Момент инерции системы формула. Момент инерции

Системы на квадраты их расстояний до оси:

  • m i - масса i -й точки,
  • r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении .

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы , формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра
Сплошной цилиндр длины l , радиуса r и массы m
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0), получим формулу для момента инерции цилиндра (диска):

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Интегрируя, получим

Сплошной однородный шар

Вывод формулы

Разобъём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции сферы найдём интегрированием:

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобъём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

Интегрируя, получим

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l /2. По теореме Штейнера новый момент инерции будет равен

Безразмерные моменты инерции планет и их спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра.

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции - геометрическая характеристика сечения вида

где - расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси .

Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

Единица измерения СИ - м 4 . В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см 4 .

Из него выражается момент сопротивления сечения:

.
Геометрические моменты инерции некоторых фигур
Прямоугольника высотой и шириной :
Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно
Круга диаметром

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) - это величина

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы :

(1),

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

,
.

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
,
где -

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Момент инерции - это мера инертности тела относительно оси при вращательном движении (реальном или воображаемом) вокруг этой оси3. Момент инерции количественно равен сумме моментов инерции частиц тела - произведений масс частиц на квадраты их расстояний от оси вращения: J=Smr 2

Когда частицы тела находятся дальше от оси вращения, то угловое ускорение тела под действием того же момента силы меньше ; если частицы ближе к оси, то угловое ускоре­ние больше . Значит, если приблизить тело (все в целом или его части) к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Найдя опытным путем момент инерции тела, можно рассчитать радиус инерции, на величине которого отражается рас­пределение частиц в теле относительно данной оси.

Радиус инерции - это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квад­ратным из отношения момента инерции относительно данной оси

к массе тела:R=ÖJ/m

Количественное определение моментов инерции в биомеханике не всегда достаточно точно. Но для понимания физических основ дви­женийчеловека учитывать эту характеристику необходимо.

СИЛОВЫЕ ХАРАКТЕРИСТИКИ

Сила

Сила - это мера механического воздействия одного тела на дру­гое. Численно она определяется произведением массы тела на его ускорение, вызванное приложением этой силы: F=ma;

Таким образом, измерение силы, как и измерение массы, основано на 2-м законе Ньютона. Поскольку этот закон раскрывает зависимости в поступательном движении, то и сила как вектор определяется только в случае такого простейшего вида движения по массе и ускорению,

Источники сил. Уже указывалось, что ускорение зависит от систе­мы отсчета. Поэтому и сила, определяемая по ускорению, тоже зависит от системы отсчета. В инерциальной системе отсчета источником силы для данного тела всегда слу­жит другое материальное тело. Коль скоро взаимо­действуют два материальных объекта, то в этих условиях проявляется 3-й закон Ньютона3.

Если на одно тело действует другое тело, то оно изменяет движение первого. Но и первое тело в этом взаимодействии также изменяет дви­жение другого. Обе силы приложены к разным объектам, каждая про­являет соответствующий эффект. Их нельзя заменить одной равнодей­ствующей, поскольку они приложены к разным объектам. Именно по­этому они друг друга и не уравновешивают.

В неинерциальной системе отсчета рассматривают кроме взаи­модействий двух тел еще особые силы инерции («фиктивные»), для ко­торых 3-й закон Ньютона не применим.

Измерение сил . Применяется статическое измерение силы, т. е. измерение при помощи уравновешивающей силы (когда ускорение равно нулю), и динамическое - по ускорению, сообщаемому телу ее приложе­нием.

При статическом действии силы на данное тело (М) действуют два тела (А и В); всего имеется три материальных объекта (рис. 23, а). Силы F а и f в, приложенные к телу М, равны по величине и противоположны по направлению, они взаимно уравновешиваются. Их равнодействующая равна нулю. Ускорение, вызванное ими, также равно нулю. Скорость не изменяется (остается постоянной - равно­мерное движение или отно­сительная неподвижность).

Силу fa, дейст­вующую статиче­ски, можно изме­рить уравновеши­вающей ее силой f в.

Рассмотрим три случая про­явления статического действия силы, когда все тела неподвижны -

а)гимнаст в висе на перекладине; опорная реакция уравновешивает силу тяжести тела (G);

б) уравновешенное тело движется перпендикулярно уравновешенной силе тяжести - конькобежец скользит по льду; опорная реакция уравновешивает силу тяжести тела (G); последняя прямо не влияет на скорость скольжения;

в) уравновешенное тело по инерции движется по направлению дей­ствия уравновешенной силы; горнолыжник скользит с постоянной скоростью по склону; силы сопротивления (воздуха и трения лыж по снегу - Q) уравновешивают скатывающую составляющую силы тяжести (G). Во всех трех случаях вне зависимости от состояния покоя или направления движения тела урав­новешенная сила не изменяет движения; скорости в направлении ее действия по­стоянны.

Следует подчеркнуть, что во всех случаях статическое действие силы вызывает деформацию тела.

При динамическом действии силы на данное тело М действует неуравновешенная сила. В задачах по теоретической меха­нике часто рассматривается лишь эта одна движущая сила, как мера действия лишь одного движущего тела.

Движущая сила - это сила, которая совпа­дает с направлением движения (попутная) или образует с ним острый угол и при этом может совершать положительную работу (увеличивать энергию тела).

Однако в реальных условиях движений человека всегда сущест­вует среда (воздух или вода), действуют опора и другие внешние тела (снаряды, инвентарь, партнеры, противники и др.). Все они могут оказывать тормозящее действие. Более того, ни одного реального дви­жения без участия тормозя­щих сил просто не бывает.

Тормозящая сила на­правлена противопо­ложно направлению движения (встречная) или образует с ним тупой угол. Она может совер­шать отрицательную работу (уменьшать энергию тела).

Часть движущей силы, равная по величине тормозящей уравновешивает последнюю - это уравновешивающая сила (Fyp).

Избыток же движущей силы над тормозящей - ускоряющая сила (Fуск) - вызывает ус­корение тела с массой m согласно 2-му закону Ньютона (Fy=ma).

Следовательно, скорость не остается постоянной, а изменяется, т. е. возникает ускорение. Это и есть динамическое дейст­вие силы F.

Силу F уск, действующую динамически, мож­но измерить по массе тела и его ускорению.

Классификация сил. Силы, которые, изучают при анализе движений человека, в зависимости от общих признаков делятся на группы. По способу взаимодействия тел все силы делятся на д и с т а н т н ы е, возникающие на расстоянии без непосредственного соприкосновения тел, и контактные, которые возникают лишь при соприкосновении тел.

К дистантным силам в механике относят силы всемирного тяготе­ния, из которых в биомеханике изучаются силы земного тяготения, проявляющиеся в силах тяжести . Контактные силы включают упругие силы и силы трения .

По влиянию на движение различают силы а к т и в н ы е (или задаваемые) и реакции связи . Напоминаем, что связи -это огра­ничения движения объекта, осуществляемые другими телами . Сила, с которой связь противодействует движению, и представляет собою реакцию связи. Она заранее неизвестна и зависит от действия на тело других сил и движения самого тела.

Реакции связи сами по себе не вызывают движения, они только противодействуют активным силам или уравновешивают их. Если же реакции связи не уравновешивают активных сил, тогда и начинается движение под действием последних.

По источнику возникновения относительно системы (например, тела человека) силы различают в н е ш н и е, вызванные действием тел внешних относительно системы, и внутренние, вызванные взаи­модействиями внутри системы. Это деление необходимо при определе­нии возможностей действия тех или иных сил. Одну и ту же силу сле­дует считать внешней или внутренней в зависимости от того, относи­тельно какого объекта мы ее рассматри­ваем.

По способу приложениясилы в меха­нике делят на сосредоточенные , приложенные к телу в одной точке, и распределенные . Последние делят на поверхностные и объемные.

По характеру силы бываютпостоянные и переменные. В качестве примера постоянной силы можно назвать силу тяжести (в данном пункте Земли). Одна и та же сила может изменяться в зависи­мости от нескольких условий. Практически в движении человека по­стоянные силы почти не встречаются. Все силы переменные. Они меняют­ся в зависимости от времени (мышца с течением времени изменяет си­лу тяги), расстояния (в разных пунктах Земли даже «постоянная сила» тяжести различна), скорости (сопротивление среды зависит от относи­тельной скорости тела и среды).

Поскольку в биомеханике особенно важно взаимодействие тела человека с внешним окружением, вызываемое движениями частей те­ла, далее будут подробно рассмотрены силы внешние и внутренние относительно системы (тела человека). Взаимодействие физических объектов - главная причина изменения движений. Поэтому мере взаимодействия - силе - в биомеханике уделяетсяособое вни­мание.

Момент силы

Момент силы - это мера механического воздействия, способ­ного поворачивать тело (мера вращающего действия силы). Он численно определяется произведением модуля силы на ее плечо (расстояние от центра момента1 до линии действия силы):

Момент силы имеет знак плюс, если сила сообщает вращение про­тив часовой стрелки, и минус при обратном его направлении.

Вращающая способность силы проявляет­ся в создании, изменении или прекращении вращательного движения.

Полярный момент силы (момент силы относительно точки) может быть определен для любой силы относительно этой точки (О) (центр момента). Если расстояние от линии действия силы до избранной точки равно нулю, то и момент силы равен нулю. Сле­довательно, расположенная таким образом сила не обладает вращаю­щей способностью относительно этого центра. Площадь прямоуголь­ника (Fd) численно равна модулю момента силы.

Когда несколько моментов силы приложено к одному телу, их мож­но привести к одному моменту - главному моменту.

Для определения вектора момен­та силы1 надо знать: а) м о д у л ь момента (произведение модуля силы на ее плечо); б) плос­кость поворота (проходит через линию действия силы и центр момента) и в)направление поворота в этой плоскости.

Осевой момент силы (моментсилы относительно оси) может быть определен для любой силы, кроме совпадающей с осью, ей параллельной или ее пересекающей. Иначе говоря, сила и ось не должны лежать в одной плоскости.

Применяют статическое измерение моментасилы,если его уравновешивает лежащий в той же плоскости равный ему по модулю и противоположный по направлению момент другой силы отно­сительно того же центра момента (например, при равновесии рычага). Моменты сил тяжести звеньев относительно их проксимальных суста­вов называют статическими моментами звеньев .

Применяют динамическое измерение момента силы, если известны момент инерции тела относительно оси вращения и его угловое ускорение. Как и силы, моменты сил относительно центра мо­гут быть движущими и тормозящими , а стало быть, и уравновешивающими, ускоряющими и замедляю­щими . Момент силы может быть и отклоняющим - откло­няет в пространстве плоскость поворота.

При всех ускорениях возникают силы инерции: при нормальных ус­корениях - центробежные силы инерции, при касательных ускорениях (положительных или отрицательных) - касательные силы инерции. Центробежная сила инерции направлена по радиусу вращения и не имеет момента относительно центра вращения. Касательная же сила инерции приложена для твердого звена в центре его качаний. Таким образом, имеется момент силы инерции относительно оси вращения.

Действие силы

МОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела m i , на квадраты их расстояний r i до точки, оси или плоскости:

Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.

Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ОСЕЙ, ПЛОСКОСТЕЙ И НАЧАЛА ДЕКАРТОВЫХ КООРДИНАТ.

Момент инерции относительно начала координат (полярный момент инерции):

СВЯЗЬ МЕЖДУ ОСЕВЫМИ, ПЛОСКОСТНЫМИ И ПОЛЯРНЫМ МОМЕНТАМИ ИНЕРЦИИ:

Значения осевых моментов инерции некоторых геометрических тел приведены в табл. 1.

Таблица 1. Момент инерции некоторых тел
Фигура или тело

При с→0 получается прямоугольная пластина

ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ ПРИ ПЕРЕМЕНЕ ОСЕЙ

Момент инерции I u 1 относительно оси u 1 , параллельной данной оси u (рис. 1):

где I u - момент инерции тела относительно оси u; l(l 1) - расстояние от оси u (от оси u 1) до параллельной им оси u с, проходящей через центр масс тела; а - расстояние между осями u и u 1 .

Рисунок 1.

Если ось u центральная (l=0), то

т. е. для любой группы параллельных осей момент инерции относительно центральной оси наименьший.

Момент инерции I u относительно оси u, составляющей углы α, β, γ с осями декартовых координат х, у, z (рис. 2):

Рисунок 2.

Оси х, у, z главные, если

Момент инерции относительно оси u, составляющей углы α, β, γ c главными осями инерции х, у, z:

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ПРИ ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ ОСЕЙ:

где - центробежный момент инерции относительно центральных осей х с, y с, параллельных осям х, у; М - масса тела; x с, y с - координаты центра масс в системе осей х, у.

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНОГО МОМЕНТА ИНЕРЦИИ ПРИ ПОВОРОТЕ ОСЕЙ x, y ВОКРУГ ОСИ z НА УГОЛ α В ПОЛОЖЕНИЕ x 1 y 1 (рис. 3):

Рисунок 3.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ. Ось материальной симметрии тела - главная ось инерции тела.

Если плоскость xОz является плоскостью материальной симметрии тела, то любая из осей y - главная ось инерции тела.

Если положение одной из главных осей z гл известно, то положение двух других осей x гл и y гл определяется поворотом осей х и у вокруг оси z гл на угол φ (рис. 3):

ЭЛЛИПСОИД И ПАРАЛЛЕЛЕПИПЕД ИНЕРЦИИ. Эллипсоидом инерции называется эллипсоид, оси симметрии которого совпадают с главными центральными осями тела x гл, y гл, z гл, а полуоси а х, а у, а z равны соответственно:

где r уО z , r х Oz , r xOy - радиусы инерции тела относительно главных плоскостей инерции.

Параллелепипедом инерции называется параллелепипед, описанный вокруг эллипсоида инерции и имеющий с ним общие оси симметрии (рис. 4).

Рисунок 4.

РЕДУЦИРОВАНИЕ (ЗАМЕНА С ЦЕЛЬЮ УПРОЩЕНИЯ РАСЧЕТА) ТВЕРДОГО ТЕЛА СОСРЕДОТОЧЕННЫМИ МАССАМИ . При вычислении осевых, плоскостных, центробежных и полярных моментов инерции тело массой М можно редуцировать восемью сосредоточенными массами М/8, расположенными в вершинах параллелепипеда инерции. Моменты инерции относительно любых осей, плоскостей, полюсов вычисляются по координатам вершин параллелепипеда инерции x i , y i , z i (i=1, 2, ..., 8) по формулам:

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ

1. Определение моментов инерции тел вращения с использованием дифференциального уравнения вращения - см. формулы ("Вращательное движение твердого тела") .

Исследуемое тело закрепляется на горизонтальной оси х, совпадающей с его осью симметрии, и приводится во вращение вокруг нее с помощью груза Р, прикрепленного к гибкой нити, навернутой на исследуемое тело (рис. 5), при этом замеряется время t опускания груза на высоту h. Для исключения влияния трения в точках закрепления тела на оси х опыт производится несколько раз при разных значениях веса груза Р.

Рисунок 5.

При двух опытах с грузами Р 1 и Р 2

2. Экспериментальное определение моментов инерции тел посредством изучения колебаний физического маятника (см. 2.8.3) .

Исследуемое тело закрепляют на горизонтальной оси х (нецентральной) и замеряют, период малых колебаний около этой оси Т. Момент инерции относительно оси х определится по формуле

где Р - вес тела; l 0 - расстояние от оси вращения до центра масс С тела.

Моментом инерции тела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, разная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси:

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

В дальнейшем будет показано, что осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т. е. что осевой момент инерции является мерой инертности тела при вращательном движении.

Согласно формуле (2) момент инерции тела равен сумме моментов инерции всех его частей относительно той же оси. Для одной материальной точки, находящейся на расстоянии h от оси, . Единицей измерения момента инерции в СИ будет 1 кг (в системе МКГСС - ).

Для вычисления осевых моментов инерции можно расстояния точек от осей выражать через координаты этих точек (например, квадрат расстояния от оси Ох будет и т. д.).

Тогда моменты инерции относительно осей будут определяться формулами:

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси называется линейная величина определяемая равенством

где М - масса тела. Из определения следует, что радиус инерцни геометрически равен расстоянию от оси той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

Зная радиус инерции, можно по формуле (4) найти момент инерции тела и наоборот.

Формулы (2) и (3) справедливы как для твердого тела, так и для любой системы материальных точек. В случае сплошного тела, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве (2), обратится в интеграл. В результате, учитывая, что где - плотность, а V - объем, получим

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела. Аналогично формулы (3) для сплошных тел примут вид

Формулами (5) и (5) удобно пользоваться при вычислении моментов инерции однородных тел правильной формы. При этом плотность будет постоянной и выйдет из-под знака интеграла.

Найдем моменты инерции некоторых однородных тел.

1. Тонкий однородный стержень длиной l и массой М. Вычислим его момент инерции относительно оси перпендикулярной стержню и проходящей через его конец А (рис. 275). Направим вдоль АВ координатную ось Тогда для любого элементарного отрезка длины d величина , а масса , где - масса единицы длины стержня. В результате формула (5) дает

Заменяя здесь его значением, найдем окончательно

2. Тонкое круглое однородное кольцо радиусом R и массой М. Найдем его момент инерции относительно оси перпендикулярной плоскости кольца и проходящей через его центр С (рис. 276).

Так как все точки кольца находятся от оси на расстоянии то формула (2) дает

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массой М и радиусом R относительно ее оси.

3. Круглая однородная пластина или цилиндр радиусом R и массой М. Вычислим момент инерции круглой пластины относительно оси перпендикулярной пластине и проходящей через ее центр (см. рис. 276). Для этого выделим элементарное кольцо радиусом и шириной (рис. 277, а). Площадь этого кольца , а масса где - масса единицы площади пластины. Тогда по формуле (7) для выделенного элементарного кольца будет а для всей пластину