Алгебраические дроби. Сокращение алгебраических дробей в более сложных случаях

Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.

Yandex.RTB R-A-339285-1

Смысл сокращения алгебраической дроби

В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.

Сокращение алгебраической дроби представляет собой аналогичное действие.

Определение 1

Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.

К примеру, алгебраическая дробь 3 · x 2 + 6 · x · y 6 · x 3 · y + 12 · x 2 · y 2 может быть сокращена на число 3 , в итоге получим: x 2 + 2 · x · y 6 · x 3 · y + 12 · x 2 · y 2 . Эту же дробь мы можем сократить на переменную х, и это даст нам выражение 3 · x + 6 · y 6 · x 2 · y + 12 · x · y 2 . Также заданную дробь возможно сократить на одночлен 3 · x или любой из многочленов x + 2 · y , 3 · x + 6 · y , x 2 + 2 · x · y или 3 · x 2 + 6 · x · y .

Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.

Все ли алгебраические дроби подлежат сокращению?

Опять же из материалов об обыкновенных дробях мы знаем, что существуют сократимые и несократимые дроби. Несократимые – это дроби, не имеющие общих множителей числителя и знаменателя, отличных от 1 .

С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.

В общих случаях по заданному виду дроби довольно сложно понять, подлежит ли она сокращению. Конечно, в некоторых случаях наличие общего множителя числителя и знаменателя очевидно. Например, в алгебраической дроби 3 · x 2 3 · y совершенно понятно, что общим множителем является число 3 .

В дроби - x · y 5 · x · y · z 3 также мы сразу понимаем, что сократить ее возможно на х, или y , или на х · y . И все же гораздо чаще встречаются примеры алгебраических дробей, когда общий множитель числителя и знаменателя не так просто увидеть, а еще чаще – он попросту отсутствует.

Например, дробь x 3 - 1 x 2 - 1 мы можем сократить на х - 1 , при этом указанный общий множитель в записи отсутствует. А вот дробь x 3 - x 2 + x - 1 x 3 + x 2 + 4 · x + 4 подвергнуть действию сокращения невозможно, поскольку числитель и знаменатель не имеют общего множителя.

Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.

Правило сокращения алгебраических дробей

Правило сокращения алгебраических дробей состоит из двух последовательных действий:

  • нахождение общих множителей числителя и знаменателя;
  • в случае нахождения таковых осуществление непосредственно действия сокращения дроби.

Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.

Само действие сокращения алгебраической дроби базируется на основном свойстве алгебраической дроби, выражаемой равенством undefined , где a , b , c – некие многочлены, причем b и c – ненулевые. Первым шагом дробь приводится к виду a · c b · c , в котором мы сразу замечаем общий множитель c . Вторым шагом – выполняем сокращение, т.е. переход к дроби вида a b .

Характерные примеры

Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:

5 5 = 1 ; - 2 3 - 2 3 = 1 ; x x = 1 ; - 3 , 2 · x 3 - 3 , 2 · x 3 = 1 ; 1 2 · x - x 2 · y 1 2 · x - x 2 · y ;

Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).

К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105

Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 - 2 3 2 - 1 · 5 · 7 = 2 105

(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105

По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.

Пример 1

Задана алгебраическая дробь - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z . Необходимо произвести ее сокращение.

Решение

Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 · 3 · 3 · a · a · a · a · a · b · b · c · z 2 · 3 · a · a · b · b · c · c · c · c · c · c · c · z = = - 3 · 3 · a · a · a 2 · c · c · c · c · c · c = - 9 · a 3 2 · c 6

Однако, более рациональным способом будет запись решения в виде выражения со степенями:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 3 · a 5 · b 2 · c · z 2 · 3 · a 2 · b 2 · c 7 · z = - 3 3 2 · 3 · a 5 a 2 · b 2 b 2 · c c 7 · z z = = - 3 3 - 1 2 · a 5 - 2 1 · 1 · 1 c 7 - 1 · 1 = · - 3 2 · a 3 2 · c 6 = · - 9 · a 3 2 · c 6 .

Ответ: - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 9 · a 3 2 · c 6

Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).

Пример 2

Задана дробь 2 5 · x 0 , 3 · x 3 . Необходимо выполнить ее сокращение.

Решение

Возможно сократить дробь таким образом:

2 5 · x 0 , 3 · x 3 = 2 5 3 10 · x x 3 = 4 3 · 1 x 2 = 4 3 · x 2

Попробуем решить задачу иначе, предварительно избавившись от дробных коэффициентов – умножим числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, т.е. на НОК (5 , 10) = 10 . Тогда получим:

2 5 · x 0 , 3 · x 3 = 10 · 2 5 · x 10 · 0 , 3 · x 3 = 4 · x 3 · x 3 = 4 3 · x 2 .

Ответ: 2 5 · x 0 , 3 · x 3 = 4 3 · x 2

Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.

Пример 3

Задана рациональная дробь 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 . Необходимо ее сократить.

Решение

Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49)

Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:

2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49) = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7)

Хорошо заметно, что возможно сократить дробь на общий множитель b 2 · (a + 7) . Произведем сокращение:

2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Краткое решение без пояснений запишем как цепочку равенств:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 a + 49) b 3 · (a 2 - 49) = = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Ответ: 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · a + 14 a · b - 7 · b .

Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.

Пример 4

Дана алгебраическая дробь 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 . Необходимо осуществить ее сокращение, если это возможно.

Решение

На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:

1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2

Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2 = x · - 2 7 · - 7 2 · 1 5 + x 2 · y 5 · x 2 · y - 1 5 · 3 1 2 = = - 2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10

Теперь становится виден общий множитель, осуществляем сокращение:

2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10 = - 2 7 · x 5 = - 2 35 · x

Ответ: 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = - 2 35 · x .

Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

Сокращать можно только множители!

Члены многочленов сокращать нельзя!

Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.

Рассмотрим примеры сокращения дробей.

В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.

Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а показатели вычитаем.

a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

b и b сокращаем на b, полученные в результате единицы не пишем.

c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,

Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо . В числителе есть общий множитель 4x. Выносим его за скобки:

И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.

Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:

Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:

В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

Многочлен в числителе состоит из 4 слагаемых. первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

В числителе вынесем за скобки общий множитель (x+2):

Сокращаем дробь на (x+2):

Цели:

1. Обучающая - закрепить полученные знания и навыки сокращения алгебраических дробей при решении более сложных упражнений, применяя разложение на множители многочлена разными способами, отработать умения сокращать алгебраические дроби. Повторить формулы сокращённого умножения: (a+ b)2= a2+2 ab+ b2,
(a- b) 2 = a 2 -2 ab+ b 2 , a 2 - b 2 =(a+ b)(a- b), способ группировки, вынесение общего множителя за скобки.

2. Развивающая – развитие логического мышления для сознательного восприятия учебного материала, внимание, активность учащихся на уроке.

3. Воспитывающая - воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности.

Задачи:

1. Закрепить изученный материал, меняя виды работы, по данной теме «Алгебраическая дробь. Сокращение дробей».

2. Развивать навыки и умения, в сокращении алгебраических дробей применяя разные способы разложения на множители числителя и знаменателя, развивать логическое мышление, правильную и грамотную математическую речь, развитие самостоятельности и уверенности в своих знаниях и умениях при выполнении разных видов работ.

3. Воспитывать интерес к математике путём введения разных видов закрепления материала: устной работой, работой с учебником, работой у доски, математическим диктантом, тестом, самостоятельной работой, игрой «Математический турнир»; стимулированием и поощрением деятельности учащихся.

План:
I. Организационный момент.
II. Устная работа.
III. Математический диктант.
IV.
1.Работа по учебнику и у доски.
2. Работа в группах по карточкам - игра «Математический турнир».
3. Самостоятельная работа по уровням (А, В, С).
V. Итог.
1. Тест (взаимопроверка).
VI. Домашнее задание.

Ход урока:

I. Организационный момент.

Эмоциональный настрой и готовность учителя и учащихся на урок. Учащиеся ставят цели и задачи – данного урока, по наводящим вопросам учителя, определяют тему урока.

II. Устная работа.

1. Сократить дроби:

2. Найдите значение алгебраической дроби:
при с = 8, с = -13, с = 11.
Ответ: 6; -1; 3.

3. Ответьте на вопросы:

1) Какой полезно соблюдать порядок при разложении многочленов на множители?
(При разложении многочленов на множители полезно соблюдать следующий порядок: а) вынести общий множитель за скобку, если он есть; б) попробовать разложить многочлен на множители по формулам сокращённого умножения; в) попытаться применить способ группировки, если предыдущие способы не привели к цели).

2) Чему равен квадрат суммы?
(Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа).

3) Чему равен квадрат разности?
(Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа).

4) Чему равна разность квадратов двух чисел?
(Разность квадратов двух чисел равна произведению разности этих чисел и их суммы).

5) Что необходимо выполнить при использовании способа группировки? (Чтобы разложить многочлен на множители способом группировки, нужно: а) объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена; б) вынести этот общий множитель за скобки).
6) Для вынесения общего множителя за скобки нужно……?
(Найти этот общий множитель; 2. вынести его за скобки).

7) Какие вы знаете способы разложения многочлена на множители?
(Вынесение общего множителя за скобки, способ группировки, формулы сокращённого умножения).

8) Что нужно для сокращения дроби?
(Для сокращения дроби нужно числитель и знаменатель разделить на их общий множитель).

III. Математический диктант.

  1. Подчеркните алгебраические дроби:

I вариант:

II вариант:

  1. Можно ли представить выражение

I вариант:

II вариант:

в виде многочлена? Если можно представьте?

3. Какие значения буквы являются допустимыми для выражения:
I вариант:

II вариант:
(x-5)(x+7).

4. Запишите алгебраическую дробь с числителем
I вариант:
3х2.
II вариант:
5y.
и знаменателем

I вариант:
x(x+3).
II вариант:
y 2 (y+7).
и сократите её.

IV.Закрепление темы: «Алгебраическая дробь. Сокращение дробей»:

1.Работа по учебнику и у доски.

Разложить на множители числитель и знаменатель дроби и сократить её.
№441(1;3).

1. ; 3.

№442(1;3;5).

1. 3.

№443(1;3).

1. 3.

№444(1;3).

1. 3.

№445(1;3).

1. 3.

№446(1;3).

2.Работа в группах по карточкам - игра «Математический турнир».

(Задания к игре – «Приложение 1».)
Закрепление и проверка навыков в решении примеров по данной теме проводится в виде турнира. Класс делится на группы и им предлагаются задания на карточках (карточки разных уровней).
Через определённое время, каждый ученик должен записать в тетрадь решение заданий своей команды и уметь их объяснить.
Допускаются консультации внутри команды (их проводит капитан).
Затем начинается турнир: каждая команда имеет право вызвать другие, но по одному разу. Н-р, капитан первой команды вызывает учеников из второй команды для участия в турнире; то же самое делает капитан второй команды, выходят к доске меняются карточками и решают задания и т.д.

3. Самостоятельная работа по уровням (А, Б, В)

«Дидактический материал» Л.И. Звавич и др., стр. 95, С-52.(книга имеется у всех учащихся)
А . №1: I вариант-1) а,б; 2) а,в; 5) а.
II вариант-1) в,г; 2) б,г, 5) в.
Б . №2: I вариант- а.
II вариант- б.
В . №3: I вариант- а.
II вариант- б.

V. Итог.

1. Тест (взаимопроверка).
(Задания к тесту – «Приложение 2».)
(на карточках для каждого учащегося, по вариантам)

VI. Домашнее задание.

1) «Д.М.» стр. 95 №1. (3,4,6);
2) №447 (чётные);
3) §24, повторить § 19 - §23.

Деление и числителя и знаменателя дроби на их общий делитель , отличный от единицы, называют сокращением дроби .

Чтобы сократить обыкновенную дробь, нужно разделить ее числитель и знаменатель на одно и то же натуральное число.

Это число является наибольшим общим делителем числителя и знаменателя данной дроби.

Возможны следующие формы записи решения примеров на сокращение обыкновенных дробей.

Учащийся вправе выбрать любую форму записи.

Примеры. Упростить дроби.

Сократим дробь на 3 (делим числитель на 3;

делим знаменатель на 3).

Сокращаем дробь на 7.

Выполняем указанные действия в числителе и знаменателе дроби.

Полученную дробь сокращаем на 5.

Сократим данную дробь 4) на 5·7³ — наибольший общий делитель (НОД) числителя и знаменателя, который состоит из общих множителей числителя и знаменателя, взятых в степени с наименьшим показателем.

Разложим числитель и знаменатель этой дроби на простые множители.

Получаем: 756=2²·3³·7 и 1176=2³·3·7² .

Определяем НОД (наибольший общий делитель) числителя и знаменателя дроби 5) .

Это произведение общих множителей, взятых с наименьшими показателями.

НОД(756; 1176)=2²·3·7 .

Делим числитель и знаменатель данной дроби на их НОД, т. е. на 2²·3·7 получаем несократимую дробь 9/14 .

А можно было записать разложения числителя и знаменателя в виде произведения простых множителей, не применяя понятие степени, а затем произвести сокращение дроби, зачеркивая одинаковые множители в числителе и знаменателе. Когда одинаковых множителей не останется — перемножаем оставшиеся множители отдельно в числителе и отдельно в знаменателе и выписываем получившуюся дробь 9/14 .

И, наконец, можно было сокращать данную дробь 5) постепенно, применяя признаки деления чисел и к числителю и к знаменателю дроби. Рассуждаем так: числа 756 и 1176 оканчиваются четной цифрой, значит, оба делятся на 2 . Сокращаем дробь на 2 . Числитель и знаменатель новой дроби — числа 378 и 588 также делятся на 2 . Сокращаем дробь на 2 . Замечаем, что число 294 — четное, а 189 — нечетное, и сокращение на 2 уже невозможно. Проверим признак делимости чисел 189 и 294 на 3 .

(1+8+9)=18 делится на 3 и (2+9+4)=15 делится на 3, следовательно, и сами числа 189 и 294 делятся на 3 . Сокращаем дробь на 3 . Далее, 63 делится на 3, а 98 — нет. Перебираем другие простые множители. Оба числа делятся на 7 . Сокращаем дробь на 7 и получаем несократимую дробь 9/14 .

Калькулятора онлайн выполняет сокращение алгебраических дробей в соответствии с правилом сокращения дробей: замена исходной дроби равной дробью, но с меньшими числителем и знаменателем, т.е. одновременное деление числителя и знаменателя дроби на их общий наибольший общий делитель (НОД). Также калькулятор выводит подробное решение, которое поможет понять последовательность выполнения сокращения.

Дано:

Решение:

Выполнение сокращения дробей

проверка возможности выполнения сокращения алгебраической дроби

1) Определение наибольшего общего делителя (НОД) числителя и знаменателя дроби

определение наибольшего общего делителя (НОД) числителя и знаменателя алгебраической дроби

2) Сокращение числителя и знаменателя дроби

сокращение числителя и знаменателя алгебраической дроби

3) Выделение целой части дроби

выделение целой части алгебраической дроби

4) Перевод алгебраической дроби в десятичную дробь

перевод алгебраической дроби в десятичную дробь


Помощь на развитие проекта сайт

Уважаемый Посетитель сайта.
Если Вам не удалось найти, то что Вы искали - обязательно напишите об этом в комментариях, чего не хватает сейчас сайту. Это поможет нам понять в каком направлении необходимо дальше двигаться, а другие посетители смогут в скором времени получить необходимый материал.
Если же сайт оказался Ваме полезен - подари проекту сайт всего 2 ₽ и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!


I. Порядок действий при сокращении алгебраической дроби калькулятором онлайн:

  1. Чтобы выполнить сокращение алгебраической дроби введите в соответствующие поля значения числителя, знаменателя дроби. Если дробь смешанная, то также заполните поле, соответствующее целой части дроби. Если дробь простая, то оставьте поле целой части пустым.
  2. Чтобы задать отрицательную дробь, поставьте знак минус в целой части дроби.
  3. В зависимости от задаваемой алгебраической дроби автоматически выполняется следующая последовательность действий:
  • определение наибольшего общего делителя (НОД) числителя и знаменателя дроби ;
  • сокращение числителя и знаменателя дроби на НОД ;
  • выделение целой части дроби , если числитель итоговой дроби больше знаменателя.
  • перевод итоговой алгебраической дроби в десятичную дробь с округлением до сотых.
  • В результате сокращения может получиться неправильная дробь. В этом случае у итоговой неправильной дроби будет выделена целая часть и итоговая дробь будет переведена в правильную дробь.
  • II. Для справки:

    Дробь - число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенная дробь (простая дробь) записывается в виде двух чисел (числитель дроби и знаменатель дроби), разделенных горизонтальной чертой (дробной чертой), обозначающей знак деления. числитель дроби - число, стоящее над дробной чертой. Числитель показывает, сколько долей взяли у целого. знаменатель дроби - число, стоящее под дробной чертой. Знаменатель показывает, на сколько равных долей разделено целое. простая дробь - дробь, не имеющая целой части. Простая дробь может быть правильной или неправильной. правильная дробь - дробь, у которой числитель меньше знаменателя, поэтому правильная дробь всегда меньше единицы. Пример правильных дроби: 8/7, 11/19, 16/17. неправильная дробь - дробь, у которой числитель больше или равен знаменателю, поэтому неправильная дробь всегда больше единицы или равна ей. Пример неправильных дроби: 7/6, 8/7, 13/13. смешанная дробь - число, в состав которого входит целое число и правильная дробь, и обозначает сумму этого целого числа и правильной дроби. Любая смешанная дробь может быть преобразована в неправильную простую дробь. Пример смешанных дробей: 1¼, 2½, 4¾.

    III. Примечание:

    1. Блок исходных данных выделен желтым цветом , блок промежуточных вычислений выделен голубым цветом , блок решения выделен зеленым цветом .
    2. Для сложения, вычитания, умножения и деления обыкновенных или смешанных дробей воспользуйтесь онлайн калькулятором дробей с подробным решением.