…», разрешение было отменено, и учёному предписали вернуться в Арчетри. Галилей собирался продолжить «Беседы…», написав ещё две главы, но не успел выполнить задуманное.

Гробница Галилео Галилея. Базилика Санта Кроче , Флоренция .

Галилео Галилей умер 8 января 1642 года , на 78-м году жизни, в своей постели. Папа Урбан запретил хоронить Галилея в семейном склепе базилики Санта-Кроче во Флоренции. Похоронили его в Арчетри без почестей, ставить памятник Папа тоже не позволил .

Младшая дочь, Ливия, умерла в монастыре. Позже единственный внук Галилея тоже постригся в монахи и сжёг хранившиеся у него бесценные рукописи учёного как богопротивные. Он был последним представителем рода Галилеев .

В 1737 году прах Галилея, как он и просил, был перенесён в базилику Санта Кроче, где 17 марта он был торжественно погребён рядом с Микеланджело . В 1758 году Папа Бенедикт XIV велел вычеркнуть работы, защищавшие гелиоцентризм, из «Индекса запрещённых книг »; впрочем, эта работа проводилась неспешно и завершилась только в 1835 году .

С 1979 по 1981 годы по инициативе Римского Папы Иоанна Павла II работала комиссия по реабилитации Галилея, и 31 октября 1992 года Папа Иоанн Павел II официально признал, что инквизиция в 1633 году совершила ошибку, силой вынудив учёного отречься от теории Коперника .

Научные дост ижения

Галилей по праву считается основателем не только экспериментальной , но - в значительной мере - и теоретической физики . В своём научном методе он осознанно сочетал продуманный эксперимент с его рациональным осмыслением и обобщением, и лично дал впечатляющие примеры таких исследований. Иногда из-за недостатка научных данных Галилей ошибался (например, в вопросах о форме планетных орбит, природе комет или причинах приливов), но в подавляющем большинстве случаев его метод приводил к цели. Характерно, что Кеплер , располагавший более полными и точными данными, чем Галилей, сделал правильные выводы в тех случаях, когда Галилей ошибался.

Философия и научный мет од

Хотя в древней Греции были замечательные инженеры (Архимед , Герон и другие), сама идея экспериментального метода познания, который должен дополнять и подтверждать дедуктивно -умозрительные построения, была чужда аристократическому духу античной физики. В Европе ещё в XIII веке Роберт Гроссетест и Роджер Бэкон призвали к созданию экспериментальной науки, которая на математическом языке сможет описать природные явления, однако до Галилея в реализации этой идеи не было существенного продвижения: научные методы мало отличались от теологических, и ответы на научные вопросы по-прежнему искали в книгах древних авторитетов . Научная революция в физике начинается с Галилея .

В отношении философии природы Галилей был убеждённым рационалистом . Он считал, что законы природы постижимы для человеческого разума. В «Диалоге о двух системах мира» он писал :

Я утверждаю, что человеческий разум познаёт некоторые истины столь совершенно и с такой абсолютной достоверностью, какую имеет сама природа; таковы чистые математические науки, геометрия и арифметика; хотя Божественный разум знает в них бесконечно больше истин… но в тех немногих, которые постиг человеческий разум, я думаю, его познание по объективной достоверности равно Божественному, ибо оно приходит к пониманию их необходимости, а высшей степени достоверности не существует.

Разум у Галилея - сам себе судья; в случае конфликта с любым другим авторитетом, даже религиозным, он не должен уступать:

Мне кажется, что при обсуждении естественных проблем мы должны отправляться не от авторитета текстов Священного Писания, а от чувственных опытов и необходимых доказательств… Я полагаю, что всё касающееся действий природы, что доступно нашим глазам или может быть уяснено путём логических доказательств, не должно возбуждать сомнений, ни тем более подвергаться осуждению на основании текстов Священного Писания, может быть, даже превратно понятых . Бог не менее открывается нам в явлениях природы, нежели в речениях Священного Писания… Было бы опасно приписывать Священному Писанию какое-либо суждение, хотя бы один раз оспоренное опытом .

Античные и средневековые философы предлагали для объяснения явлений природы разнообразные «метафизические сущности» (субстанции ), которым приписывались надуманные свойства. Галилея такой подход не устраивал :

Поиск сущности я считаю занятием суетным и невозможным, а затраченные усилия - в равной мере тщетными как в случае с удалёнными небесными субстанциями, так и с ближайшими и элементарными; и мне кажется, что одинаково неведомы как субстанция Луны, так и Земли, как пятен на Солнце, так и обыкновенных облаков… [Но] если тщетно искать субстанцию солнечных пятен, это ещё не значит, что нами не могут быть исследованы некоторые их характеристики, например место, движение, форма, величина, непрозрачность, способность к изменениям, их образование и исчезновение.

Декарт отверг такую позицию (в его физике основное внимание уделялось именно нахождению «главных причин»), однако начиная с Ньютона галилеевский подход становится преобладающим.

Галилей считается одним из основателей механицизма . Этот научный подход рассматривает Вселенную как гигантский механизм, а сложные природные процессы - как комбинации простейших причин, главная из которых - механическое движение. Анализ механического движения лежит в основе работ Галилея. Он писал в «Пробирных дел мастере» :

Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество, и более или менее быстрые движения для того, чтобы объяснить возникновение ощущений вкуса, запаха и звука; я думаю, что если бы мы устранили уши, языки, носы, то остались бы только фигуры, числа, движения, но не запахи, вкусы и звуки, которые, по моему мнению, вне живого существа являются не чем иным, как только пустыми именами.

Для проектирования эксперимента и для осмысления его результатов нужна некоторая предварительная теоретическая модель исследуемого явления, и основой её Галилей считал математику, выводы которой он рассматривал как самое достоверное знание: книга природы «написана на языке математики» ; «Тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является.»

Опыт Галилей рассматривал не как простое наблюдение, а как осмысленный и продуманный вопрос, заданный природе. Он допускал и мысленные эксперименты, если их результаты не вызывают сомнений. При этом он ясно представлял, что сам по себе опыт не даёт достоверного знания, и полученный от природы ответ должен подвергнуться анализу, результат которого может привести к переделке исходной модели или даже к замене её на другую. Таким образом, эффективный путь познания, по мнению Галилея, состоит в сочетании синтетического (в его терминологии, композитивный метод ) и аналитического (резолютивный метод ), чувственного и абстрактного . Эта позиция, поддержанная Декартом , с этого момента утвердилась в науке. Тем самым наука получила свой метод, собственный критерий истины и светский характер.

Механик а

Последний труд Галилея по основам механики

Физика и механика в те годы изучались по сочинениям Аристотеля , которые содержали метафизические рассуждения о «первопричинах» природных процессов. В частности, Аристотель утверждал :

    Скорость падения пропорциональна весу тела.

    Движение происходит, пока действует «побудительная причина» (сила), и в отсутствие силы прекращается.

Находясь в Падуанском университете, Галилей изучал инерцию и свободное падение тел. В частности, он заметил, что ускорение свободного падения не зависит от веса тела, таким образом опровергнув первое утверждение Аристотеля.

В своей последней книге Галилей сформулировал правильные законы падения: скорость нарастает пропорционально времени, а путь - пропорционально квадрату времени . В соответствии со своим научным методом он тут же привёл опытные данные, подтверждающие открытые им законы. Более того, Галилей рассмотрел (в 4-й день «Бесед») и обобщённую задачу: исследовать поведение падающего тела с ненулевой горизонтальной начальной скоростью. Он совершенно правильно предположил, что полёт такого тела будет представлять собой суперпозицию (наложение) двух «простых движений»: равномерного горизонтального движения по инерции и равноускоренного вертикального падения.

Галилей доказал, что указанное, а также любое брошенное под углом к горизонту тело летит по параболе . В истории науки это первая решённая задача динамики . В заключение исследования Галилей доказал, что максимальная дальность полёта брошенного тела достигается для угла броска 45° (ранее это предположение высказал Тарталья , который, однако, не смог его строго обосновать ). На основе своей модели Галилей (ещё в Венеции) составил первые артиллерийские таблицы .

Галилей опроверг и второй из приведённых законов Аристотеля, сформулировав первый закон механики (закон инерции ): при отсутствии внешних сил тело либо покоится, либо равномерно движется. То, что мы называем инерцией, Галилей поэтически назвал «неистребимо запечатлённое движение». Правда, он допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений) . Правильную формулировку закона позднее дали Декарт и Ньютон ; тем не менее общепризнанно, что само понятие «движение по инерции» впервые введено Галилеем, и первый закон механики по справедливости носит его имя .

Галилей является одним из основоположников принципа относительности в классической механике , ставшего в слегка уточнённом виде одним из краеугольных камней современной трактовки этой науки и названного позже в его честь. В «Диалоге о двух системах мира» Галилей сформулировал принцип относительности следующим образом :

Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия.

Разъясняя принцип относительности, Галилей вкладывает в уста Сальвиати обстоятельное и красочное (весьма типичное для стиля научной прозы великого итальянца) описание воображаемого «опыта», проводимого в трюме корабля :

… Запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нём маленькими рыбками; подвесьте, далее, наверху ведёрко, из которого вода будет падать капля за каплей в другой сосуд с узким горлышком, подставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в подставленный сосуд… Заставьте теперь корабль двигаться с малой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно.

Строго говоря, корабль Галилея движется не прямолинейно, а по дуге большого круга поверхности земного шара. В рамках современного понимания принципа относительности система отсчёта, связанная с этим кораблём, будет лишь приближённо инерциальной, так что выявить факт его движения, не обращаясь к внешним ориентирам, всё же возможно (правда, пригодные для этого измерительные приборы появились лишь в XX веке…) .

Перечисленные выше открытия Галилея, кроме всего прочего, позволили ему опровергнуть многие доводы противников , утверждавших, что вращение Земли заметно сказалось бы на явлениях, происходящих на её поверхности. Например, по мнению геоцентристов, поверхность вращающейся Земли за время падения любого тела уходила бы из-под этого тела, смещаясь на десятки или даже сотни метров. Галилей уверенно предсказал: «Будут безрезультатны любые опыты, которые должны были бы указывать более против , чем за вращение Земли» .

Галилей опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды (это приблизительно верно для малых амплитуд) . Он также обнаружил, что периоды колебаний маятника соотносятся как квадратные корни из его длины. Результаты Галилея привлекли внимание Гюйгенса , который изобрёл часы с маятниковым регулятором (1657 ); с этого момента появилась возможность точных измерений в экспериментальной физике.

Впервые в истории науки Галилей поставил вопрос о прочности стержней и балок при изгибе и тем самым положил начало новой науке - сопротивлению материалов .

Многие рассуждения Галилея представляют собой наброски открытых много позднее физических законов. Например, в «Диалоге» он сообщает, что вертикальная скорость шара, катящегося по поверхности сложного рельефа, зависит только от его текущей высоты, и иллюстрирует этот факт несколькими мысленными экспериментами ; сейчас мы бы сформулировали этот вывод как закон сохранения энергии в поле тяжести . Аналогично он объясняет (теоретически незатухающие) качания маятника.

В статике Галилей ввёл фундаментальное понятие момента силы (итал. momento ) .

Астроно мия

Зарисовки Луны из рабочей тетради Галилея. 1609г, Центральная Национальная библиотека, Флоренция.

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром . Труба давала приблизительно трёхкратное увеличение . Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Отметим, что термин телескоп ввёл в науку именно Галилей (сам термин предложил ему Федерико Чези, основатель «Академии деи Линчеи» ) . Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира , которую Галилей активно пропагандировал, и опровержению взглядов геоцентристов Аристотеля и Птолемея .

Первые телескопические наблюдения небесных тел Галилей провёл 7 января 1610 года . Эти наблюдения показали, что Луна , подобно Земле, имеет сложный рельеф - покрыта горами и кратерами. Известный с древних времен пепельный свет Луны Галилей объяснил как результат попадания на наш естественный спутник солнечного света, отражённого Землёй. Всё это опровергало учение Аристотеля о противоположности «земного» и «небесного»: Земля стала телом принципиально той же природы, что и небесные светила, а это, в свою очередь, служило косвенным доводом в пользу системы Коперника: если другие планеты движутся, то естественно предположить, что движется и Земля. Галилей обнаружил также либрацию Луны и довольно точно оценил высоту лунных гор .

Галилеевы спутники Юпитера (современные фотографии)

У Юпитера обнаружились собственные луны - четыре спутника. Тем самым Галилей опроверг один из доводов противников гелиоцентризма: Земля не может вращаться вокруг Солнца, поскольку вокруг неё самой вращается Луна. Ведь Юпитер заведомо должен был вращаться либо вокруг Земли (как в геоцентрической системе ), либо вокруг Солнца (как в гелиоцентрической ). Полтора года наблюдений позволили Галилею оценить период обращения этих спутников (1612 ), хотя приемлемая точность оценки была достигнута только в эпоху Ньютона . Галилей предложил использовать наблюдения затмений спутников Юпитера для решения важнейшей проблемы определения долготы на море . Сам он не смог разработать реализацию подобного подхода, хотя работал над ней до конца жизни; первым успеха добился Кассини (1681 ), однако из-за трудностей наблюдений на море метод Галилея применялся в основном сухопутными экспедициями, а после изобретения морского хронометра (середина XVIII века ) проблема была закрыта.

Галилей открыл также (независимо от Иоганна Фабрициуса и Хэрриота ) солнечные пятна . Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес (в отличие от «подлунного мира») . По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца.

Фазы Венеры

Галилей установил, что Венера меняет фазы. С одной стороны, это доказывало, что она светит отражённым светом Солнца (насчёт чего в астрономии предшествующего периода не было ясности). С другой стороны, порядок смены фаз соответствовал гелиоцентрической системе: в теории Птолемея Венера как «нижняя» планета была всегда ближе к Земле, чем Солнце, и «полновенерие» было невозможно.

Галилей отметил также странные «придатки» у Сатурна , но открытию кольца помешали слабость телескопа и поворот кольца, скрывший его от земного наблюдателя . Полвека спустя кольцо Сатурна открыл и описал Гюйгенс , в распоряжении которого был 92-кратный телескоп.

Галилей показал, что при наблюдении в телескоп планеты видны как диски, видимые размеры которых в различных конфигурациях меняются в таком соотношении, какое следует из теории Коперника . Однако диаметр звёзд при наблюдениях с телескопом не увеличивается. Это опровергало оценки видимого и реального размера звезд, которые использовались некоторыми астрономами как аргумент против гелиоцентрической системы.

Млечный путь , который невооружённым глазом выглядит как сплошное сияние, распался на отдельные звёзды (что подтвердило догадку Демокрита ), и стало видно громадное количество неизвестных ранее звёзд.

В «Диалоге о двух системах мира» Галилей подробно обосновал (устами персонажа Сальвиати), почему он предпочитает систему Коперника, а не Птолемея :

    Венера и Меркурий никогда не оказываются в противостоянии , то есть в стороне неба, противоположной Солнцу. Это означает, что они вращаются вокруг Солнца, и их орбита проходит между Солнцем и Землёй.

    У Марса противостояния бывают. Кроме того, Галилей не выявил у Марса фаз, заметно отличных от полной освещённости видимого диска. Отсюда и из анализа изменений яркости при движении Марса Галилей сделал вывод, что эта планета тоже вращается вокруг Солнца, но в данном случае Земля находится внутри её орбиты. Аналогичные выводы он сделал для Юпитера и Сатурна .

Подробности Категория: Этапы развития астрономии Опубликовано 19.09.2012 16:28 Просмотров: 19848

«Требовалась исключительная сила духа, чтобы извлечь законы природы из конкретных явлений, которые всегда были у всех перед глазами, но объяснение которых тем не менее ускользало от пытливого взгляда философов», - так писал о Галилее известный французский математик и астроном Лагранж.

Открытия Галилео Галилея в астрономии

В 1609 г. Галилео Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Сначала его телескоп давал увеличение примерно в 3 раза. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Сам термин телескоп ввёл в науку тоже Галилей (по предложению Федерико Чези). Ряд открытий, которые сделал Галилей при помощи телескопа, способствовали утверждению гелиоцентрической системы мира , которую Галилей активно пропагандировал, и опровержению взглядов геоцентристов Аристотеля и Птолемея.

Телескоп Галилея в качестве объектива имел одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения.Такая система все ещё используется в театральных биноклях, и иногда в самодельных любительских телескопах.

Первые телескопические наблюдения небесных тел Галилей провёл 7 января 1610 года. Они показали, что Луна, как и Земля, имеет сложный рельеф - покрыта горами и кратерами. Известный с древних времен пепельный свет Луны Галилей объяснил результатом попадания на нее солнечного света, отражённого Землёй. Всё это опровергало учение Аристотеля о противоположности «земного» и «небесного»: Земля стала телом принципиально той же природы, что и небесные светила, а это служило косвенным доводом в пользу системы Коперника: если другие планеты движутся, то естественно предположить, что движется и Земля. Галилей обнаружил также либрацию Луны (медленное ее колебание) и довольно точно оценил высоту лунных гор.

Планета Венера представилась Галилею в телескопе не блестящей точкой, а светлым серпом, подобным лунному.

Интереснее всего оказалось наблюдение яркой планеты Юпитер. В зрительную трубу Юпитер показался астроному уже не яркой точкой, а довольно большим кружком. Около этого кружка на небе были три звездочки, а через неделю Галилей открыл и четвертую звездочку.

Глядя на рисунок, можно удивиться, почему Галилей не сразу открыл все четыре спутника: ведь они так хорошо видны на фотографии! Но нужно вспомнить, что телескоп у Галилея был очень слабым. Оказалось, что все четыре звездочки не только следуют за Юпитером в его движений по небу, но и обращаются вокруг этой большой планеты. Итак, у Юпитера было найдено сразу четыре луны - четыре спутника. Тем самым Галилей опроверг один из доводов противников гелиоцентризма: Земля не может вращаться вокруг Солнца, поскольку вокруг неё самой вращается Луна. Ведь Юпитер заведомо должен был вращаться либо вокруг Земли (как в геоцентрической системе), либо вокруг Солнца (как в гелиоцентрической). Полтора года наблюдал Галилей период обращения этих спутников, но точность оценки была достигнута только в эпоху Ньютона. Галилей предложил использовать наблюдения затмений спутников Юпитера для решения важнейшей проблемы определения долготы на море. Сам он не смог разработать реализацию подобного подхода, хотя работал над ней до конца жизни; первым успеха добился Кассини (1681), однако из-за трудностей наблюдений на море метод Галилея применялся в основном сухопутными экспедициями, а после изобретения морского хронометра (середина XVIII века) проблема была закрыта.

Галилей открыл также (независимо от Фабрициуса и Хэрриота) солнечные пятна (тёмные области на Солнце, температура которых понижена примерно на 1500 К по сравнению с окружающими участками).

Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес (в отличие от «подлунного мира»). По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца.

Галилей установил также, что Венера меняет фазы. С одной стороны, это доказывало, что она светит отражённым светом Солнца (насчёт чего в астрономии предшествующего периода не было ясности). С другой стороны, порядок смены фаз соответствовал гелиоцентрической системе: в теории Птолемея Венера как «нижняя» планета была всегда ближе к Земле, чем Солнце, и «полновенерие» было невозможно.

Галилей отметил также странные «придатки» у Сатурна, но открытию кольца помешали слабость телескопа. 50 лет спустя кольцо Сатурна открыл и описал Гюйгенс, в распоряжении которого был 92-кратный телескоп.

Галилей утверждал, что при наблюдении в телескоп планеты видны как диски, видимые размеры которых в различных конфигурациях меняются в таком соотношении, какое следует из теории Коперника. Однако диаметр звёзд при наблюдениях с телескопом не увеличивается. Это опровергало оценки видимого и реального размера звезд, которые использовались некоторыми астрономами как аргумент против гелиоцентрической системы.

Млечный путь, который невооружённым глазом выглядит как сплошное сияние, открылся Галилею в виде отдельных звёзд, что подтвердило догадку Демокрита, и стало видно громадное количество неизвестных ранее звёзд.

Галилей написал книгу «Диалог о двух системах мира», в которой подробно обосновал, почему он принимает систему Коперника, а не Птолемея. Основные положения этого диалога следующие:

  • Венера и Меркурий никогда не оказываются в противостоянии, а это означает, что они вращаются вокруг Солнца, и их орбита проходит между Солнцем и Землёй.
  • У Марса противостояния бывают. Из анализа изменений яркости при движении Марса Галилей сделал вывод, что эта планета тоже вращается вокруг Солнца, но в данном случае Земля находится внутри её орбиты. Аналогичные выводы он сделал для Юпитера и Сатурна.

Осталось выбрать между двумя системами мира: Солнце (с планетами) вращается вокруг Земли или Земля вращается вокруг Солнца. Наблюдаемая картина движений планет в обоих случаях одна и та же, это гарантирует принцип относительности , сформулированный самим Галилеем. Поэтому для выбора нужны дополнительные доводы, в числе которых Галилей приводит бо́льшую простоту и естественность модели Коперника (однако отверг систему Кеплера с эллиптическими орбитами планет).

Галилей разъяснил, отчего земная ось не поворачивается при обращении Земли вокруг Солнца; для объяснения этого явления Коперник ввёл специальное «третье движение» Земли. Галилей показал на опыте, что ось свободно движущегося волчка сохраняет своё направление сама собой («Письма к Инголи»):

«Подобное явление очевидным образом обнаруживается у всякого тела, находящегося в свободно подвешенном состоянии, как я показывал многим; да и вы сами можете в этом убедиться, положив плавающий деревянный шар в сосуд с водою, который вы возьмете в руки, и затем, вытянув их, начнете вращаться вокруг самого себя; вы увидите, как этот шар будет поворачиваться вокруг себя в сторону, обратную вашему вращению; он закончит свой полный оборот в то же самое время, как вы закончите ваш».

Галилей сделал серьёзную ошибку, полагая, что явление приливов доказывает вращение Земли вокруг оси. Но он приводит и другие серьёзные аргументы в пользу суточного вращения Земли:

  • Трудно согласиться с тем, что вся Вселенная совершает суточный оборот вокруг Земли (особенно учитывая колоссальные расстояния до звёзд); более естественно объяснить наблюдаемую картину вращением одной Земли. Синхронное участие планет в суточном вращении нарушало бы также наблюдаемую закономерность, согласно которой, чем дальше планета от Солнца, тем медленнее она движется.
  • Даже у огромного Солнца обнаружено осевое вращение.

Чтобы доказать вращение Земли, Галилей предлагает мысленно представить, что пушечный снаряд или падающее тело за время падения немного отклоняются от вертикали, но приведенный им расчёт показывает, что это отклонение ничтожно.

Галилей также сделал верное замечание, что вращение Земли должно влиять на динамику ветров. Все эти эффекты были обнаружены много позже.

Другие достижения Галилео Галилея

Он изобрел также:

  • Гидростатические весы для определения удельного веса твёрдых тел.
  • Первый термометр, ещё без шкалы (1592).
  • Пропорциональный циркуль, используемый в чертёжном деле (1606).
  • Микроскоп (1612); с его помощью Галилей изучал насекомых.

Круг его интересов был очень широк: Галилей занимался также оптикой , акустикой, теорией цвета и магнетизма , гидростатикой (наука, изучающая равновесие жидкостей), сопротивлением материалов, проблемами фортификации (военная наука об искусственных закрытиях и преградах). Пытался измерить скорости света. Он опытным путём измерил плотность воздуха и дал значение 1/400 (сравните: у Аристотеля – 1/10, истинное современное значение 1/770).

Галилей также сформулировал закон неуничтожимости вещества.

Познакомившись со всеми достижениями Галилео Галилея в науке, невозможно не заинтересоваться его личностью. Поэтому расскажем об основных этапах его жизненного пути.

Из биографии Галилео Галилея

Родился будущий итальянский ученый (физик, механик, астроном, философ и математик) в 1564 году в Пизе. Как вы уже знаете, он является автором выдающихся астрономических открытий. Но его приверженность к гелиоцентрической системе мира привела к серьезным конфликтам с католической церковью, что очень осложняло его жизнь.

Родился он в дворянской семье, его отец был известным музыкантом и теоретиком музыки. Увлечение искусством передалось и сыну: Галилео занимался музыкой и рисованием, а также имел литературный талант.

Образование

Начальное образование он получил в ближайшем от дома монастыре, учился всю жизнь с большой охотой – в Пизанском университете изучал медицину, одновременно увлекался геометрией. В университете он проучился только около 3 лет – отец не мог больше оплачивать учебу сына, но весть о талантливом юноше дошла до высших лиц, ему покровительствовали маркиз дель Монте и тосканский герцог Фердинанд I Медичи.

Научная деятельность

Позже Галилео преподавал в Пизанском университете, а затем в более престижном Падуанском университете, где начались наиболее плодотворные годы его научной деятельности. Здесь же он активно занимается астрономией – изобретает первый собственный телескоп. Обнаруженные им четыре спутника Юпитера он назвал именами сыновей своего покровителя Медичи (сейчас их называют галилеевыми спутниками). Первые открытия с телескопом Галилей описал в сочинении «Звёздный вестник», эта книга стала настоящим бестселлером своего времени, а жители Европы спешно приобретали себе телескопы. Галилей становится самым знаменитым учёным Европы, в его честь сочиняются оды, где он сравнивается с Колумбом.

В эти годы Галилей вступает в гражданский брак, в котором у него рождаются сын и две дочери.

Конечно, у таких людей, кроме приверженцев, всегда достаточно недоброжелателей, не избежал этого и Галилей. Особенно недоброжелателей возмущала его пропагандагелиоцентрической системы миры, ведь подробное обоснование концепции неподвижности Земли и опровержение гипотез о её вращении содержалось в трактате Аристотеля «О небе» и в «Альмагесте» Птолемея.

В 1611 г. Галилей решил отправиться в Рим, чтобы убедить Папу Павла V , что идеи Коперника вполне совместимы с католицизмом. Его приняли хорошо, он продемонстрировал им свой телескоп, давая осторожные и осмотрительные пояснения. Кардиналы создали комиссию для выяснения вопроса, не грешно ли смотреть на небо в трубу, но пришли к выводу, что это позволительно. Римские астрономы открыто обсуждали вопрос, движется ли Венера вокруг Земли или вокруг Солнца (смена фаз Венеры ясно говорила в пользу второго варианта).

Но начались доносы в инквизицию. А когда Галилей в 1613 г. Галилей выпустил книгу «Письма о солнечных пятнах», в которой открыто высказался в пользу системы Коперника, римская инквизиция начала первое дело против Галилея по обвинению в ереси. Последней ошибкой Галилея стал призыв к Риму высказать окончательное отношение к учению Коперника. Тогда католическая церковь решила запретить его учение с пояснением, что «церковь не возражает против трактовки коперниканства как удобного математического приёма, но принятие его как реальности означало бы признание того, что прежнее, традиционное толкование библейского текста было ошибочным ».

5 марта 1616 г. Рим официально определяет гелиоцентризм как опасную ересь. Книга Коперника была запрещена.

Церковный запрет гелиоцентризма, в истинности которого Галилей был убеждён, был неприемлем для учёного. Он стал размышлять, как, формально не нарушая запрета, продолжать защиту истины. И решил издать книгу, содержащую нейтральное обсуждение разных точек зрения. Он писал эту книгу 16 лет, собирая материалы, оттачивая аргументы и выжидая благоприятного момента. Наконец (в 1630 г.) она была закончена, эта книга - «Диалог о двух главнейших системах мира - птолемеевой и коперниковой» , но вышла только в 1632 г. Книга написана в форме диалога между тремя любителями науки: коперниканцем, нейтральным участником и приверженцем Аристотеля и Птолемея. Хотя в книге нет авторских выводов, сила аргументов в пользу системы Коперника говорит сама за себя. Но в нейтральном участнике Папа римский узнал себя и свои аргументы и пришел в ярость. Уже через несколько месяцев книга была запрещена и изъята из продажи, а Галилея вызвали в Рим на суд Инквизиции по подозрению в ереси. После первого допроса его взяли под арест. Существует мнение, что по отношению к нему применялись пытки, что Галилею угрожали смертью, его допрашивали в зале пыток, где перед глазами узника были разложены страшные орудия: кожаные воронки, через которые в желудок человека вливали огромное количество воды, железные сапоги (в них завинчивались ноги пытаемого), клещи, которыми ломали кости...

Во всяком случае, он был поставлен перед выбором: либо он покается и отречётся от своих «заблуждений», либо его постигнет участь Джордано Бруно. Он не вынес угроз и отрекся от своего сочинения.

Но Галилей остался узником инквизиции до самой смерти. Ему строго запретили разговаривать с кем бы то ни было о движении Земли. И все-таки Галилей тайно работал над сочинением, где утверждал истину о Земле и небесных светилах. После вынесения приговора Галилея поселили на одной из вилл Медичи, а спустя пять месяцев ему было разрешено отправиться на родину, и он поселился в Арчетри, рядом с монастырём, где находились его дочери. Здесь он провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции.

Через некоторое время, после смерти любимой дочери, Галилей полностью потерял зрение, но продолжал научные исследования, опираясь на верных учеников, среди которых был Торричелли. Только один раз, незадолго до смерти, инквизиция разрешила слепому и тяжело больному Галилею покинуть Арчетри и поселиться во Флоренции для лечения. При этом ему под страхом тюрьмы было запрещено выходить из дома и обсуждать «про́клятое мнение» о движении Земли.

Галилео Галилей умер 8 января 1642 года, на 78-м году жизни, в своей постели. Похоронили его в Арчетри без почестей, ставить памятник Папа тоже не позволил.

Позже единственный внук Галилея тоже постригся в монахи и сжёг хранившиеся у него бесценные рукописи учёного как богопротивные. Он был последним представителем рода Галилеев.

Послесловие

В 1737 г. прах Галилея, как он и просил, был перенесён в базилику Санта Кроче, где 17 марта он был торжественно погребён рядом с Микеланджело.

В 1835 г. книги, защищавшие гелиоцентризм, были вычеркнуты из списка запрещенных.

С 1979 по 1981 годы по инициативе Римского Папы Иоанна Павла II работала комиссия по реабилитации Галилея, и 31 октября 1992 года Папа Иоанн Павел II официально признал, что инквизиция в 1633 году совершила ошибку, силой вынудив учёного отречься от теории Коперника.

Выдающийся итальянский физик и астроном Галилео Галилей родился 15 февраля 1564 года в городе Пиза (северо-западная часть Италии). В его семье, главой которой был небогатый дворянин, помимо самого Галилео было еще пятеро детей. Когда мальчику исполнилось 8 лет, семья переехала во Флоренцию, где юный Галилей поступил в школу при одном из местных монастырей. В то время он больше всего увлекался искусством, однако, хорошо успевал и в естественных науках. Поэтому, после окончания школы для него не составило труда поступить в Пизанский университет, где он занялся изучением медицины. Однако, вместе с тем его привлекала и геометрия, курс лекций по которой он прослушал по собственной инициативе.

Галилей проучился в университете три года, но закончить его он не смог, поскольку у семьи ухудшилось материальное положение. Тогда ему пришлось вернуться домой и попытаться найти работу. К счастью, благодаря своим способностям ему удалось добиться покровительства герцога Фердинанда I Медичи, который согласился оплатить продолжение обучения. После этого, в 1589 году Галилей вернулся в Пизанский университет, где вскоре стал профессором математики. Это дало ему возможность преподавать и одновременно заниматься самостоятельными исследованиями. Через год вышла первая работа ученого, посвященная механике. Она называлась «О движении».

Именно здесь прошел наиболее плодотворный период жизни великого ученого. А 1609 год благодаря нему принес настоящую революцию в астрономию. В июле произошло событие, навсегда вошедшее в историю – были сделаны первые наблюдения небесных объектов при помощи нового инструмента – оптического телескопа. Первая труба, собственноручно изготовленная Галилеем, давала увеличение всего в три раза. Несколько позже появился усовершенствованный вариант, который усиливал человеческое зрение уже в 33 раза. Сделанные с его помощью открытия потрясли научный мир. В первый же год были обнаружены четыре спутника Юпитера, открыт факт наличия гораздо большего числа звезд на небе, чем было видно невооруженным глазом. Галилей произвел наблюдения Луны, обнаружив на ней горы и низменности. Всего этого хватило, что бы стать известным во всей Европе.

Переехав во Флоренцию в 1610 году, ученый продолжил свои исследования. Здесь им были открыты пятна на Солнце, его вращение вокруг своей оси, а также фазы планеты Венера. Все это принесло ему славу и благоволение многих высоких особ в Италии и не только.

Однако, из-за открытой защиты учения Коперника, которое было отнесено католической церковью к ересям, у него возникли серьезные проблемы во взаимоотношениях с Римом. А после опубликования в 1632 году большого труда под названием «Диалог о двух главнейших системах мира – птолемеевой и коперниковой» его открыто обвинили в поддержке ереси и вызвали на судебный процесс для разбирательства. В результате Галилею пришлось публично отречься от своей поддержки гелиоцентрической системы мира. Приписываемая же ему фраза «А все-таки она вертится!» документальных подтверждений не имеет..