Все аварии на аэс. Хронология аварий и катастроф на аэс

Несмотря на то, что ядерная энергия реально обеспечивает человеку безуглеродистую энергию по разумным ценам, она же являет и свою опасную сторону в виде радиации и прочих бедствий. Международное агентство по атомной энергии оценивает аварии на ядерных объектах по специальной 7-ми бальной шкале. Самые серьезные события классифицируются высшей категорией - седьмой, в то время как 1-й уровень расценивается как незначительный. Отталкиваясь от этой системы оценки атомных катастроф, предлагаем список пяти самых опасных аварий на ядерных объектах мира.


Какую категорию присвоит рок аварии на "Фукусиме-1" покажет время. Фото: japantimes.co.jp

1 место. Чернобыль. СССР (ныне Украина). Рейтинг: 7 (крупная авария)

Авария на ядерном объекте в Чернобыле всеми экспертами признана как самый худшая катастрофа в истории атомной энергетики. Это - единственная авария на ядерном объекте, которая была классифицирована Международным агентством по атомной энергии в качестве самого худшего, что может быть. Крупнейшая техногенная катастрофа разразилась 26 апреля 1986 года, на 4-м блоке Чернобыльской атомной электростанции, находящейся в маленьком городе Припять. Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. На момент аварии Чернобыльская АЭС была самой мощной в СССР. 31 человек погиб в течение первых трех месяцев после аварии; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести, более 115 тыс. человек из 30-километровой зоны были эвакуированы. В ликвидации последствий аварии участвовали более 600 тыс. человек. Радиоактивное облако от аварии прошло над европейской частью СССР, Восточной Европой и Скандинавией. Станция навсегда прекратила свою работу лишь 15 декабря 2000 года.


«Кыштымская авария» - очень серьезная радиационная техногенная авария на химкомбинате «Маяк», расположенном в закрытом городе «Челябинск-40» (с 1990-х годов - Озёрск). Авария получила свое название Кыштымской по той причине, что Озёрск был засекречен и отсутствовал на картах до 1990 года, а Кыштым - ближайший к нему город. 29 сентября 1957 года из-за выхода из строя системы охлаждения произошёл взрыв ёмкости объёмом 300 кубических метров, где содержалось около 80 м³ высокорадиоактивных ядерных отходов. Взрывом, оцениваемым в десятки тонн в тротиловом эквиваленте, ёмкость была разрушена, бетонное перекрытие толщиной 1 метр весом 160 тонн отброшено в сторону, в атмосферу было выброшено около 20 млн кюри радиации. Часть радиоактивных веществ были подняты взрывом на высоту 1-2 км и образовали облако, состоящее из жидких и твёрдых аэрозолей. В течение 10-11 часов радиоактивные вещества выпали на протяжении 300-350 км в северо-восточном направлении от места взрыва (по направлению ветра). Более 23 тыс. квадратных километров оказались в загрязненной радионуклидами зоне. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных. Для ликвидации последствий аварии привлекались сотни тысяч военнослужащих и гражданского населения, получивших значительные дозы облучения. Территория, которая подверглась радиоактивному загрязнению в результате взрыва на химкомбинате, получила название “Восточно-Уральский радиоактивный след”. Общая длина составляла примерно 300 км, при ширине 5-10 км.

Из воспоминаний с сайта oykumena.org: «Мама стала болеть (были частые обмороки, малокровие)… Я родилась в 1959 году, были те же проблемы со здоровьем… Мы уехали из Кыштыма, когда мне было 10 лет. Я немного необычный человек. В течение жизни случались странные вещи… Предвидела катастрофу эстонского лайнера. И даже говорила о столкновении самолетов с приятельницей стюардессой… Она погибла».


3 место. Уиндскейлский пожар (Windscale Fire), Великобритания. Рейтинг: 5 (авария с риском для окружающей среды)

10 октября 1957 года операторы уиндскейлской станции заметили, что температура реактора неуклонно растет, в то время как должно происходить наоборот. Первым делом все подумали о неисправность оборудования реактора, осматривать которое отправились двое рабочих станции. Когда они добрались до самого реактора, то к своему ужасу увидели, что он был охвачен огнем. Поначалу, рабочие не использовали воды, потому что операторы станции высказывали опасения, что огонь настолько горяч, что вода будет будет распадаться мгновенно, а как известно водород в воде способен вызвать взрыв. Все испробованные средства не помогали, и тогда сотрудники станции открыли шланги. Слава Богу, вода смогла остановить огонь безо всякого взрыва. По некоторым оценкам, в Великобритании из-за Уиндскейла рак развился у 200 человек, половина из них умерли. Точное число жертв неизвестно, поскольку британские власти пытались скрыть эту катастрофу. Премьер-министр Гарольд Макмиллан опасался, что этот инцидент мог подорвать общественную поддержку ядерным проектам. Проблема подсчета жертв этой катастрофы усугубляется еще тем, что излучение от Уиндскейла распространилось на сотни км по всей северной Европе.


4 место. ТриМайл Айленд (Three Mile Island), США. Рейтинг: 5 (авария с риском для окружающей среды)

До Чернобыльской аварии, случившейся через семь лет, авария на АЭС «Три-Майл Айленд» считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США. 28 марта 1979 года рано утром произошла крупная авария реакторного блока № 2 мощностью 880 МВт (электрических) на АЭС "Тримайл-Айленд", расположенной в двадцати километрах от города Гаррисберга (штат Пенсильвания) и принадлежавшей компании "Метрополитен Эдисон". Блок No 2 на АЭС "Тримайл-Айленд", как оказалось, не был оснащен дополнительной системой обеспечения безопасности, хотя подобные системы на некоторых блоках этой АЭС имеются. Несмотря на то, что ядерное топливо частично расплавилось, оно не прожгло корпус реактора и радиоактивные вещества, в основном, остались внутри. По разным оценкам, радиоактивность благородных газов, выброшенных в атмосферу составила от 2,5 до 13 миллионов кюри, однако выброс опасных нуклидов, таких как йод-131, был незначительным. Территория станции также была загрязнена радиоактивной водой, вытекшей из первого контура. Было решено, что в эвакуации населения, проживавшего рядом со станцией нет необходимости, однако власти посоветовали покинуть 8-километровую зону беременным женщинам и детям дошкольного возраста. Официально работы по устранению последствий аварии были завершены в декабре1993 года. Была проведена дезактивация территории станции, топливо было выгружено из реактора. Однако, часть радиоактивной воды впиталась в бетон защитной оболочки и эту радиоактивность практически невозможно удалить. Эксплуатация другого реактора станции (TMI-1) была возобновлена в 1985 году.


5 место. Токаимура (Tokaimura), Япония. Рейтинг: 4 (авария без значительного риска для окружающей среды)

30 сентября 1999 года произошла самая страшная атомная трагедия для Страны восходящего Солнца. Самая пагубная авария на ядерном объекте Японии имела место более десятилетия тому назад, правда это было за пределами Токио. Для ядерного реактора, который не использовался более трех лет была подготовлена партия высокообогащенного урана. Операторов станции не обучили тому, как надо обращаться со столь высокобогащенным ураном. Не понимая, что они делают в смысле возможных последствий, «специалисты» поместили гораздо больше урана в резервуар, чем нужно. Более того, резервуар реактора был разработан не для этого типа урана. ...Но критическую реакцию уже не остановить и двое из трех операторов, работавших тогда с ураном умирают от радиации. После катастрофы около сотни рабочих и тех, кто жил поблизости были госпитализированы с диагнозом «облучение», эвакуации подлежали 161 человек, живших в нескольких сотнях метров от атомной станции.

Ядерные аварии СССР

29.09.57. Авария на реакторе химкомбината «Маяк» близ Челябинска. Произошел самопроизвольный ядерный разгон отходов топлива с сильным выбросом радиоактивности. Радиацией заражена обширная территория. Загрязненную зону огородили колючей проволокой, окольцевали дренажным каналом. Население эвакуировали, грунт срыли, скот уничтожили и все обваловали в курганы.

7.05.66. Разгон на мгновенных нейтронах на АЭС с кипящим ядерным реактором в городе Мелекессе. Облучились дозиметрист и начальник смены АЭС. Реактор погасили сбросив в него два мешка борной кислоты.

1964—1979 годы. На протяжении 15 лет неоднократное разрушение (пережог) топливных сборок активной зоны на первом блоке Белоярской АЭС. Ремонты активной зоны сопровождались переоблучением эксплуатационного персонала.

7.01.74. Взрыв железобетонного газгольдера выдержки радиоактивных газов на первом блоке Ленинградской АЭС. Жертв не было.

6.02.74. Разрыв промежуточного контура на первом блоке Ленинградской АЭС в результате вскипания воды с последующими гидроударами. Погибли трое. Высокоактивные воды с пульпой фильтрпорошка были сброшены во внешнюю среду.

Октябрь 1975 года. На первом блоке Ленинградской АЭС частичное разрушение активной зоны («локальный козел»). Реактор был остановлен и через сутки продут аварийным расходом азота в атмосферу через вентиляционную трубу. Во внешнюю среду было выброшено около 1,5 миллиона кюри высокоактивных радионуклидов.

1977 год. Расплавление половины топливных сборок активной зоны во втором блоке Белоярсокй АЭС. Ремонт с переоблучением персонала Аэс длился около года.

31.12.78. Сгорел второй блок Белоярсокй АЭС. Пожар возник от падения плиты перекрытия машинного зала на маслобак турбины. Выгорел весь контрольный кабель. Реактор оказался без контроля. При организации подачи аварийной охлаждающей воды в реактор переоблучились восемь человек.

Сентябрь 1982 года. Разрушение центральной топливной сборки на первом блоке Чернобыльской АЭС из-за ошибочных действий эксплуатационного персонала. Выброс радиоактивности на промзону и город Припять, а также переоблучение ремонтного персонала во время ликвидации «малого козла».

Октябрь 1982 года. Взрыв генератора на первом блоке Армянской АЭС. Машинный зал сгорел. Большая часть оперативного персонала в панике покинули станцию, оставив реактор без надзора. Прибывшая самолетом с Кольской АЭС оперативная группа помогла оставшимся на месте операторам спасти реактор.

27.06.85. Авария на первом блоке Балаковской АЭС. При проведении пусконаладочных работ вырвало предохранительный клапан, и трехсотградусный пар стал поступать в помещение, где работали люди. Погибли 14 человек. Авария произошла в результате необычайной спешки и нервозности из-за ошибочных действий малоопытного оперативного персонала.

Все аварии на АЭС в СССР остались вне гласности, за исключением аварий на первых блоках Армянской и Чернобыльской АЭС в 1982 году, о которых вскользь было упомянуто в передовой «Правды» уже после избрания генеральным секретарем ЦК КПСС Ю.В.Андропова. Кроме того, косвенное упоминание об аварии на первом блоке Ленинградской АЭС имело место в марте 1976 года на партактиве Минэнерго СССР, где выступил председатель Совета министров СССР А.Н.Косыгин. Он, в частности, сказал тогда, что правительства Швеции и Финдляндии сделали правительству СССР запрос относительно повышения радиоактивности над их странами.

26.04.86. — авария на Чернобыльской АЭС (Украина, СССР). В результате взрыва четвертого реактора в атмосферу было выброшено несколько миллионов кубических метров радиоактивных газов.

Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России. Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

www.gradremstroy.ru

Аварии на АЭС, АЭС, Фукусима-1, Чернобыль, атомная энергия, ядерные аварии СССР

В штатном режиме АЭС абсолютно безопасны, но аварийные ситуации с выбросами радиации оказывают губительное влияние на экологию и здоровье населения. Несмотря на внедрение технологий и автоматических систем мониторинга, угроза возникновения потенциально опасной ситуации остаётся. У каждой трагедии в истории атомной энергетики собственная неповторимая анатомия. Человеческий фактор, невнимательность, отказ оборудования, стихийные бедствия и роковое стечение обстоятельств могут привести к аварии с человеческими жертвами.

Что в атомной энергетике называют аварией

Как и на любом технологическом объекте, на атомной станции бывают нештатные ситуации. Поскольку аварии могут влиять на экологию в радиусе до 30 километров, чтобы максимально оперативно реагировать на инцидент и предотвратить последствия, Международное агентство по атомной энергии (МАГАТЭ) разработало Международную шкалу ядерных событий INES (с англ. International Nuclear Events Scale). Все события оцениваются по 7-балльной шкале.

0 баллов - нештатные ситуации, которые не повлияли на безопасность АЭС. Для их устранения не пришлось задействовать дополнительные системы, угрозы утечки радиации не было, но некоторые механизмы работали со сбоями. Ситуации нулевого уровня периодически происходят на каждой атомной станции.

1 балл по INES или аномалия - работа станции вне установленного режима. В эту категорию попадают, например, похищение низкоактивных источников или облучение постороннего человека дозой, которая превышает годовую, но не несёт опасности для здоровья пострадавшего.

2 балла или инцидент - ситуация, которая привела к переоблучению работников станции или значительному распространению радиации вне установленных проектом зон в пределах станции. Двумя баллами оценивают рост уровня радиации в рабочей зоне до 50 мЗв/ч (при годовой норме 3 мЗв), повреждение изоляционной упаковки высокоактивных отходов или источников.

3 балла - класс серьёзного инцидента присваивают нештатным ситуациям, которые привели к повышению радиации в рабочей зоне до 1 Зв/ч, возможны незначительные утечки радиации за пределы станции. У населения могут наблюдаться ожоги и другие не смертельные эффекты. Особенность аварий третьего уровня заключается в том, что распространение радиации работникам удаётся предотвратить самостоятельно, задействовав все эшелоны защиты.

Такие аварийные ситуации несут угрозу прежде всего для работников станции. Пожар на атомной станции «Вандельос» (Испания) в 1989 году или авария на Хмельницкой АЭС в 1996 году с выбросом радиоактивных продуктов в помещения станции привели к жертвам среди сотрудников. Известен ещё один случай, имевший место на Ровенской АЭС в 2008 году. Персонал обнаружил в оборудовании реакторной установки потенциально опасный дефект. Реактор второго энергоблока пришлось перевести в холодное состояние на время проведения ремонтных работ.

Внештатные ситуации от 4 и до 8 баллов называются авариями.

Какие бывают аварии на АЭС

4 балла - это авария, которая не несёт значительного риска за пределами рабочей площадки станции, но возможны смертельные исходы среди населения. Чаще всего причинами таких инцидентов является расплавление или повреждение тепловыделяющих элементов, сопровождающиеся небольшой утечкой радиоактивного материала в пределах реактора, что может привести к выбросу наружу.

В 1999 году 4-балльная авария случилась в Японии на радиотехническом заводе «Токаймура». Во время очищения урана для последующего изготовления ядерного топлива, сотрудники нарушили правила технического процесса и запустили самоподдерживающую ядерную реакцию. Облучению подверглись 600 человек, с завода эвакуировали 135 сотрудников.

5 баллов - авария с широкими последствиями. Характеризуется повреждением физических барьеров между активной зоной реактора и рабочими помещениями, критическим режимом работы и возникновением пожара. В окружающую среду выбрасывается радиологический эквивалент нескольких сотен терабеккерелей йода-131. Может проводиться эвакуация населения.

Именно 5-й уровень присвоили крупной аварии в США. Случилась она в марте 1979-го года на АЭС «Три-Майл-Айленд». На втором энергоблоке слишком поздно обнаружили утечку теплоносителя (паровой или жидкой смеси, удаляющей из реактора тепло). Сбой произошёл в первом контуре установки, это привело к остановке процесса охлаждения тепловыделяющих сборок. Пострадала половина активной зоны реактора, она полностью расплавилась. Помещения второго энергоблока были сильно загрязнены радиоактивными продуктами, однако за пределами АЭС уровень радиации остался в норме.

Значительная авария соответствует 6 баллам. Речь идёт об инцидентах, связанных выбросом существенных объёмов радиоактивных веществ в окружающую среду. Проводятся эвакуация, размещение людей в укрытиях. Помещения станции могут быть смертельно опасны.

Инциденту, известному под названием «Кыштымская авария», присвоили 6 уровень опасности. На химическом комбинате «Маяк» произошёл взрыв ёмкости для радиоактивных отходов. Это случилось из-за поломки системы охлаждения. Ёмкость была полностью разрушена, бетонное перекрытие сорвало взрывом, который оценили в десятки тонн в тротиловом эквиваленте. Образовалось радиоактивное облако, но до 90% радиационных загрязнений выпали на территории химического комбината. В процессе ликвидации аварии было эвакуировано 12 тысяч человек. Место инцидента именуется Восточно-Уральским радиоактивным следом.

Отдельно классифицируются аварии как проектные и запроектные. Для проектных определены исходные события, порядок устранения и конечные состояния. Такие аварии, как правило, можно предотвратить с помощью автоматических и ручных систем безопасности. Запроектные инциденты - спонтанные чрезвычайные ситуации, которые либо выводят из строя системы, либо вызваны внешними катализаторами. Такие аварии могут привести к выбросу радиации.

Слабые места современных АЭС

Поскольку атомная энергетика начала развиваться в прошлом столетии, то первой проблемой современных ядерных объектов называют изношенность оборудования. Большинство европейских АЭС построены ещё в 70–80 годы. Безусловно, при продлении сроков эксплуатации оператор тщательно анализирует состояние АЭС, меняет оборудование. Но полная модернизация техпроцеса требует огромным финансовых затрат, поэтому зачастую станции работают на основе старых методик. На таких АЭС нет надёжных систем предотвращения аварий. Строить АЭС с нуля тоже дорого, поэтому страны одна за другой продлевают сроки эксплуатации АЭС и даже перезапускают после простоя.

Вторыми по частоте возникновения чрезвычайных ситуаций идут технические ошибки персонала. Неверные действия могут привести к потере контроля над реактором. Чаще всего в результате халатных действий происходит перегрев и активная зона частично или полностью расплавляется. При определённых обстоятельствах в активной зоне может произойти пожар. Так случилось, например, в Великобритании в 1957 году в реакторе по производству вооружённого плутония. Персонал не уследил за показателями немногочисленных измерительных приборов реактора и пропустил момент, когда урановое топливо вступило в реакцию с воздухом и загорелось. Ещё один случай технической ошибки персонала - авария на АЭС «Святой Лаврентий». Оператор по невнимательности неправильно загрузил в реактор топливные сборки.

Бывают совсем уж курьёзные случаи - на реакторе «Браунз-Ферри» в 1975 году к пожару привела инициатива работника устранить протечку воздуха в бетонной стене. Работы он выполнял со свечкой в руках, сквозняк подхватил огонь и распространил по кабельному каналу. На устранение последствий аварии на атомной станции потратили ни много ни мало 10 млн долларов.

Самая крупная авария на ядерном объекте в 1986 году на Чернобыльской АЭС, а также известная крупная авария на АЭС «Фукусима» тоже случились из-за целого ряда ошибок технического персонала. В первом случае роковые ошибки были допущены во время проведения эксперимента, во втором имел место перегрев активной зоны реактора.

К сожалению, сценарий АЭС «Фукусима» не является редкостью для станций, где установлены такие же реакторы кипящей воды. Потенциально опасные ситуации могут возникать, поскольку все процессы, в том числе и главный процесс охлаждения, зависят от режима циркуляции воды. Если забился промышленный сток или деталь вышла из строя, реактор начнёт перегреваться.

С повышением температуры реакция деления ядра в тепловыделяющих сборках происходит интенсивнее, может начаться неконтролируемая цепная реакция. Ядерные стержни плавятся вместе с ядерным топливом (ураном или плутонием). Возникает аварийная ситуация, которая может развиваться по двум сценариям: а) расплавленное топливо прожигает корпус и защиту, попадая в грунтовые воды; б) давление внутри корпуса приводит к взрыву.

ТОП-5 аварий на АЭС

1. Долгое время единственной аварией, которую МАГАТЭ оценило в 7 баллов (худшее, что может случиться), оставался взрыв на ядерном объекте в Чернобыле. От лучевой болезни разной степени пострадали более 100 тысяч человек, а 30-километровая зона уже 30 лет остаётся безлюдной.

Расследованием аварии занимались не только советские физики, но и МАГАТЭ. Основной версией остаётся роковое стечение обстоятельств и ошибки персонала. Известно, что реактор работал внештатно и испытания в такой ситуации проводить не следовало. Но персонал решил работать по плану, сотрудники отключили исправные технологические системы защиты (они могли остановить реактор до входа в опасный режим) и начали тестирование. Позже эксперты пришли к выводу, что самаконструкция реактора была несовершенной, это тоже поспособствовало взрыву.

2. Авария на «Фукусиме-1» привела к тому, что территории в радиусе 20 километров от станции признали зоной отчуждения. Долгое время причиной инцидента считались землетрясение и цунами. Но позже японские парламентарии возложили ответственность за произошедшее на компанию-оператора Tokyo Electric Power, которая не обеспечила защиту АЭС. В результате аварии топливные стержни сразу на трёх реакторах полностью расплавились. Из района станции эвакуировали 80 тысяч человек. На данный момент в помещениях станции, которые обследуют исключительно роботы, остаются тоннырадиоактивных материалов и топлива, о чём ранее писали Пронедра.

3. В 1957 году на территории Советского Союза произошла авария на химическом комбинате «Маяк», известная как «Кыштымская». Причиной инцидента стал выход из строя системы охлаждения ёмкости с высокоактивными ядерными отходами. Бетонное перекрытие разрушило мощным взрывом. МАГАТЭ позже присвоило ядерному инциденту 6-й уровень опасности.

4. Пятую категорию получил Уиндскейлский пожар на станции в Великобритании. Авария случилась 10 октября того же 1957 года, что и взрыв на химкомбинате «Маяк». Точная причина аварии неизвестна. В то время у персонала отсутствовали контрольные приборы, поэтому следить за состоянием реактора было сложнее. В какой-то момент работники обратили внимание, что температура в реакторе растёт, хотя должна падать. При осмотре оборудования сотрудники с ужасом обнаружили в реакторе пожар. Тушить огонь водой сразу не решились в связи с опасениями, что вода будет мгновенно распадаться, а водород приведёт к взрыву. Перепробовав все подручные средства, персонал всё-таки открыл краны. К счастью, взрыва не произошло. По официальной информации, облучение получили около 300 человек.

5. Авария на АЭС «Три-Майл-Айленд» в США случилась в 1979 году. Она считалась самой крупной в истории американской атомной энергетики. Основной причиной инцидента стала поломка насоса второго контура охлаждения реактора. К аварийной ситуации привело всё то же стечение обстоятельств: поломка учётных приборов, отказ других насосов, грубые нарушения правил эксплуатации. Обошлось, к счастью, без жертв. Люди, проживающие в 16-километровой зоне, получили небольшое облучение (чуть больше, чем на сеансе флюорографии).

Мифы и факты

26 апреля 2016 года исполняется 30 лет со дня аварии на Чернобыльской АЭС. Последствия самой крупной за всю историю мирного атома техногенной катастрофы специалисты всего мира устраняют до сих пор.

В российской атомной промышленности была проведена программа по модернизации, практически полностью пересмотрены устаревшие технологические решения и разработаны системы, которые, по словам специалистов, полностью исключают возможность подобной аварии.

О мифах, которые окружают аварию на ЧАЭС, и извлеченных из нее уроках – в спецпроекте ТАСС

ФАКТЫ

Самая крупная катастрофа в истории мирного атома

Строительство первой очереди Чернобыльской АЭС началось в 1970 году, для обслуживающего персонала рядом был возведен город Припять. 27 сентября 1977 года первый энергоблок станции с реактором РБМК-1000 мощностью в 1 тыс. МВт был подключен к энергосистеме Советского Союза. Позднее вступили в строй еще три энергоблока, ежегодная выработка энергии станции составляла 29 млрд киловатт-часов.

9 сентября 1982 года на ЧАЭС произошла первая авария – во время пробного пуска 1-го энергоблока разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, ликвидация последствий ЧП заняла около трех месяцев.

1">

1">

Планировалось остановить реактор (при этом планово была отключена система аварийного охлаждения) и замерить генераторные показатели.

Безопасно заглушить реактор не удалось. В 1 час 23 минуты мск на энергоблоке произошел взрыв и пожар.

ЧП стало крупнейшей катастрофой в истории атомной энергетики: была полностью разрушена активная зона реактора, здание энергоблока частично обрушилось, произошел значительный выброс радиоактивных материалов в окружающую среду.

Непосредственно при взрыве погиб один человек – оператор насосов Валерий Ходемчук (его тело не удалось обнаружить под завалами), утром того же дня в медсанчасти умер от полученных ожогов и травмы позвоночника инженер-наладчик системы автоматики Владимир Шашенок.

27 апреля был эвакуирован город Припять (47 тыс. 500 человек), а в последующие дни – население 10-километровой зоны вокруг ЧАЭС. Всего в течение мая 1986 года из 188 населенных пунктов в 30-километровой зоне отчуждения вокруг станции были отселены около 116 тыс. человек.

Интенсивный пожар продолжался 10 суток, за это время суммарный выброс радиоактивных материалов в окружающую среду составил около 14 эксабеккерелей (порядка 380 млн кюри).

Радиоактивному загрязнению подверглось более 200 тыс. кв. км, из них 70% – на территории Украины, Белоруссии и России.

Наиболее загрязнены были северные районы Киевской и Житомирской обл. Украинской ССР, Гомельская обл. Белорусской ССР и Брянская обл. РСФСР.

Радиоактивные осадки выпали в Ленинградской обл., Мордовии и Чувашии.

Впоследствии загрязнение было отмечено , Норвегии, Финляндии и Швеции.

Первое краткое официальное сообщение о ЧП было передано ТАСС 28 апреля. По словам бывшего генерального секретаря ЦК КПСС Михаила Горбачева, сказанным в интервью BBC в 2006 году, праздничные первомайские демонстрации в Киеве и других городах не были отменены из-за того, что руководство страны не обладало "полной картиной случившегося" и опасалось паники среди населения. Только 14 мая Михаил Горбачев выступил с телевизионным обращением, в котором рассказал об истинном масштабе происшествия.

Советская госкомиссия по расследованию причин ЧП возложила ответственность за катастрофу на руководство и оперативный персонал станции. Созданный Международным агентством по атомной энергии (МАГАТЭ) Консультативный комитет по вопросам ядерной безопасности (INSAG) в своем отчете 1986 года подтвердил выводы советской комиссии.

Тассовцы в Чернобыле

Одним из первых журналистов на место аварии в украинском Полесье, чтобы рассказать правду о небывалой в истории техногенной катастрофе, выехал тассовец Владимир Иткин. Как настоящий герой-репортер проявил он себя во время катастрофы. Его материалы были опубликованы практически во всех газетах страны.

А уже через несколько дней после взрыва мир потрясли фотографии дымящихся развалин четвертого энергоблока, который снял фотокорреспондент ТАСС Валерий Зуфаров и его украинский коллега Владимир Репик. Тогда, в первые дни, облетая на вертолете электростанцию вместе с учеными и специалистами, фиксируя все детали атомного выброса, они не задумывались о последствиях для своего здоровья. Вертолет, с которого снимали корреспонденты, зависал всего в 25 метрах над ядовитой бездной.

1">

1">

{{$index + 1}}/{{countSlides}}

{{currentSlide + 1}}/{{countSlides}}

Валерий уже знал, что "схватил" огромную дозу, но продолжал выполнять свой профессиональный долг, создав для потомков фотолетопись этой трагедии.

Репортеры работали у жерла реактора, при строительстве саркофага.

За эти снимки Валерий заплатил преждевременной кончиной в 1996 году. У Зуфарова немало наград - в том числе "Золотой глаз", присуждаемый World Press Photo.

В числе журналистов-тассовцев, имеющих статус ликвидатора последствий аварии на ЧАЭС, корреспондент в Кишиневе Валерий Демидецкий. Осенью 1986 года он был направлен в Чернобыль как человек, уже имевший дело с атомом - Валерий служил на атомной подводной лодке и знал, что такое радиационная опасность.

"Больше всего, - вспоминает он, - там поражали люди. Настоящие герои. Они хорошо понимали, на что идут, работая день и ночь. Поразила Припять. Красавец-город, где жили работники АЭС, напоминал зону "Сталкера" Тарковского. Второпях оставленные дома, разбросанные детские игрушки, тысячи брошенных жителями автомашин".

– по сообщениям ТАСС

Походы в ад

Одними из первых, кто принял участие в ликвидации аварии, были работники пожарной охраны. Сигнал о пожаре на АЭС был принят 26 апреля 1986 года в 1 ч. 28 мин. Уже к утру в зоне аварии находилось 240 человек личного состава Киевского областного управления пожарной охраны, силами которых к 6 ч. 35 мин. пожар на 4-м блоке ЧАЭС был полностью ликвидирован.

Правительственная комиссия обратилась к войскам химической защиты с целью проведения оценки радиационной обстановки и к военным вертолетчикам для оказания помощи в тушении пожара активной зоны. На аварийной площадке к этому времени работало несколько тысяч человек.

В зоне аварии работали представители службы радиационного контроля, сил Гражданской обороны, Химвойск Минобороны, Госгидромета и Минздрава.

Помимо ликвидации аварии, в их задачу входило измерение радиационной ситуации на АЭС и исследование радиоактивного загрязнения природных сред, эвакуация населения, охрана зоны отчуждения, которая была установлена после катастрофы.

Врачи осуществляли контроль за облученными и проводили необходимые лечебно-профилактические мероприятия.

В частности, на разных этапах ликвидации последствий аварии были задействованы:

От 16 до 30 тыс. человек из разных ведомств для дезактивационных работ;

Более 210 воинских частей и подразделений общей численностью 340 тыс. военнослужащих, из них более 90 тыс. военнослужащих в самый острый период с апреля по декабрь 1986 года;

18,5 тыс. работников органов внутренних дел;

Свыше 7 тыс. радиологических лабораторий и санэпидстанций;

Всего около 600 тыс. ликвидаторов со всего бывшего СССР принимали участие в тушении пожаров и расчистке.

Сразу после аварии работа станции была остановлена. Шахту взорвавшегося реактора с горящим графитом засыпали с вертолетов смесью карбида бора, свинца и доломита, а после завершения активной стадии аварии – латексом, каучуком и другими пылепоглощающими растворами (всего к концу июня было сброшено около 11 тыс. 400 т сухих и жидких материалов).

После первого, наиболее острого, этапа все усилия по локализации аварии были сосредоточены на создании специального защитного сооружения, называемого саркофагом (объект "Укрытие").

В конце мая 1986 года была сформирована специальная организация, состоящая из нескольких строительных и монтажных подразделений, бетонных заводов, управлений механизации, автотранспорта, энергоснабжения и др. Работы велись круглосуточно, вахтами, численность которых достигала 10 тыс. человек.

В период с июля по ноябрь 1986 года был сооружен бетонный саркофаг высотой более 50 м и внешними размерами 200 на 200 м, накрывший 4-й энергоблок ЧАЭС, после чего выбросы радиоактивных элементов прекратились. В ходе строительства произошел несчастный случай: 2 октября вертолет Ми-8 зацепился лопастями за трос подъемного крана и упал на территории станции, погибли четыре члена экипажа.

Внутри "Укрытия" находится не менее 95% облученного ядерного топлива из разрушенного реактора, в т. ч. около 180 т урана-235, а также порядка 70 тыс. т радиоактивного металла, бетона, стеклообразной массы, несколько десятков тонн радиоактивной пыли с общей активностью более 2 млн кюри.

"Укрытие" под угрозой

На сегодняшний день крупнейшие мировые международные структуры – от энергоконцернов до финансовых корпораций – продолжают оказывать Украине помощь в решении проблем окончательной очистки Чернобыльской зоны.

Основной недостаток саркофага – его негерметичность (общая площадь щелей достигает 1 тыс. кв. м).

Гарантированный срок эксплуатации старого "Укрытия" был рассчитан до 2006 года, поэтому в 1997 году страны "семерки" сошлись во мнении о необходимости строительства "Укрытия-2", которое накрыло бы устаревшую конструкцию.

В настоящее время возводится крупное защитное сооружение "Новый безопасный конфайнмент" – арка, которая будет надвинута поверх "Укрытия".

1">

1">

{{$index + 1}}/{{countSlides}}

{{currentSlide + 1}}/{{countSlides}}

Работы по сооружению второго саркофага должны были завершиться в 2015 году, но не раз переносились. Главной причиной задержки называется "серьезная нехватка денежных средств". Очередной срок сдачи намечен на ноябрь 2017 года.

Совокупная стоимость завершения проекта, составной частью которого является сооружение саркофага, составляет 2,15 млрд евро. При этом стоимость строительства самого саркофага составляет 1,5 млрд евро.

675 млн евро к настоящему моменту предоставил ЕБРР. При необходимости банк готов профинансировать дефицит бюджета по этому проекту.

До 10 млн евро (по 5 млн евро ежегодно) – дополнительный взнос в чернобыльский фонд – постановило внести в 2016-2017 годах правительство России.

180 млн евро обещают выделить другие международные доноры.

$40 млн намерены предоставить США.

О своем желании сделать пожертвования в Чернобыльский фонд недавно заявили также некоторые арабские страны и КНР.

Мифы об аварии

Существует огромный разрыв между научным знанием о последствиях аварии и общественным мнением. Последнее в подавляющем большинстве случаев находится под влиянием развитой чернобыльской мифологии, имеющей малое отношение к реальным последствиям катастрофы, отмечают в Институте проблем безопасного развития атомной энергетики Российской академии наук (ИБРАЭ РАН).

Неадекватное восприятие радиационной опасности, по мнению специалистов, имеет объективные конкретно-исторические причины, в числе которых:

Умалчивание государством причин и реальных последствий аварии;

Незнание населением элементарных основ физики процессов, происходящих как в области ядерной энергетики, так и в области радиации и радиоактивного воздействия;

Спровоцированная упомянутыми причинами истерия в СМИ;

Многочисленные проблемы социального характера общефедерального масштаба, ставшие хорошей почвой для быстрого образования мифов, и пр.

Косвенный ущерб от аварии, связанный с социально-психологическими и социально-экономическими последствиями, значительно выше прямого ущерба от действия чернобыльской радиации.

Миф 1.

Авария оказала катастрофическое влияние на здоровье от десятков тысяч до сотен тысяч людей

По данным Российского национального радиационно-эпидемиологического регистра (НРЭР), лучевая болезнь была выявлена у 134 человек, находившихся на аварийном блоке в первые сутки. Из них 28 погибли в течение нескольких месяцев после аварии (27 в России), 20 умерли по разным причинам в течение 20 лет.

За прошедшие 30 лет в НРЭР зафиксированы 122 случая заболевания лейкемией среди ликвидаторов. 37 из них могли быть индуцированы чернобыльской радиацией. Увеличения количества заболеваний другими видами онкологии среди ликвидаторов по сравнению с остальными группами населения зафиксировано не было.

В период с 1986 по 2011 годы из 195 тыс. российских ликвидаторов, зарегистрированных в НРЭР, от разных причин умерли около 40 тыс. человек, при этом общие показатели смертности не превышали соответствующих средних значений населения РФ.

По данным НРЭР на конец 2015 года, из 993 случаев заболеваний раком щитовидной железы у детей и подростков (на момент аварии) 99 могли быть связаны с радиационным облучением.

Никаких других последствий для населения не было зафиксировано, что полностью опровергает все сложившиеся мифы и стереотипы о масштабах радиологических последствий аварии для здоровья населения, считают эксперты. Эти же выводы подтвердились и спустя 30 лет после катастрофы.

Кюри, беккерель, зиверт – в чем отличие

Радиоактивность – это способность некоторых природных элементов и искусственных радиоактивных изотопов самопроизвольно распадаться, испуская при этом невидимые и неощущаемые человеком излучения.

Для измерения количества радиоактивного вещества или его активности применяются две единицы: внесистемная единица кюри и единица беккерель , принятая в Международной системе единиц (СИ).

На окружающую среду и живые организмы влияет ионизирующее воздействие излучения, которое характеризуется дозой излучения или облучения.

Чем больше доза облучения, тем больше степень ионизации. Одна и та же доза может накапливаться за разное время, и биологический эффект облучения зависит не только от величины дозы, но и от времени ее накопления. Чем быстрее получена доза, тем больше ее поражающее действие.

Разные виды излучений создают разный поражающий эффект при одной и той же дозе излучения. Все национальные и международные нормы установлены в эквивалентной дозе облучения. Внесистемной единицей этой дозы является бэр , а в системе СИ – зиверт (Зв).

Первый заместитель директора Института проблем безопасного развития атомной энергетики РАН Рафаэль Арутюнян уточняет, что если проанализировать дополнительные дозы, накопленные жителями чернобыльских зон за прошедшие после аварии годы, то из 2,8 млн россиян, оказавшихся в районе воздействия:

2,6 млн получили меньше 10 миллизивертов. Это в пять-семь раз меньше среднемировой дозы облучения от природного радиационного фона;

Менее 2 тыс. человек получили дополнительные дозы больше 120 миллизивертов. Это в полтора-два раза меньше доз облучения жителей таких стран, как Финляндия.

Именно по этой причине, считает ученый, среди населения не наблюдается и не может наблюдаться каких-либо радиологических последствий, кроме уже отмеченного выше рака щитовидной железы.

По данным специалистов из Научного центра радиационной медицины АМН Украины, из 2,34 млн человек, проживающих на загрязненных территориях Украины, за 12 лет после катастрофы от раков разного происхождения умерло примерно 94 800 человек, из-за "чернобыльских" раков дополнительно умерло около 750 человек.

Для сравнения: среди 2,8 млн людей, независимо от места их проживания, ежегодно от раковых заболеваний, не связанных с радиационным фактором, смертность составляет от 4 до 6 тыс., то есть за 30 лет – от 90 до 170 тыс. смертей.

Какие дозы облучения смертельны

Существующий повсеместно естественный радиационный фон, а также некоторые медицинские процедуры приводят к тому, что каждый человек ежегодно получает в среднем эквивалентную дозу облучения от 2 до 5 миллизивертов.

Для людей, профессионально связанных с радиоактивными материалами, годовая эквивалентная доза не должна превышать 20 миллизивертов.

Летальной считается доза в 8 зивертов, а доза половинной выживаемости, при которой погибает половина облученной группы людей, составляет 4-5 зивертов.

На Чернобыльской АЭС около тысячи людей, находившихся рядом с реактором в момент катастрофы, получили дозы от 2 до 20 зивертов, что в ряде случаев оказалось смертельным.

У ликвидаторов средняя доза составила около 120 миллизивертов.

© YouTube.com/TASS

Миф 2 .

Генетические последствия аварии на ЧАЭС для человечества ужасны

По словам Арутюняна, мировая наука за 60 лет подробных научных исследований не наблюдала на человеке каких-либо генетических дефектов у потомков вследствие радиационного облучения их родителей.

Данный вывод подтверждается и результатами постоянного наблюдения как за пострадавшими в Хиросиме и Нагасаки, так и за последующим поколением.

Превышения генетических отклонений относительно среднестатистических данных по стране зафиксировано не было.

Через 20 лет после Чернобыля Международная комиссия радиологической защиты в своих рекомендациях 2007 года понизила значение гипотетических рисков практически в 10 раз.

В то же время есть и другие мнения. Согласно исследованиям доктора сельскохозяйственных наук Валерия Глазко:

После катастрофы рождаются не все, кто должен был родиться.

Преимущественно воспроизводятся менее специализированные, но обладающие более высокой устойчивостью к действию неблагоприятных факторов среды формы.

Ответ на одни и те же дозы ионизирующего облучения зависит от его новизны для популяции.

Ученый считает, что реальные последствия чернобыльской аварии для популяций человека будут доступны для анализа к 2026 году, так как поколение, попавшее под прямое воздействие аварии, только сейчас начинает обзаводиться семьями и рожать детей.

Миф 3.

Природа пострадала от аварии на атомной станции еще сильнее, чем человек

В Чернобыле произошел беспрецедентно большой выброс радионуклидов в атмосферу, на этом основании аварию на ЧАЭС считают самой тяжелой техногенной аварией в человеческой истории. На сегодняшний день почти повсеместно, за исключением наиболее загрязненных территорий, мощность дозы возвратилась к фоновому уровню.

Последствия облучения для флоры и фауны были заметны только непосредственно рядом с Чернобыльской АЭС в пределах зоны отчуждения.

Парадигма радиоэкологии такова, что если защищен человек, то окружающая среда защищена с огромным запасом, отмечает профессор Арутюнян. Если влияние на здоровье человека радиационного происшествия минимально, то его влияние на природу будет еще меньшим. Порог проявления негативных воздействий на флору и фауну в 100 раз выше, чем для человека.

Воздействие на природу после аварии наблюдалось только рядом с разрушенным энергоблоком, где доза облучения деревьев за 2 недели достигала 2000 рентген (в так называемом "рыжем лесу"). На данный момент вся природная среда даже в этом месте полностью восстановилась и даже расцвела за счет резкого уменьшения антропогенного воздействия.

Миф 4.

Переселение людей из города Припять и прилегающих территорий было плохо организовано

Эвакуация жителей 50-тысячного города была проведена быстро, утверждает Арутюнян. Несмотря на то, что по действующим тогда нормативам эвакуация была обязательной только в случае достижения дозы 750 мЗв, решение о ней было принято при прогнозируемом уровне доз меньше 250 мЗв. Что вполне соответствует сегодняшнему пониманию критериев экстренной эвакуации. Информация о том, что люди получали большие дозы радиационного облучения в ходе эвакуации, – неправда, уверен ученый.

Использование атомных станций для выработки электрической энергии – очень заманчивая и многообещающая идея. АЭС обладают рядом неоспоримых преимуществ перед гидроэлектростанциями и тепловыми энергетическими сооружениями. Здесь практически нет отходов, отсутствуют выбросы газа в атмосферу.

При сооружении атомных станций, к примеру, нет необходимости строить дорогостоящие плотины.

По экологическим характеристикам с АЭС могут сравниться разве что установки, которые используют энергию ветра или солнечное излучение. Но такие альтернативные источники энергии в настоящее время не обладают достаточной мощностью, которая сможет обеспечить стремительно возрастающие потребности человечества. Казалось бы, нужно сосредоточиться на строительстве исключительно атомных энергетических установок.

Однако существуют факторы, которые мешают повсеместному использованию атомных электростанций. Главный из них – возможные вредные последствия для жизни и здоровья людей, которые в принципе несет в себе радиация, а также недостаточное развитие систем, которые могли бы обеспечить защиту от возможных технологических катастроф.

В чем состоит опасность атомных электростанций

Наибольшее опасение специалистов вызывает вредоносное воздействие радиации на организмы людей и животных. Радиоактивные вещества способны попадать в организм вместе с пищей и при дыхании. Они могут накапливаться в костях, щитовидной железе и других тканях. Сильное радиационное поражение способно вызвать лучевую болезнь и привести к смертельному исходу. Это лишь немногие проблемы, которые может вызвать радиация, случайно вышедшая из-под контроля.

Именно по этой причине при составлении проектов атомных станций приходится уделять пристальное внимание экологии и вопросам радиационной безопасности. Если в работе АЭС будут наблюдаться технологические сбои, это может привести к последствиям, которые сравнимы с результатами применения .

Разработка и внедрение систем безопасности на атомных станциях значительно удорожает строительство и, соответственно, ведет к повышению стоимости электроэнергии.

Даже самые строгие и всеобъемлющие меры безопасности при нынешнем развитии технологий, увы, не могут обеспечить полный контроль над процессами, происходящими в ядерном реакторе. Всегда существует риск того, что система даст сбой. При этом катастрофы могут быть вызваны как ошибками персонала, так и воздействием природных факторов, которые невозможно предотвратить.

Специалисты в области атомной энергетики постоянно работают над тем, чтобы свести вероятность отказов техники до приемлемого минимума. И все же пока нельзя утверждать, что они нашли безотказно действующий способ устранить вредные факторы, которые до сих пор мешают вывести атомные электростанции в число лидеров современной энергетики.