Что образуется в ходе биосинтеза белка. Биосинтез белка: кратко и понятно

Важнейшие функции организма - обмен веществ, рост, развитие, передача наследственности, движение и др. - осуществляются в результате множества химических реакций с участием белков, нуклеиновых кислот и других биологически активных веществ. При этом в клетках непрерывно синтезируются разнообразные соединения: строительные белки, белки-ферменты, гормоны. В ходе обмена эти вещества изнашиваются и разрушаются, а вместо них образуются новые. Поскольку белки создают материальную основу жизни и ускоряют все реакции обмена веществ, жизнедеятельность клетки и организма в целом определяется способностью клеток синтезировать специфические белки. Их первичная структура предопределена генетическим кодом в молекулеДНК.

Молекулы белков состоят из десятков и сотен аминокислот (точнее, из аминокислотных остатков). Например, в молекуле гемоглобина их около 600, и они распределены в четыре полипептидные цепочки; в молекуле рибонуклеазы таких аминокислот 124 и т. д.

Главная роль в определении первичной структуры белка принадлежит молекулам ДНК. Разные ее участки кодируют синтез разных белков, следовательно, одна молекула ДНК участвует в синтезе многих индивидуальных белков. Свойства белков зависят от последовательности аминокислот в полипептидной цепи. В свою очередь чередование аминокислот определяется последовательностью нуклеотидов в ДНК, и каждой аминокислоте соответствует определенный триплет. Экспериментально доказано, что, например, участок ДНК с триплетом ААЦ соответствует аминокислоте лейцину, триплет АЦЦ - триптофану, триплет АЦА-цистеину и т.д. Распределив молекулу ДНК на триплеты, можно представить, какие аминокислоты и в какой последовательности будут располагаться в молекуле белка. Совокупность триплетов составляет материальную основу генов, а каждый ген содержит информацию о структуре специфического белка (ген - это основная биологическая единица наследственности; в химическом отношении ген есть участок ДНК, включающий несколько сотен пар нуклеотидов).

Генетический код - исторически сложившаяся организация молекул ДНК и РНК, при которой последовательность нуклеотидов в них несет информацию о последовательности аминокислот в белковых молекулах. Свойства кода: триплетность (кодон), неперекрываемость (кодоны следуют друг за другом), специфичность (один кодон может определять в полииептидной цепи только одну аминокислоту), универсальность (у всех живых организмов один и тот же кодон обусловливает включение в полипептид одну и ту же аминокислоту), избыточность (для большинства аминокислот существует несколько кодонов). Триплеты, не несущие информации об аминокислотах, являются стоп триплетами, обозначающими место начала синтеза и-РНК. (В.Б. Захаров. Биология. Справочные материалы. М.,1997)

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником служит и РНК, на которую нуклеотидная последовательность переписывается, в точном соответствии с таковой на ДНК - по принципу комплементарности. Этот процесс получил название транскрипции и протекает как реакция матричного синтеза. Он характерен только для живых структур и лежит в основе важнейшего свойства живого - самовоспроизведения. Биосинтезу белка предшествует матричный синтез иРНК на нити ДНК. Возникшая при этом иРНК выходит из ядра клетки в цитоплазму, где на нее нанизываются рибосомы, сюда же с помощью тРЙК доставляются аминокислоты.

Синтез белка - сложный многоступенчатый процесс, в котором участвуют ДНК, иРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Вначале аминокисдоты в цитоплазме активируются с помощью ферментов и присоединяются к тРНК (к участку, где расположен нуклеотид ЦЦА). На следующем этапе идет соединение аминокислот в таком порядке, в каком чередование нуклеотидов с ДНК передано на иРНК. Этот этап называется трансляцией. На нити иРНК размещается не одна рибосома, а группа их - такой комплекс называется полисома (Н.Е. Ковалев, Л.Д. Шевчук, О.И. Щуренко. Биология для подготовительных отделений медицинских институтов).

Схема Биосинтез белка

Синтез белка состоит из двух этапов - транскрипции и трансляции.

I. Транскрипция (переписывание) - биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК). Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.

II. Трансляция (передача) - синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями:

1. Образование функционального центра рибосомы - ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) - центр узнавания аминокислоты и П (пептидный) - центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарностн возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс "кодон рРНК и тРНК с аминокислотой" перемещается в активный центр П, где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматиче-ской сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) --> РНК (трансляция) --> белок.

Завершив один цикл, полисомы могут принять участие в синтезе новых молекул белка.

Отделившаяся от рибосомы молекула белка имеет вид нити, которая биологически неактивна. Биологически функциональной она становится после того, как молекула приобретает вторичную, третичную и четвертичную структуру, т. е. определенную пространственно специфическую конфигурацию. Вторичная и последующие структуры белковой молекулы предопределены в информации, заложенной в чередовании аминокислот, т. е. в первичной структуре белка. Иначе говоря, программа образования глобулы, ее уникальная конфигурация определяются первичной структурой молекулы, которая в свою очередь строится под контролем соответствующего гена.

Скорость синтеза белка обусловлена многими факторами: температурой среды, концентрацией водородных ионов, количеством конечного продукта синтеза, присутствием свободных аминокислот, ионов магния, состоянием рибосом и др.

Генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции.

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид.

Копирование мРНКначинается с прикрепления РНК-полимеразы к участку ДНК, который называется промотором. Однако, учитывая сведения о возможности альтернативного сплайсинга, возможны случаи, когда гены, даже, расположенные рядом, будут транскрибироваться с разных цепей. Таким образом, для транскрипции могут использоваться обе цепи ДНК. При транскрипции комплементарных цепей ДНК используются разные РНК-полимеразы, а направление их движения по цепи определяется последовательностью промотора.

Так как цепи ДНК инвертированы относительно друг друга, а синтез мРНК, также, как синтез ДНК идет только в направлении от 5ꞌ к 3ꞌ концу, то и транскрипции на ДНК идут в противоположных направлениях.

Цепь ДНК, которая содержит те же последовательности, что и мРНК, называется кодирующей , а цепь, обеспечивающая синтез мРНК (на основе комплементарного спаривания) – антикодирующей . Антикодирующая цепь также называетсятранскрибируемой.

Кроме мРНК в клетке образуются и другие продукты транскрипции ДНК. К ним относятся молекулы рРНК и тРНК, которые также являются участниками синтеза полипептидов. Все эти РНК называются ядерными.

Если рассматривать процентное содержание этих трех видов РНК в клетке, то на долю зрелой мРНК приходится около 5 % от общего содержания РНК, на долю тРНК – около 10 %, а большая часть – до 85 % приходится на рРНК.

Все РНК транскрибируются с ДНК из рибонуклеотидтрифосфатов с освобождением пирофосфата при участии РНК-полимераз. У прокариот присутствует только один вид РНК-полимеразы, которая обеспечивает синтез мРНК, рРНК и тРНК.

В клетках эукариот присутствует три вида РНК- полимераз (I, II, III). Каждая из этих РНК-полимераз, прикрепляясь к промотору на ДНК, обеспечивает транскрипцию разных последовательностей ДНК. РНК-полимераза I синтезирует крупные рРНК (основные молекулы РНК больших и малых субъединиц рибосом). РНК-полимераза II синтезирует все мРНК и часть малых рРНК, РНК-полимераза III синтезирует тРНК и РНК 5s –субъединиц рибосом.

Для связывания РНК-полимераз с промотором необходимы особые белки, выполняющие функцию факторов инициации транскрипции (TF I, TF II, TF III для соответствующих полимераз).

С учетом этих позиций, основные этапы биосинтеза белков состоят в следующем:

1 этап. Транскрипция ДНК . На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК . Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Все стадии процессинга мРНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).

По мере синтеза про-мРНК, она тут же образует комплексы с ядерными белками – информоферами и образует ядерные и цитоплазматические комплексы (мРНК плюс информоферы) - информосомы. Таким образом, мРНК не бывает свободной от белков. На всем пути следования до завершения трансляции мРНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.

3 этап. Трансляция мРНК . Полученная при транскрипции молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны . В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ . Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами). Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. Например, это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

При этом, вторая тРНК вместе с аминокислотой (Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.

На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (например, это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Заключается в окончании синтеза полипептидной цепи.
В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).

1. Какие функции выполняют в клетке белки?

Ответ. Белки играют исключительно большую роль в процессах жизнедеятельности клетки и организма, им свойственны следующие функции.

1. Структурная. Входят в состав внутриклеточных структур‚ тканей и органов. Например, коллаген и эластин служат компонентами соединительной ткани: костей‚ сухожилий‚ хрящей; фиброин входит в состав шелка‚ паутины; кератин входит в состав эпидермиса и его производных (волосы‚ рога‚ перья). Образуют оболочки (капсиды) вирусов.

2. Ферментативная. Все химические реакции в клетке протекают при участии биологических катализаторов - ферментов (оксидоредуктазы, гидролазы, лигазы, трансферазы, изомеразы, и лиазы).

3. Регуляторная. Например, гормоны инсулин и глюкагон регулируют обмен глюкозы. Белки–гистоны участвуют в пространственной организации хроматина, и тем самым влияют на экспрессию генов.

4. Транспортная. Гемоглобин переносит кислород в крови позвоночных, гемоцианин в гемолимфе некоторых беспозвоночных, миоглобин - в мышцах. Сывороточный альбумин служит для транспорта жирных кислот‚ липидов и т. п. Мембранные транспортные белки обеспечивают активный транспорт веществ через клеточные мембраны. Цитохромы осуществляют перенос электронов по электронтранспортным цепям митохондрий и хлоропластов.

5. Защитная. Например, антитела (иммуноглобулины) образуют комплексы с антигенами бактерий и с инородными белками. Интерфероны блокируют синтез вирусного белка в инфицированной клетке. Фибриноген и тромбин участвуют в процессах свертывания крови.

6. Сократительная (двигательная). Белки актин и миозин обеспечивают процессы мышечного сокращения и сокращения элементов цитоскелета.

7. Сигнальная (рецепторная). Белки клеточных мембран входят в состав рецепторов и поверхностных антигенов.

Запасающие белки. Казеин молока, альбумин куриного яйца, ферритин (запасает железо в селезенке).

8. Белки-токсины. Дифтерийный токсин.

9. Энергетическая функция. При распаде 1 г белка до конечных продуктов обмена (СО2, Н2О, NH3, Н2S, SО2) выделяется 17‚6 кДж или 4‚2 ккал энергии.

2. Из чего состоят белки?

Ответ. Белки́ - высокомолекулярные органические вещества, состоящие из аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств.

Вопросы после §26

1. Что такое ген?

Ответ. Ген - материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК, несущие какую-либо целостную информацию - о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.

2. Какой процесс называется транскрипцией?

Ответ. Носителем генетической информации является ДНК, расположенная в клеточном ядре. Сам же синтез белка происходит в цитоплазме на рибосомах. Из ядра в цитоплазму информация о структуре белка поступает в виде информационной РНК (иРНК). Для того чтобы синтезировать иРНК, участок двуцепочечной ДНК раскручивается, а затем на одной из цепочек ДНК по принципу комплементарности синтезируется молекула иРНК. Это происходит следующим образом: против, например, Г молекулы ДНК становится Ц молекулы РНК, против А молекулы ДНК – У молекулы РНК (вспомните, что вместо тимина РНК несет урацил, или У), против Т молекулы ДНК – А молекулы РНК и против Ц молекулы ДНК – Г молекулы РНК. Таким образом, формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включен урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК». Этот процесс получил название транскрипции.

3. Где и как происходит биосинтез белка?

Ответ. В цитоплазме происходит процесс синтеза белка, который по-другому называют трансляцией. Трансляция – это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка. С тем концом иРНК, с которого должен начаться синтез белка, взаимодействует рибосома. При этом начало будущего белка обозначается триплетом АУГ, который является знаком начала трансляции. Так как этот кодон кодирует аминокислоту метионин, то все белки (за исключением специальных случаев) начинаются с метионина. После связывания рибосома начинает двигаться по иРНК, задерживаясь на каждом ее участке, который включает в себя два кодона (т. е. 3 + 3 = 6 нуклеотидов). Время задержки составляет всего 0,2 с. За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Та аминокислота, которая была связана с этой тРНК, отделяется от «черешка» и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК, антикодон которой комплементарен следующему триплету в иРНК, и следующая аминокислота, принесенная этой тРНК, включается в растущую цепочку. После этого рибосома сдвигается по иРНК, задерживается на следующих нуклеотидах, и все повторяется сначала.

4. Что такое стоп-кодон?

Ответ. Стоп-кодоны (УАА, УАГ или УГА) не кодируют аминокислот, они только лишь показывают, что синтез белка должен быть завершен. Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры

5. Сколько видов тРНК участвует в синтезе белков в клетке?

Ответ. Не менее 20 (количество аминокислот) , не более 61 (количество смысловых кодонов). Обычно около 43 тРНК у прокариот. У человека около 50 различных тРНК обеспечивают включение аминокислот в белок.

6. Из чего состоит полисома?

Ответ. Клетке необходима не одна, а много молекул каждого белка. Поэтому как только рибосома, первой начавшая синтез белка на молекуле иРНК, продвигается вперед, тут же на эту иРНК нанизывается вторая рибосома, которая начинает синтезировать такой же белок. На ту же иРНК может быть нанизана и третья, и четвертая рибосома, и т. д. Все рибосомы, синтезирующие белок на одной молекуле иРНК, называются полисомой.

7. Требуют ли процессы синтеза белка затрат энергии? Или, наоборот, в процессах синтеза белка происходит выделение энергии?

Ответ. Как любой синтетический процесс, синтез белка - это эндотермическая реакция и, значит, требует энергозатрат. Биосинтез белка представляет цепь синтетических реакций: 1) синтез и-РНК; 2) соединение аминокислот с т-РНК; 3) "сборку белка". Все эти реакции требуют больших энергетических затрат - до 24,2 ккал/моль. Энергия для синтеза белка обнеспечивается реакцией расщепления АТФ.

И процессинг РНК, второй этап включает трансляцию . Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов переводится в последовательность остатков аминокислот.

Процессинг РНК

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК, - альтернативный сплайсинг .

Трансляция

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки . Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации .


Wikimedia Foundation . 2010 .

Смотреть что такое "Биосинтез белка" в других словарях:

    В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам. Белковые вещества составляют основу всех жизненно важных структур клетки, они входят в состав цитоплазмы. Белки обладают необычайно высокой реакционной… … Биологическая энциклопедия

    Совокупность реакций полимеризации аминокислот в полипептидную цепь молекулы белка, протекающих в клетках на специализированных органеллах рибосомах; нарушение Б. б. лежит в основе многих болезней человека, животных и растений … Большой медицинский словарь

    Процесс синтеза природных органических соединений живыми организмами. Путь биосинтеза соединения это приводящая к образованию этого соединения последовательность реакций, как правило, ферментативных (генетически детерминированных), но изредка… … Википедия

    - [тэ], а; м. Образование различных органических веществ в живых организмах. Б. белка. Механизм биосинтеза. * * * биосинтез образование необходимых организму веществ в живых клетках с участием биокатализаторов ферментов. Обычно в результате… … Энциклопедический словарь

    биосинтез - (тэ) а; м. Образование различных органических веществ в живых организмах. Биоси/нтез белка. Механизм биосинтеза … Словарь многих выражений

    Рибосомный биосинтез - * рыбасомны біясінтэз * ribosomal biosynthesis сборка рибосомных частиц из РНК и белковых компонентов. У эукариот и прокариот координируется т. обр., что не накапливается ни избыток белка, ни избыток нуклеиновых кислот. У E. coli синтез белков… … Генетика. Энциклопедический словарь

    У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

    Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

    I Белки (Sciurus) род млекопитающих семейства беличьих отряда грызунов. Распространены в лесах Европы, Азии и Америки. Около 50 видов. Приспособлены к древесному образу жизни. Длина тела до 28 см. Мех обычно густой, у некоторых пушистый.… … Большая советская энциклопедия

Книги

  • Основы биохимии Ленинджера. В 3 томах. Том 3. Пути передачи информации , Д. Нельсон, М. Кокс. В учебном издании, написанном американскими учеными, которые получили признание как талантливые преподаватели университетского уровня, рассмотрены современные концепции биохимии в…

Для изучения процессов, протекающих в организме, нужно знать, что происходит на клеточном уровне. А там важнейшую роль играют белковые соединения. Необходимо изучить не только их функции, но и процесс создания. Поэтому важно объяснить кратко и понятно. 9 класс для этого подходит самым лучшим образом. Именно на этом этапе учащиеся владеют достаточным количеством знаний для понимания данной темы.

Белки - что это такое и для чего они нужны

Эти высокомолекулярные соединения играют огромную роль в жизни любого организма. Белки являются полимерами, то есть состоят из множества похожих «кусочков». Их количество может варьироваться от нескольких сотен до тысяч.

В клетке белки выполняют множество функций. Велика их роль и на более высоких уровнях организации: ткани и органы во многом зависят от правильной работы различных белков.

Например, все гормоны имеют белковое происхождение. А ведь именно эти вещества контролируют все процессы в организме.

Гемоглобин - тоже белок, он состоит из четырех цепей, которые в центре соединены атомом железа. Такая структура обеспечивает возможность переносить кислород эритроцитами.

Напомним, что все мембраны имеют в своем составе белки. Они необходимы для переноса веществ сквозь оболочку клеток.

Существует еще множество функций белковых молекул, которые они выполняют четко и беспрекословно. Эти удивительные соединения очень разнообразны не только по своим ролям в клетке, но и по строению.

Где происходит синтез

Рибосома является органеллой, в которой проходит основная часть процесса, называемого "биосинтез белка". 9 класс в разных школах отличается по программе изучения биологии, но многие учителя дают материал по органеллам заблаговременно, до изучения трансляции.

Поэтому учащимся будет нетрудно вспомнить пройденный материал и закрепить его. Следует знать, что на одной органелле одновременно может создаваться только одна полипептидная цепь. Этого мало, чтобы удовлетворить все потребности клетки. Поэтому рибосом очень много, и чаще всего они объединяются с эндоплазматической сетью.

Такая ЭПС называется шероховатой. Выгода такого «сотрудничества» очевидна: белок сразу после синтеза попадает в транспортный канал и может без задержек отправляться в место назначения.

Но если принимать во внимание самое начало, а именно считывание информации с ДНК, то можно сказать, что биосинтез белка в живой клетке начинается еще в ядре. Именно там синтезируется которая содержит генетический код.

Необходимые материалы - аминокислоты, место синтеза - рибосома

Кажется, что сложно объяснить, как протекает биосинтез белка, кратко и понятно, схема процесса и многочисленные рисунки просто необходимы. Они помогут донести всю информацию, а также учащимся удастся легче ее запомнить.

Прежде всего, для синтеза необходим «строительный материал» - аминокислоты. Некоторые из них вырабатываются организмом. Другие же можно получить только с пищей, они называются незаменимыми.

Общее число аминокислот - двадцать, но за счет огромного числа вариантов, в которых можно их располагать в длинной цепочке, молекулы белков очень разнообразны. Эти кислоты похожи между собой по структуре, но отличаются радикалами.

Именно свойства этих частей каждой аминокислоты определяют, в какую структуру «свернется» получившаяся цепочка, будет ли она образовывать четвертичную структуру с другими цепями, и какими свойствами будет обладать получившаяся макромолекула.

Процесс биосинтеза белка не может протекать просто в цитоплазме, для него нужна рибосома. состоит из двух субъединиц - большой и малой. В состоянии покоя они разобщены, но как только начинается синтез, они сразу соединяются и начинают работать.

Такие разные и важные рибонуклеиновые кислоты

Для того чтобы принести аминокислоту к рибосоме, нужна специальная РНК, называемая транспортной. Для сокращения ее обозначают т-РНК. Эта одноцепочечная молекула в виде клеверного листа способна прицепить одну аминокислоту к своему свободному концу и переправить ее к месту синтеза белка.

Еще одна РНК, участвующая в синтезе белка, называется матричной (информационной). Она несет в себе не менее важный компонент синтеза - код, в котором четко прописано, когда какую аминокислоту цеплять к образующейся цепочке белка.

Эта молекула имеет одноцепочечное строение, состоит из нуклеотидов, так же как и ДНК. Существуют некоторые отличия в первичной структуре этих нуклеиновых кислот, о которых вы можете прочитать в сравнительной статье о РНК и ДНК.

Информацию о составе белка м-РНК получает от главного хранителя генетического кода - ДНК. Процесс чтения и синтеза м-РНК называется транскрипцией.

Он происходит в ядре, откуда получившаяся м-РНК отправляется к рибосоме. Сама же ДНК из ядра не выходит, ее задача - только сохранить генетический код и передать его дочерней клетке во время деления.

Сводная таблица главных участников трансляции

Для того чтобы описать биосинтез белка кратко и понятно, таблица просто необходима. В нее мы запишем все компоненты и их роль в этом процессе, который называется трансляцией.

Сам же процесс создания белковой цепочки делится на три этапа. Давайте рассмотрим каждый из них более подробно. После этого вы сможете легко объяснить всем желающим биосинтез белка кратко и понятно.

Инициация - начало процесса

Это начальная стадия трансляции, в которой малая субъединица рибосомы соединяется с самой первой т-РНК. Эта рибонуклеиновая кислота несет на себе аминокислоту - метионин. Трансляция всегда начинается именно с этой аминокислоты, так как стартовым кодоном является АУГ, который и кодирует этот первый мономер в белковой цепи.

Для того чтобы рибосома узнала стартовый кодон и не начала синтез с середины гена, где последовательность АУГ тоже может оказаться, вокруг начального кодона располагается специальная последовательность нуклеотидов. Именно по ним рибосома узнает то место, на которое должна сесть ее малая субъединица.

После образования комплекса с м-РНК, стадия инициации заканчивается. И начинается основной этап трансляции.

Элонгация - середина синтеза

На этом этапе происходит постепенное наращивание белковой цепочки. Продолжительность элонгации зависит от количества аминокислот в белке.

Первым делом к малой субъединице рибосомы присоединяется большая. И начальная т-РНК оказывается в ней целиком. Снаружи остается только метионин. Далее в большую субъединицу заходит вторая т-РНК, несущая другую аминокислоту.

Если второй кодон на м-РНК совпадает с антикодоном на верхушке «клеверного листа», вторая аминокислота присоединяется к первой с помощью пептидной связи.

После этого рибосома передвигается по м-РНК ровно на три нуклеотида (один кодон), первая т-РНК отсоединяет от себя метионин и отделяется от комплекса. На ее месте оказывается вторая т-РНК, на конце которой висит уже две аминокислоты.

Затем в большую субъединицу входит третья т-РНК и процесс повторяется. Он будет происходить до тех пор, пока рибосома не наткнется на кодон в м-РНК, который сигнализирует об окончании трансляции.

Терминация

Этот этап является последним, некоторым он может показаться весьма жестоким. Все молекулы и органеллы, которые так слаженно работали над созданием полипептидной цепочки, останавливаются, как только рибосома наезжает на терминальный кодон.

Он не кодирует ни одну аминокислоту, поэтому какая бы т-РНК ни зашла в большую субъединицу, все они будут отвергнуты из-за несоответствия. Тут в дело вступают факторы терминации, которые отделяют готовый белок от рибосомы.

Сама органелла может либо распасться на две субъединицы, либо продолжить свой путь по м-РНК в поисках нового стартового кодона. На одной м-РНК могут находиться сразу несколько рибосом. Каждая из них - на свой стадии трансляции.Только что созданный белок снабжается маркерами, с помощью которых всем будет понятно его место назначения. И по ЭПС он будет отправлен туда, где необходим.

Чтобы понять роль биосинтеза белка, необходимо изучить, какие функции он может выполнять. Это зависит от последовательности аминокислот в цепочке. Именно их свойства определяют вторичную, третичную, а иногда и четвертичную (если она существует) и его роль в клетке. Более подробно о функциях белковых молекул можно прочитать в статье по этой теме.

Как узнать больше о трансляции

В этой статье описан биосинтез белка в живой клетке. Конечно, если изучать предмет глубже, на объяснение процесса во всех подробностях уйдет немало страниц. Но вышеизложенного материала должно хватить для общего представления.Очень полезным для понимания могут оказаться видеоматериалы, в которых ученые смоделировали все этапы трансляции. Некоторые из них переведены на русский язык и могут послужить отличным пособием для учащихся или просто познавательным видео.

Для того чтобы разбираться в теме лучше, следует прочитать и другие статьи на близкие темы. Например, про или про функции белков.