Что является причиной движения земной коры. Вертикальное движение земной коры

Земная кора состоит из литосферных плит. Для каждой литосферной плиты характерно непрерываемое движение. Люди не замечают таких движений, ведь они происходят чрезвычайно медленно.

Причины и последствия движения земной коры

Все мы знаем, что наша планета состоит из трех частей: земное ядро, земная мантия, и земная кора. В ядре нашей планеты сосредоточенны многие химические вещества, которые беспрерывно вступают в химическую реакцию друг с другом.

В результате таких химических, радиоактивных и тепловых реакций происходят колебания в литосфере. За счет этого, земная кора может двигаться вертикально и горизонтально.

История изучения движений земной коры

Тектонические движения исследовали еще ученые эпохи Античности. Древнегреческий географ Страбон впервые высказал теорию о том, что отдельные участки суши систематически поднимаются. Известный русский ученый Ломоносов называл движения земной коры как долговременные и нечувствительные землетрясения.

Однако более детальное изучение процессов движения земной коры началось в конце 19 века. Американский геолог Джилберт классифицировал движения земной коры на два основных типа: те, которые создают горы (орогенические) и те, которые создают материки (эпейрогенические). Изучением движения земной коры занимались как иностранные, так и отечественные ученые, в частности: В. Белоусов, Ю. Косыгин, М. Тетяев, Э. Хаарман, Г. Штилле.

Типы движения земной коры

Существуют два типа тектонических движений: вертикальные и горизонтальные. Вертикальные движения имеют названия радиальных. Такие движения выражаются в систематическом поднятии (либо опускании) литосферных плит. Зачастую радиальные движения земной коры происходят в качестве последствия сильных землетрясений.

Горизонтальные движения представляют собой смещения литосферных плит. Согласно мнению многих современных ученных, все существующие материки образовались в результате горизонтального смещения литосферных плит.

Значение движения земной коры для человека

Движения земной коры на сегодняшний день угрожают жизни многих людей. Ярким примером является итальянский город – Венеция. Город расположен на участке литосферной плиты, которая с высокой скоростью оседает.

Ежегодно, город опускается под воду – происходит процесс трансгрессии (долгосрочное наступление морской воды на сушу). В истории известны случаи, когда вследствие движения земной коры под воду уходили города и поселки, а через некоторое время поднимались вновь (процесс регрессии).

Строение земной коры, геологические структуры, закономерности их расположения и развития изучает раздел геологии - геотектоника. Рассмотрение движений земной коры в данной главе является представлением внутриплитной тектоники. Движения земной коры, вызывающие изменение залегания геологических тел, называют тектоническими движениями.

КРАТКИЙ ОЧЕРК СОВРЕМЕННОЙ ТЕОРИИ

ТЕКТОНИКИ ПЛИТ

В начале XX в. проф. Альфред Вегенер выдвинул гипотезу, которая послужила началом разработки принципиально новой геологической теории, описывающей формирование континентов и океанов на Земле. В настоящее время мобилистская теория тектоники плит наиболее точно описывает структуру верхних геосфер Земли, ее развитие и возникающие при этом геологические процессы и явления.

Простая и наглядная гипотеза А. Вегенера заключается в том, что в начале мезозоя, около 200 млн лет назад, все существующие ныне материки были сгруппированы в единый суперконтинент, названный А. Вегенером Пангеей. Пангея состояла из двух крупных частей: северной - Лавразии, включавшей в себя Европу, Азию (без Индостана), Северную Америку, и южной - Гондваны, включавшей Южную Америку, Африку, Антарктиду, Австралию, Индостан. Эти две части Пангеи были почти разделены глубоким заливом - впадиной океана Тетиса. Толчком к созданию гипотезы дрейфа материков послужило поразительное геометрическое сходство очертаний побережий Африки и Южной Америки, но далее гипотеза получила определенное подтверждение при палеонтологических, минералогических, геолого-структурных исследованиях. Слабым же местом в гипотезе А. Вегенера было отсутствие объяснений причин дрейфа материков, выявления сил, весьма значительных, способных перемещать континенты, эти чрезвычайно массивные геологические образования.

Голландский геофизик Ф. Венинг-Мейнес, английский геолог А. Холмс и американский геолог Д. Григе сначала предположили наличие конвективных течений в мантии, обладающих колоссальной энергией, а затем связали ее с идеями Вегенера. В середине XX в. были сделаны выдающиеся геологические и геофизические открытия: в частности, было установлено наличие глобальной системы срединно-океанических хребтов (СОХ) и рифтов; выявлено существование пластичного слоя астеносферы; открыто, что на Земле существуют линейные вытянутые пояса, в которых сосредоточено 98 % всех эпицентров землетрясений и которые окаймляют почти асейсмичные зоны, названные впоследствии литосферными плитами, а также ряд других материалов, которые в целом позволили сделать вывод, что господствовавшая к этому «фиксистская» тектоническая теория не может объяснить, в частности, выявленных палеомагнитных данных о географических положениях континентов Земли.

К началу 70-х годов XX в. американскими геологом Г. Хессом и геофизиком Р. Дитцем, на базе открытия явления спрединга (разрастания) океанского дна, показано, что за счет того, что горячее, частично расплавленное мантийное вещество, поднимаясь вдоль рифтовых трещин, должно растекаться в разные стороны от оси срединно-океанического хребта и «расталкивать» океанское дно в разные стороны, поднятое мантийное вещество заполняет рифтовую трещину и, застывая в ней, наращивает расходящиеся края океанической коры. Последующие геологические открытия подтвердили эти положения. Например, было установлено, что самый древний возраст океанической коры не превышает 150-160 млн лет (это всего лишь 1/30 возраста нашей планеты), в рифтовых трещинах залегают современные породы, а наиболее древние максимально удалены от СОХ.

В настоящее время в верхней оболочке Земли выделяют семь крупных плит: Тихоокеанскую, Евразийскую, Индо-Австралийскую, Антарктическую, Африканскую, Северо- и Южноамериканские; семь плит среднего размера, например Аравийскую, Наска, Кокос и др. В пределах крупных плит иногда выделяют самостоятельные плиты или блоки средних размеров и множество мелких. Все плиты перемещаются друг относительно друга, поэтому их границы четко маркируются зонами повышенной сейсмичности.

В целом выделяют три вида перемещения плит: раздвижение с образованием рифтов, сжатие или надвиг (подныривание) одной плиты на другую и, наконец, скольжение или сдвиг плит друг относительно друга. Все эти перемещения литосферных плит по поверхности астеносферы происходят под влиянием конвективных течений в мантии. Процесс пододвигания океанической плиты под континентальную называют субдукцией (например, Тихоокеанская «подныривает» под Евразийскую в районе Японской островной дуги), а процесс надвигания океанической на континентальную плиту - обдукцией. В древности такой процесс столкновения континентов (коллизия) привел к закрытию океана Тетис и возникновению Альпийско-Гималайского горного пояса.

Использование теоремы Эйлера по перемещению литосферных плит на поверхности геоида с привлечением данных космических и геофизических наблюдений позволило рассчитать (Дж. Минстер) скорость удаления Австралии от Антарктиды - 70 мм/год, Южной Америки от Африки - 40 мм/год; Северной Америки от Европы - 23 мм/год.

Красное море расширяется на 15 мм/год, а Индостан сталкивается с Евразией со скоростью 50 мм/год. Несмотря на то что глобальная теория тектоники плит является обоснованной и математически, и физически, многие геологические вопросы еще до конца не изучены; это, например, проблемы внутриплитной тектоники: при детальном изучении оказывается, что литосферные плиты отнюдь не абсолютно жесткие, недоформируемые и монолитные, согласно работам ряда ученых, из недр Земли поднимаются мощные потоки мантийного вещества, способного прогреть, проплавить и деформировать литосферную плиту (Дж. Вилсон). Значительный вклад в разработку наиболее современной тектонической теории внесли российские ученые В.Е. Хайн, П.И. Кропоткин, А.В. Пейве, О.Г. Сорох-тин, С.А. Ушаков и др.

ТЕКТОНИЧЕСКИЕ ДВИЖЕНИЯ

Проведенное данное рассмотрение тектонических движений в наибольшей степени применимо к внутриплитной тектонике, с некоторыми обобщениями.

Тектонические движения в земной коре проявляются постоянно. В одних случаях они медленные, малозаметные для глаза человека (эпохи покоя), в других - в виде интенсивных бурных процессов (тектонических революций). В истории земной коры таких тектонических революций было несколько.

Подвижность земной коры в значительной степени зависит от характера ее тектонических структур. Наиболее крупными структурами являются платформы и геосинклинали. Платформы относятся к устойчивым, жестким, малоподвижным структурам. Им свойственны выровненные формы рельефа. Снизу они состоят из жесткого неподдающегося складчатости участка земной коры (кристаллического фундамента), над которым горизонтально залегает толща ненарушенных осадочных пород. Типичным примером древних платформ служат Русская и Сибирская. Платформам свойственны спокойные, медленные движения вертикального характера. В противоположность платформам геосинклинали представляют собой подвижные участки земной коры. Располагаются они между платформами и представляют собой как бы их подвижные сочленения. Для геосинклиналей характерны разнообразные тектонические движения, вулканизм, сейсмические явления. В зоне геосинклиналей происходит интенсивное накопление мощных толщ осадочных пород.

Тектонические движения земной коры можно разделить на три основных типа:

  • колебательные, выражающиеся в медленных поднятиях и опусканиях отдельных участков земной коры и приводящие к образованию крупных поднятий и прогибов;
  • складчатые, обусловливающие смятие горизонтальных слоев земной коры в складки;
  • разрывные, приводящие к разрывам слоев и массивов горных пород.

Колебательные движения. Отдельные участки земной коры на протяжении многих столетий поднимаются, другие в это же время опускаются. Со временем поднятие сменяется опусканием, и наоборот. Колебательные движения не изменяют первоначальных условий залегания горных пород, но инженерно-геологическое их значение огромно. От них зависит положение границ между сушей и морями, обмеление и усиление размывающей деятельности рек, формирование рельефа и многое другое.

Различают следующие виды колебательных движений земной коры: 1) прошедших геологических периодов; 2) новейшие, связанные с четвертичным периодом; 3) современные.

Для инженерной геологии особый интерес представляют современные колебательные движения, вызывающие изменение высот поверхности земли в данном районе. Для надежной оценки скорости их проявления применяют геодезические работы высокой точности. Современные колебательные движения наиболее интенсивно происходят в районах геосинклиналей. Установлено, например, что за время с 1920 по 1940 гг. Донецкий бассейн поднимался относительно г. Ростова-на-Дону со скоростью 6-10 мм/год, а Среднерусская возвышенность - до 15-20 мм/год. Средние скорости современных опусканий в Азово-Кубанской впадине составляют 3-5, а в Терской впадине - 5-7 мм/год. Таким образом, годичная скорость современных колебательных движений чаще всего равна нескольким миллиметрам, а 10-20 мм/год - это очень высокая скорость. Известная предельная скорость - немногим более 30 мм/год.

В России поднимаются районы г. Курска (3,6 мм/год), остров Новая Земля, Северный Прикаспий. Ряд участков европейской территории продолжают погружаться - Москва (3,7 мм/год), Санкт-Петербург (3,6 мм/год). Опускается Восточное Предкавказье (5-7 мм/год). Многочисленны примеры колебаний земной поверхности в других странах. Много веков интенсивно опускаются районы Голландии (40-60 мм/год), Датских проливов (15-20 мм/год), Франции и Баварии (30 мм/год). Интенсивно продолжает подниматься Скандинавия (25 мм/год), только район Стокгольма за последние 50 лет поднялся на 190 мм.

За счет опускания западного побережья Африки приустьевая часть русла р. Конго опустилась и прослеживается на дне океана до глубины 2000 м на расстоянии 130 км от берега.

Современные тектонические движения земной коры изучает наука неотектоника. Современные колебательные движения необходимо учитывать при строительстве гидротехнических сооружений типа водохранилищ, плотин, мелиоративных систем, городов у моря. Например, опускание района Черноморского побережья приводит к интенсивному размыву берегов волнами моря и образованию крупных оползней.

Складчатые движения. Осадочные породы первоначально залегают горизонтально или почти горизонтально. Это положение сохраняется даже при колебательных движениях земной коры. Складчатые тектонические движения выводят пласты из горизонтального положения, придают им наклон или сминают в складки. Так возникают складчатые дислокации (рис. 31).

Все формы складчатых дислокаций образуются без разрыва сплошности слоев (пластов). Это их характерная особенность. Основными среди этих дислокаций являются: моноклиналь,

флексура, антиклиналь и синклиналь.

Моноклиналь является самой простой формой нарушения первоначального залегания пород и выражается в общем наклоне слоев в одну сторону (рис. 32).

Флексура - коленоподобная складка, образующаяся при смещении одной части толщи пород относительно другой без разрыва сплошности.

Антиклиналь - складка, обращенная своей вершиной вверх (рис. 33), и синклиналь - складка с вершиной, обращенной вниз (рис. 34, 35). Бока складок называют крыльями, вершины - замком, а внутреннюю часть - ядром.

Следует отметить, что горные породы в вершинах складок всегда бывают трещиноваты, а иногда даже раздроблены (рис. 36).

Разрывные движения. В результате интенсивных тектонических движений могут происходить разрывы сплошности пластов. Разорванные части пластов смещаются относительно друг друга. Смещение происходит по плоскости разрыва, которая проявляется в виде трещины. Величина амплитуды смещения бывает различной - от сантиметров до километров. К разрывным дислокациям относят сбросы, взбросы, горсты, грабены и надвиги (рис. 37).

Сброс образуется в результате опускания одной части толщи относительно другой (рис. 38, а). Если при разрыве происходит поднятие, то образуется взброс (рис. 38, б). Иногда на одном участке образуется несколько разрывов. В этом случае возникают ступенчатые сбросы (или взбросы) (рис. 39).

Рис. 31.

/ - полная (нормальная); 2- изоклинная; 3- сундучная; 4- прямая; 5 - косая; 6 - наклонная; 7- лежачая; 8- опрокинутая; 9- флексура; 10 - моноклинная

Рис. 32.

обстановке


Рис. 33.

(по М. Васичу)

Рис. 34. Полная складка (а ) и элементы складки (б):

1 - антиклиналь; 2 - синклиналь

Рис. 35. Синклинальное залегание слоев осадочных пород в природной обстановке (в оси складки различим разлом)



Рис. 37.

а - сброс; б - ступенчатый сброс; в - взброс; г - надвиг; д - грабен; е - горст; 1 - неподвижная часть толщи; 2-смещенная часть; П - поверхность Земли; р - плоскость разрыва

Поверхность сдвига

Рис. 38. Схема сдвига слоистой толщи: а - два переместившихся блока; б - профиль с характерным сдвигом пород (по М. Васичу)

Опустившийся блок

Рейнский

Рис. 39.


Рис. 40.

а - нормальное; б - резервное; в - горизонтальное

Рис. 41.

а - отрыв; б - хрупкое скалывание; в - образование пережима; г - вязкое скалывание при

растяжении («разлинзование»)

Грабен возникает, когда участок земной коры опускается между двумя крупными разрывами. Таким путем, например, образовалось озеро Байкал. Некоторые специалисты считают Байкал началом образования нового рифта.

Горст - форма, обратная грабену.

Надвиг в отличие от предыдущих форм разрывных дислокаций возникает при смещении толщ в горизонтальной или сравнительно наклонной плоскости (рис. 40). В результате надвига молодые отложения могут быть сверху перекрыты породами более древнего возраста (рис. 41, 42, 43).

Залегание пластов. При изучении инженерно-геологических условий строительных площадок необходимо устанавливать пространственное положение пластов. Определение положения слоев (пластов) в пространстве позволяет решать вопросы глубины, мощности и характера их залегания, дает возможность выбирать слои в качестве оснований сооружений, оценивать запасы подземных вод и т. д.

Значение дислокаций для инженерной геологии. Для строительных целей наиболее благоприятными условиями являются гори-


Р и с. 42. Восточное окончание надвига Одиберж (Приморские Альпы). Разрез (а) изображает строение правого берега долины Лу, расположенной непосредственно за участком, изображенным на блок-диаграмме (б); разрез ориентирован в противоположном направлении. Амплитуда надвига, соответствующая величине смещения пластов в запрокинутом крыле антиклинали, постепенно убывает с запада на восток

зонтальное залегание слоев, большая их мощность, однородность состава. В этом случае здания и сооружения располагаются в однородной грунтовой среде, создается предпосылка для равномерной сжимаемости пластов под весом сооружения. В таких условиях сооружения получают наибольшую устойчивость (рис. 44).


Рис. 43.

Разлом Леван в Нижних Альпах

Рис. 44.

а, б - площадки, благоприятные для строительства; в - малоблагоприятные; г - неблагоприятные; Л - сооружение (здание)

Наличие дислокаций усложняет инженерно-геологические условия строительных площадок - нарушается однородность грунтов оснований сооружений, образуются зоны дробления, снижается прочность грунтов, по трещинам разрывов периодически происходят смещения, циркулируют подземные воды. При крутом падении пластов сооружение может располагаться одновременно на различных грунтах, что иногда приводит к неравномерной сжимаемости слоев и деформации сооружений. Для зданий неблагоприятным условием является сложный характер складок. Нежелательно располагать сооружения на линиях разломов.

СЕЙСМИЧЕСКИЕ ЯВЛЕНИЯ

Сейсмические (от греческого - сотрясение) явления проявляются в виде упругих колебаний земной коры. Это грозное явление природы типично районам геосинклиналей, где активно действуют современные горообразовательные процессы, а также зонам субдукции и обдукции.

Сотрясения сейсмического происхождения происходят почти непрерывно. Специальные приборы регистрируют в течение года более 100 тысяч землетрясений, но из них, к счастью, только около 100 приводят к разрушительным последствиям и отдельные - к катастрофам с гибелью людей, массовыми разрушениями зданий и сооружений (рис. 45).

Землетрясения возникают также в процессе извержения вулканов (в России, например, на Камчатке), возникновения провалов в связи с обрушением горных пород в крупные подземные пеще-

Рис. 45.

ры, узкие глубокие долины, а также в результате мощных взрывов, производимых, например, в строительных целях. Разрушительное действие таких землетрясений невелико и они имеют местное значение, а наиболее разрушительными являются тектонические сейсмические явления, захватывающие, как правило, большие площади.

История знает катастрофические землетрясения, когда погибали десятки тысяч людей и разрушались целые города или их большая часть (г. Лиссабон - 1755 г., г. Токио - 1923 г., г. Сан-Франциско - 1906 г., Чили и остров Сицилия - 1968 г.). Только в первой половине XX в. их было 3749, при этом только в Прибайкалье произошло 300 землетрясений. Наиболее разрушительные - в городах Ашхабаде (1948) и Ташкенте (1966).

Исключительное по силе катастрофическое землетрясение произошло 4 декабря 1956 г. в Монголии, зафиксированное также на территории Китая и России. Оно сопровождалось огромными разрушениями. Один из горных пиков раскололся пополам, часть горы высотой 400 м обрушилась в ущелье. Образовалась сбросовая впадина длиной до 18 км и шириной 800 м. На поверхности земли появились трещины шириной до 20 м. Главная из этих трещин протянулась до 250 км.

Наиболее катастрофическим было землетрясение 1976 г., происшедшее в г. Таншань (Китай), в результате которого погибло 250 тыс. человек в основном под обрушившимися зданиями из глины (сырцового кирпича).

Тектонические сейсмические явления возникают как на дне океанов, так и на суше. В связи с этим различают моретрясения и землетрясения.

Моретрясения возникают в глубоких океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрые поднятия и опускания дна океанов вызывают смещение крупных масс горных пород и на поверхности океана порождают пологие волны (цунами) с расстоянием между гребнями до 150 км и очень небольшой высотой над большими глубинами океана. При подходе к берегу вместе с подъемом дна, а иногда сужением берегов в бухтах высота волн увеличивается до 15-20 м и даже 40 м.

Цунами перемещаются на расстояния в сотни и тысячи километров со скоростью 500-800 и даже более 1000 км/ч. По мере уменьшения глубины моря крутизна волн резко возрастает и они со страшной силой обрушиваются на берега, вызывая разрушения сооружений и гибель людей. При моретрясении 1896 г. в Японии были отмечены волны высотой 30 м. В результате удара о берег они разрушили 10 500 домов, погибло более 27 тыс. человек.

От цунами чаще всего страдают Японские, Индонезийские, Филиппинские и Гавайские острова, а также тихоокеанское побережье Южной Америки. В России это явление наблюдается на восточных берегах Камчатки и Курильских островах. Последнее катастрофическое цунами в этом районе возникло в ноябре 1952 г. в Тихом океане, в 140 км от берега. Перед приходом волны море отступило от берега на расстояние 500 м, а через 40 мин на побережье обрушилось цунами с песком, илом и различными обломками. Затем последовала вторая волна высотой до 10-15 м, которая довершила разрушение всех построек, расположенных ниже десятиметровой отметки.

Самая высокая сейсмическая волна - цунами поднялась у побережья Аляски в 1964 г.; высота ее достигла 66 м, а скорость 585 км/ч.

Частота возникновения цунами не столь велика, как у землетрясений. Так, за 200 лет на побережье Камчатки и Курильских островов их наблюдалось всего 14, из которых четыре были катастрофическими.

На побережье Тихого океана в России и других странах созданы специальные службы наблюдения, которые оповещают о приближении цунами. Это позволяет вовремя предупредить и укрыть людей от опасности. Для борьбы с цунами возводят инженерные сооружения в виде защитных насыпей, железобетонных молов, волноотбойных стенок, создают искусственные отмели. Здания размещают на высокой части рельефа.

Землетрясения. Сейсмические волны. Очаг зарождения сейсмических волн называют гипоцентром (рис. 46). По глубине залегания гипоцентра различают землетрясения: поверхностные - от 1 до 10 км глубины, коровые - 30-50 км и глубокие (или плутонические) - от 100-300 до 700 км. Последние находятся уже в мантии Земли и связаны с движениями, происходящими в глубинных зонах планеты. Такие землетрясения наблюдались на Дальнем Востоке, в Испании и Афганистане. Наиболее разрушительными являются поверхностные и коровые землетрясения.

Рис. 46. Гипоцентр (Г), эпицентр (Эп) и сейсмические волны:

1 - продольные; 2- поперечные; 3 - поверхностные


Непосредственно над гипоцентром на поверхности земли располагается эпицентр. На этом участке сотрясение поверхности происходит в первую очередь и с наибольшей силой. Анализ землетрясений показал, что в сейсмически активных районах Земли 70 % очагов сейсмических явлений располагаются до глубины 60 км, но наиболее сейсмичной все же является глубина от 30 до 60 км.

От гипоцентра во все стороны расходятся сейсмические волны, по своей природе являющиеся упругими колебаниями. Различают продольные и поперечные сейсмические волны, как упругие колебания, распространяющиеся в земле от очагов землетрясений, взрывов, ударов и других источников возбуждения. Сейсмические волны - продольные, или Р- волны (лат. primae - первые), приходят к поверхности земли первыми, так как имеют скорость в 1,7 раза большую, чем поперечные волны; поперечные, или 5-волны (лат. secondae - вторые), и поверхностные, или L- волны (лат. 1оп-qeg - длинный). Длины L-волн больше, а скорости меньше, чем у Р- и 5-волн. Продольные сейсмические волны - волны сжатия и растяжения среды в направлении сейсмических лучей (во все стороны от очага землетрясения или другого источника возбуждения); поперечные сейсмические волны - волны сдвига в направлении, перпендикулярном сейсмическим лучам; поверхностные сейсмические волны - волны, распространяющиеся вдоль поверхности земли. L-волны подразделяют на волны Лява (поперечные колебания в горизонтальной плоскости, не имеющие вертикальной составляющей) и волны Рэлея (сложные колебания, имеющие вертикальную составляющую), названные так в честь открывших их ученых. Наибольший интерес для инженера-строителя имеют продольные и поперечные волны. Продольные волны вызывают расширение и сжатие пород в направлении их движения. Они распространяются во всех средах - твердых, жидких и газообразных. Скорость их зависит от вещества пород. Это можно видеть из примеров, приведенных в табл. 11. Поперечные колебания перпендикулярны продольным, распространяются только в твердой среде и вызывают в породах деформации сдвига. Скорость поперечных волн примерно в 1,7 раза меньше, чем продольных.

На поверхности земли от эпицентра во все стороны расходятся волны особого рода - поверхностные, являющиеся по своей природе волнами тяжести (подобно морским валам). Скорость их распространения более низкая, чем у поперечных, но они оказывают на сооружения не менее пагубное влияние.

Действие сейсмических волн или, иначе говоря, продолжительность землетрясений, обычно проявляется в течение нескольких секунд, реже минут. Иногда наблюдаются длительные землетрясения. Например, на Камчатке в 1923 г. землетрясение продолжалось с февраля по апрель месяц (195 толчков).

Таблица 11

Скорость распространения продольных (у р) и поперечных (у 5) волн

в различных породах и в воде, км/сек

Оценка силы землетрясений. За землетрясениями ведут постоянные наблюдения при помощи специальных приборов - сейсмографов, которые позволяют качественно и количественно оценивать силу землетрясений.

Сейсмические шкалы (гр. землетрясение + лат. .?сд-

  • - лестница) используют для оценки интенсивности колебаний (сотрясений) на поверхности Земли при землетрясениях в баллах. Первую (из близких к современным) 10-балльную сейсмическую шкалу составили в 1883 г. совместно М. Росси (Италия) и Ф. Форель (Швейцария). В настоящее время большинство стран мира используют 12-балльные сейсмические шкалы: «ММ» в США (усовершенствованная шкала Меркалли-Конкани-Зиберга); Международная МБК-64 (по фамилии авторов С. Медведева, В. Шпон-хойера, В. Карника, созданная в 1964 г.); Института физики Земли АН СССР и др. В Японии используется 7-балльная шкала, составленная Ф. Омори (1900) и в последующем многократно переработанная. Балльность по шкале МБК-64 (уточненной и дополненной Межведомственным советом по сейсмологии и сейсмостойкому строительству в 1973 г.) устанавливается:
    • по поведению людей и предметов (от 2 до 9 баллов);
    • по степени повреждения или разрушения зданий и сооружений (от 6 до 10 баллов);
    • по сейсмическим деформациям и возникновению других природных процессов и явлений (от 7 до 12 баллов).

Очень известной является шкала Рихтера, предложенная в 1935 г. американским сейсмологом Ч.Ф. Рихтером, теоретически обоснованная совместно с Б. Гутенбергом в 1941-1945 гг. шкала магнитуд (М); уточненная в 1962 г. (Московско-Пражская шкала) и рекомендованная Международной ассоциацией сейсмологии и физики недр Земли в качестве стандартной. По этой шкале магнитуда любого землетрясения определяется как десятичный логарифм максимальной амплитуды сейсмической волны (выраженной в микрометрах), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра. При других расстояниях от эпицентра до сейсмостанции вводится поправка к замеренной амплитуде с целью приведения ее к той, которая соответствует стандартному расстоянию. Нуль шкалы Рихтера (М = 0) дает очаг, при котором амплитуда сейсмической волны на расстоянии 100 км от эпицентра будет равна 1 мкм, или 0,001 мм. При увеличении амплитуды в 10 раз магнитуда возрастает на единицу. При амплитуде, меньшей 1 мкм, магнитуда имеет отрицательные значения; известные максимальные значения магнитуд М = 8,5...9. Магнитуда - расчетная величина, относительная характеристика сейсмического очага, не зависящая от места расположения записывающей станции; используется для оценки общей энергии, выделившейся в очаге (установлена функциональная зависимость между магнитудой и энергией).

Энергия, выделившаяся в очаге, может выражаться абсолютной величиной (Е , Дж), величиной энергетического класса (К = \%Е) или условной величиной, называемой магнитудой,

К -5 К=4

М =--г--. Магнитуда самых больших землетрясений

М = 8,5...8,6, что соответствует выделению энергии 10 17 -10 18 Дж или семнадцатому - восемнадцатому энергетическим классам. Интенсивность проявления землетрясений на поверхности земли (сотрясаемость на поверхности) определяется по шкалам сейсмической интенсивности и оценивается в условных единицах - баллах. Балльность (/) является функцией магнитуды (М), глубины очага (И) и расстояния от рассматриваемой точки до эпицентра Щ:

I = 1,5М+3,518 л/1 2 +И 2 +3.

Ниже приводятся сравнительные характеристики разных групп землетрясений (табл. 12).

Сравнительные характеристики землетрясений

Землетрясения

Параметр землетрясений

слабейшие

сильные

частые

сильнейшие

известные

Протяженность очага, км

Площадь главной трещины, км 2

Объем очага, км 3

Длительность процесса в очаге, с

Сейсмическая энергия, Дж

Класс землетрясения

Число землетрясений в год на Земле

Преобладающий период колебаний, с

Амплитуда смещений в эпицентре, см

Амплитуда ускорений в эпицентре, см/с 2

Для расчетов силовых воздействий (сейсмических нагрузок), оказываемых землетрясениями на здания и сооружения, используют понятия: ускорение колебаний (а), коэффициент сейсмичности (к с) и максимальное относительное смещение (О).

На практике силу землетрясений измеряют в баллах. В России используется 12-балльная шкала. Каждому баллу соответствует определенное значение ускорения колебания а (мм/с 2). В табл. 13 приведена современная 12-балльная шкала и дана краткая характеристика последствиям землетрясений.

Сейсмические баллы и последствия землетрясений

Таблица 13

Баллы

Последствия землетрясений

Легкие повреждения в зданиях, тонкие трещины в штукатурке; трещины в сырых грунтах; небольшие изменения дебита источников и уровня воды в колодцах

Трещины в штукатурке и откалывание отдельных кусков, тонкие трещины в стенах; в единичных случаях нарушения стыков трубопроводов; большое количество трещин в сырых грунтах; в отдельных случаях мутнеет вода; изменяется дебит источников и уровень грунтовых вод

Большие трещины в стенах, падение карнизов, дымовых труб; отдельные случаи разрушения стыков трубопроводов; трещины в сырых грунтах до нескольких сантиметров; вода в водоемах становится мутной; возникают новые водоемы; часто меняется дебит источников и уровень воды в колодцах

В некоторых зданиях обвалы: обрушения стен, перекрытий, кровли; многочисленные разрывы и повреждения трубопроводов; трещины в сырых грунтах до 10 см; большие волнения в водоемах; часто возникают новые и пропадают существующие источники

Обвалы во многих зданиях. Трещины в грунтах до метра шириной

Многочисленные трещины на поверхности земли; большие обвалы в горах

Изменение рельефа местности в больших размерах

Сейсмические районы территории России. Вся земная поверхность разделена на зоны: сейсмические, асейсмические и пенесейсмические. К сейсмическим относят районы, которые расположены в геосинклинальных областях. В асейсмических районах землетрясений не бывает (Русская равнина, Западная и Северная Сибирь). В пенесейсмических районах землетрясения происходят сравнительно редко и бывают небольшой силы.

Для территории России составлена карта распространения землетрясений с указанием баллов. К сейсмическим районам относятся Кавказ, Алтай, Забайкалье, Дальний Восток, Сахалин, Курильские острова, Камчатка. Эти районы занимают пятую часть территории, на которой располагаются крупные города. В настоящее время эта карта обновляется и в ней будут содержаться сведения о повторяемости землетрясений во времени.

Землетрясения способствуют развитию чрезвычайно опасных гравитационных процессов - оползней, обвалов, осыпей. Как правило, все землетрясения от семи баллов и выше сопровождаются этими явлениями, причем катастрофического характера. Повсеместное развитие оползней и обвалов наблюдалось, например, во время Ашхабадского землетрясения (1948), сильного землетрясения в Дагестане (1970), в долине Чхалты на Кавказе (1963), в до-

лине р. Нарын (1946), когда сейсмические колебания вывели из состояния равновесия крупные массивы выветрелых и разрушенных пород, которые располагались в верхних частях высоких склонов, что вызвало подпруживание рек и образование крупных горных озер. Существенное влияние на развитие оползня оказывают и слабые землетрясения. В этих случаях они являются как бы толчком, спусковым механизмом уже подготовленного к обрушению массива. Так, на правом склоне долины р. Актуры в Киргизии после землетрясения в октябре 1970 г. образовались три обширных оползня. Зачастую не столько сами землетрясения оказывают влияние на здания и сооружения, сколько вызванные ими оползневые и обвальные явления (Каратегинское, 1907 г., Сарезское, 1911 г., Файзабадское, 1943 г., Хаитское, 1949 г., землетрясения). Объем массы сейсмического обвала (обвал - обрушение), расположенного в сейсмоструктуре Бабха (северный склон хребта Хамар-Дабан, Восточная Сибирь), составляет около 20 млн м 3 . Сарезское землетрясение силой 9 баллов, происшедшее в феврале 1911 г., сбросило с правого берега р. Мургаб в месте впадения в нее Усой-Дарьи 2,2 млрд м 3 горной массы, что привело к образованию плотины высотой 600-700 м, шириной 4 км, длиной 6 км и озера на высоте 3329 м над уровнем моря объемом 17-18 км 3 , площадью зеркала 86,5 км 2 , длиной 75 км, шириной до 3,4 км, глубиной 190 м. Под завалом оказалось небольшое селение, а под водой кишлак Сарез.

В результате сейсмического воздействия при Хаитском землетрясении (Таджикистан, 10 июля 1949 г.) силой 10 баллов большое развитие получили обвальные и оползневые явления на склоне хребта Тахти, после чего сформировались земляные лавины и селевые потоки 70-метровой толщины со скоростью 30 м/с. Объем селевого потока - 140 млн м 3 , площадь разрушений - 1500 км 2 .

Строительство в сейсмических районах (сейсмическое микрорайонирование). При строительных работах в районах землетрясений необходимо помнить, что баллы сейсмических карт характеризуют только некоторые усредненные грунтовые условия района и поэтому не отражают конкретных геологических особенностей той или иной строительной площадки. Эти баллы подлежат уточнению на основе конкретного изучения геологических и гидрогеологических условий строительной площадки (табл. 14). Это достигается увеличением исходных баллов, полученных по сейсмической карте, на единицу для участков, сложенных рыхлыми породами, в особенности увлажненными, и их уменьшением на единицу для участков, сложенных прочными скальными породами. Породы II категории по сейсмическим свойствам свою исходную балльность сохраняют без изменения.

Корректировка баллов сейсмических районов на основании инженерно-геологических и гидрогеологических данных

Корректировка баллов строительных участков справедлива, главным образом, для равнинных или холмистых территорий. Для горных районов необходимо принимать во внимание и другие факторы. Опасными для строительства являются участки с сильно расчлененным рельефом, берега рек, склоны оврагов и ущелий, оползневые и карстовые участки. Крайне опасны участки, расположенные вблизи тектонических разрывов. Весьма затруднительно строить при высоком залегании уровня грунтовых вод (1-3 м). Следует учитывать, что наибольшие разрушения при землетрясениях происходят на заболоченных территориях, на обводненных пылеватых, на лессовых недоуплотненных породах, которые при сейсмическом сотрясении энергично доуплотняют-ся, разрушая выстроенные на них здания и сооружения.

При ведении инженерно-геологических изысканий в сейсмических районах требуется выполнять дополнительные работы, регламентированные соответствующим разделом СНиП 11.02-96 и СП 11.105-97.

На территориях, где сила землетрясений не превышает 7 баллов, основания зданий и сооружений проектируют без учета сейсмичности. В сейсмических районах, т. е. районах с расчетной сейсмичностью 7, 8 и 9 баллов, проектирование оснований ведут в соответствии с главой специального СНиПа по проектированию зданий и сооружений в сейсмических районах.

В сейсмических районах не рекомендуется прокладывать водоводы, магистральные линии и канализационные коллекторы в водонасыщенных грунтах (кроме скальных, полускальных и крупнообломочных), в насыпных грунтах независимо от их влажности, а также на участках с тектоническими нарушениями. Если основным источником водоснабжения являются подземные воды трещиноватых и карстовых пород, дополнительным источником всегда должны служить поверхностные водоемы.

Большое практическое значение для жизни и производственной деятельности человека имеет предсказание момента начала землетрясения и его силы. В этой работе уже имеются заметные успехи, но в целом проблема прогнозирования землетрясений еще находится на стадии разработки.

Вулканизм - это процесс прорыва магмы из глубин земной коры на поверхность земли. Вулканы - геологические образования в виде гор и возвышений конусовидной, овальной и других форм, возникшие в местах прорыва магмы на земную поверхность.

Вулканизм проявляется в районах субдукций и обдукций, а внутри литосферных плит - в зонах геосинклиналей. Наибольшее количество вулканов расположено вдоль побережья Азии и Америки, на островах Тихого и Индийского океанов. Вулканы имеются также на некоторых островах Атлантического океана (у побережья Америки), в Антарктиде и Африке, в Европе (Италия и Исландия). Различают вулканы действующие и потухшие. Действующими называют те вулканы, которые постоянно или периодически извергаются; потухшими - те, которые прекратили свое действие, и об их извержениях нет данных. В ряде случаев потухшие вулканы снова возобновляют свою деятельность. Так было с Везувием, неожиданное извержение которого произошло в 79 г. н. э.

На территории России вулканы известны на Камчатке и на Курильских островах (рис. 47). На Камчатке расположено 129 вулканов, из них 28 действующих. Наибольшую известность получил вулкан Ключевская сопка (высота 4850 м), извержение которого повторяется приблизительно через каждые 7-8 лет. Активно действуют вулканы Авачинский, Карымский, Безымянский. На Курильских островах насчитывают до 20 вулканов, из которых около половины действующих.

Потухшие вулканы на Кавказе - Казбек, Эльбрус, Арарат. Казбек, например, еще действовал в начале четвертичного периода. Его лавы во многих местах покрывают район Военно-Грузинской дороги.

В Сибири в пределах Витимского нагорья также обнаружены потухшие вулканы.


Рис. 47.

Извержения вулканов происходят по-разному. Это в большой мере зависит от типа магмы, которая извергается. Кислая и средняя магмы, будучи очень вязкими, дают извержения со взрывами, выбросом камней и пепла. Излияние магмы основного состава обычно происходит спокойно, без взрывов. На Камчатке и Курильских островах извержения вулканов начинаются с подземных толчков, далее следуют взрывы с выбросом водяных паров и излиянием раскаленной лавы.

Извержение, например, Ключевской сопки в 1944-1945 гг. сопровождалось образованием над кратером раскаленного конуса высотой до 1500 м, выбросом раскаленных газов и обломков пород. После этого произошло излияние лавы. Извержение сопровождалось землетрясением в 5 баллов. При извержении вулканов типа Везувия характерно выпадение обильных дождей за счет конденсации водяных паров. Возникают исключительные по силе и грандиозности грязевые потоки, которые, устремляясь вниз по склонам, приносят огромные разрушения и опустошения. Так же может действовать вода, образовавшаяся в результате таяния снегов на вулканических склонах кратеров; и вода озер, сформировавшихся на месте кратера.

Строительство зданий и сооружений в вулканических районах имеет определенные трудности. Землетрясения обычно не достигают разрушительной силы, но продукты, выделяемые вулканом, могут пагубно сказаться на целостности зданий и сооружений и их устойчивости.

Многие газы, выделяемые при извержениях, например сернистые, опасны для людей. Конденсация паров воды вызывает катастрофические ливни и грязевые потоки. Лава образует потоки, ширина и длина которых зависят от уклона и рельефа местности. Известны случаи, когда длина лавового потока достигала 80 км (Исландия), а мощность - 10-50 м. Скорость течения основных лав составляет 30 км/ч, кислых - 5-7 км/ч, из вулканов взлетают вулканические пеплы (пылеватые частицы), песок, лапилли (частицы 1-3 см в диаметре), бомбы (от сантиметров до нескольких метров). Все они представляют собой застывшую лаву и при извержении вулкана разлетаются на различные расстояния, засыпают поверхность земли многометровым слоем обломков, обрушивают кровли зданий.

На первый взгляд земная кора кажется совершенно устойчивой и неподвижной. В действительности земная кора постоянно перемещается, но большая часть изменений совершается медленно и не воспринимается органами чувств человека. Некоторые последствия смещения земной коры носят разрушительный характер, например, землетрясения, извержения вулканов.

Причинами тектонических движений земной коры является перемещение вещества мантии, которое обусловлено внутренней энергией Земли. В пограничном слое между литосферой и мантией температура составляет более 1500 °C. Сильно нагретые породы находятся под давлением вышележащих пластов литосферы, что вызывает появление эффекта «парового котла» и провоцирует перемещение земной коры. Различают следующие виды движений земной коры: колебательные, разрывные, складкообразовательные.

Колебательные движения очень медленные и неощутимы для человечества. В результате таких движений кора смещается в вертикальной плоскости – на одних участках поднимается, на других – опускается. Протекание таких процессов можно определить с помощью специальных устройств. Так, было выявлено, что Приднепровская возвышенность ежегодно поднимается на 9,5 мм, а северо-восточная область Восточноевропейской равнины опускается на 12 мм в год. Вертикальные колебательные движения земной коры выступают провоцирующим фактором наступления морей на сушу. Если земная кора опускается ниже уровня моря, то наблюдается трансгрессия (наступление моря), если поднимается выше – регрессия (отступление моря). В наше время в Европе регрессия происходит на Скандинавском полуострове, в Исландии. Трансгрессия наблюдается в Голландии, на севере Италии, на юге Великобритании, на территории Причерноморской низменности. Характерная черта опускания суши – формирование морских заливов в устьях рек (лиманов). При поднятии земной коры морское дно превращается в сушу. Так произошло образование первичных морских равнин: Туранской, Западно-Сибирской, Амазонской, т.д.

Разрывные движения земной коры происходят, если горные породы не обладают достаточной прочностью, чтобы выдержать воздействие внутренних сил Земли. В этом случае в земной коре появляются разломы (трещины) с вертикальным смещением горных пород. Те участки, которые опустились, называют грабенами, поднявшиеся – горстами. Их чередование обусловливает появление глыбовых (возрожденных) горных систем, например, Саянские, Алтай, Аппалачи, др. Отличия глыбовых гор от складчатых имеются во внешнем виде и внутреннем строении. Для таких гор характерны отвесные склоны и широкие, уплощенные долины. Пласты горных пород смещаются друг относительно друга. Некоторые грабены в таких горных массивах могут заполняться водой с образованием глубоких горных озер (Байкал, Таньганьика, др.).

Складкообразовательные движения земной коры происходят, когда пласты горных пород пластичны, и внутренние силы Земли способствуют смятию их в складки в результате встречных перемещений горных пород в горизонтальной плоскости. Если направление силы сдавления вертикальное, то породы могут смещаться, если горизонтальное – то формируются складки. Форма и размеры складок различны. Складки в земной коре образуются на большой глубине, позднее они могут быть подняты на поверхность под влиянием внутренних сил. Так появились складчатые горы: Альпы, Кавказские, Гималаи, Анды. В таких горных системах складки четко заметны в тех местах, где они выходят на земную поверхность.

Похожие материалы:

— это медленные, неравномерные вертикальные (опускания или поднятия) и горизонтальные тектонические движения обширных участков земной коры, изменяющие высоту су-ши и глубину морей. Их иногда также называют вековыми колебаниями земной коры.

Причины

Точные причины движений земной коры пока не достаточно выяснены, но ясно одно, что колебания эти происходят под действием внутренних сил Земли. Исходной причиной всех движений земной коры — и горизонтальных (вдоль поверхности), и верти-кальных (горообразование) — является тепловое перемешива-ние вещества в мантии планеты .

На территории, где сейчас нахо-дится Москва, в далёком прошлом плескались волны тёплого моря. Об этом говорят толщи морских отложений с захоронен-ными в них останками рыб и других животных , которые сейчас залегают на глубине нескольких десятков метров. А на дне Средиземного моря недалеко от берега аквалангисты нашли развалины древнего города.

Эти факты говорят о том, что земная кора, которую мы при-выкли считать неподвижной, испытывает медленные поднятия и опускания. На Скандинавском полуострове в настоящее время можно увидеть склоны гор, изъеденные морским прибоем на такой большой высоте, куда волны не доходят. На той же высоте в скалы вделаны кольца, за которые когда-то привязывали цепи лодок. Теперь от поверхности воды до этих колец метров 10, а то и больше. Значит, можно сделать вывод, что Скандинавский полуостров в настоящее время медленно поднимается. Учёные подсчитали, что в некоторых местах поднятие это происходит со скоростью 1 см в год . Материал с сайта

А вот западное побережье Европы опускается примерно с такой же скоростью. Чтобы воды океана не затопили эту часть материка, люди построили вдоль берега моря дамбы, протя-нувшиеся на сотни километров.

Медленные движения земной коры происходят на всей поверхности Земли. Причём период поднятия сменяется периодом опускания. Когда-то и Скандинавский полуостров опускался, а вот в наше испытывает поднятие.

Из-за движений земной коры рож-даются вулканы , происходят

Для земной коры свойственны тектонические процессы, которые обусловливают ее постоянную перестройку и развитие. Движущей силой этих процессов является, в основном, внутренняя энергия Земли. Тектонические процессы вызывают движения в земной коре - тектонические движения.

Тектонические процессы в земной коре изучает геологическая наука геотектоника. Изложенное далее относится согласно современным представлениям глобальной геотектоники к внутриплитной тектонике, само же движение материков и земной коры под океанами обусловлено перемещением литосферных плит, таких, например, как

Тихоокеанская или Евразийская. Формирование геосинклинальных зон приурочено к зонам субдукции (подныривания) или обдукции (наползания) одной такой литосферной плиты на другую как в случае с Японскими островами. В связи с тем, что строительство пока сосредоточено преимущественно на суше, т. е. на континетах, расположенных на литосферных плитах, то представления внутриплитной тектоники для инженерной геологии носят весьма важный характер.

Тектонические движения. В земной коре они проявляются по-разному, как во времени, так и в пространстве. Во времени движения проявляются в виде медленных (эпейрогенических) и быстрых (оро-генических - горообразовательных) движений. По положению в пространстве (по преобладающему направлению) тектонические движения бывают радиальные (по радиусам Земли), действующие вертикально вверх и вниз, и тангенциальные, направленные горизонтально. Различный характер движений связан со строением земной коры по горизонтали, т. е. с ее основными структурами.

Основные структуры земной коры. Строение земной коры по горизонтали очень сложное, но для понимания тектонических движений его можно упростить, если принять за основу положение, что земная кора состоит из двух основных структур - платформ и геосинклиналей.

Платформы являются наиболее крупными структурами земной коры. Это континенты и впадины океанов. Это устойчивые, жесткие, малоподвижные структуры. Им свойственны выровненные формы рельефа земной поверхности (типа равнины). Для платформ типичны спокойные, медленные движения вертикального характера (эпей-рогенические).

Геосинклинали - это участки земной коры, являющиеся подвижными сочленениями платформ. Для них характерны разнообразные тектонические движения, среди которых преобладают сильные, резкие, непредсказуемые по времени и в пространстве, с ними связаны вулканизм и сейсмические явления. В геосинклиналях возникают разломы земной коры, происходит интенсивное накопление мощных толщ осадочных пород. Тектонические силы выводят слои осадочных пород из горизонтального положения и придают им форму складок. К геосинклиналям относятся: 1) широтный пояс, который охватывает Средиземноморье, Кавказ, Переднюю Азию и до Индонезии; в состав пояса входят Алтай, Саяны, Прибайкалье, 2) кольцевой Тихоокеанский пояс - Северная и Южная Америки, Япония, Сахалин, Курильские острова, Камчатка, юг Приморья.

Движения платформ. Этим территориям свойственны медленные вертикальные колебательные движения (эпейрогенические). Они выражаются в том, что отдельные участки земной коры на протяжении многих столетий испытывают поднятие, в то время как другие территории опускаются. Движения медленные, длительные по времени, но от них многое зависит: положение границ между сушей и морями, обмеление или усиление размывающей деятельности рек, формирование рельефа Земли, повышение уровней водохранилищ, движение воды в самотечных каналах, положение прибрежных территорий по отношению к уровню моря и многое другое.

Интересно отметить, что платформы (материки) имеют тенденцию к горизонтальным подвижкам. Так, на основе данных, полученных с искусственных спутников Земли, установлено, что только за пять лет Австралия «подплыла» к Японским островам на 38 см (76 мм в год), Европа - на 19 см, Северная Америка - на 11, Гавайские острова - на 39 см (78 мм в год). Ученые подсчитали, что если такой темп движения сохранится, то ближайший к Японии сосед - Гавайские острова сольются с Японскими островами через 100 млн лет.

Для инженерной геологии особый интерес представляют современные вертикальные колебательные движения платформ, вызывающие изменения высот поверхности земли в том или ином районе. Оценку скорости их проявления осуществляют высокоточными геодезическими работами. Годичная скорость современных колебательных движений платформ чаще всего равна нескольким миллиметрам, но имеются участки, где скорость равна 1-2 см/год и даже больше. Цифры небольшие, но за длительное время они вырастают в значительные величины. Так, например, Скандинавия только за последние 50 лет поднялась на 19 см. Много веков интенсивно опускаются районы Нидерландов (40-60 мм/год).

Колебательные движения прослеживаются также в России. Среднерусская возвышенность поднимается на 1,5-2 см/год, район Курска - до 3,6 мм/год. Ряд территорий испытывает опускание поверхности Земли: Москва (3,7 мм/год), Санкт-Петербург (3,6 мм/год), Восточное Предкавказье (5-7 мм/год). Имеются территории, где подъем поверхности Земли происходит более интенсивно. Так, во второй половине XX в. на 14-15 см/год стал подниматься уровень Каспийского моря, что привело к затоплению многих прибрежных участков Астраханской области. К 2000 г. общий подъем уровня моря превысил 2 м. По всей видимости, это связано с тектоническими движениями земной коры в районе Каспийского моря.

Современные колебания поверхности Земли учитывают при строительстве различных объектов: крупных водохранилищ, высоких плотин, мелиоративных систем, но особенно при сооружении аэродромов и космодромов.

Рис. 4.

Вулканизм. Вулканы - это горы или возвышения конусовидной формы, которые созданы выходящей на поверхность Земли магмой (рис. 4). Магма выходит из вулкана, растекается по его склонам и по окружающей местности. В этих случаях магму называют лавой.

Вулканы разделяют на действующие, периодически извергающие магму, и потухшие, которые в настоящее время не действуют. Но история знает случаи, когда потухшие вулканы возобновляли свое действие, так было с вулканом Везувием (Италия), неожиданное извержение которого произошло в 79 г. н. э., что привело к гибели трех городов. Потухший ныне вулкан Казбек (Кавказ) еще действовал в начале четвертичного периода, и его лавы во многих местах залегают на Военно-Грузинской автодороге.

Вулканы приурочены к подвижным участкам земной коры, т. е. к геосинклиналям. На сегодня известно более 850 действующих вулканов, из них 76 располагаются на дне океанов. На территории России вулканы находятся на Камчатке (28 действующих) и на Курильских островах (10 действующих). Наиболее крупными являются вулканы Ключевская Сопка (высота конуса горы 4850 м), Авачинский, Ка-рымский, Безымянный.

Извержения вулканов происходят по-разному - в виде взрывов и бурного излияния лавы или спокойно, без взрывов, когда лава медленно растекается по округе вулканического конуса. Вулканы Камчатки и Курильских островов относятся к наиболее опасным, т. е. взрывным. Извержение таких вулканов начинается с подземных толчков (землетрясений, иногда силой до 5 баллов), далее следуют взрывы с выбросом лавы, газов и водяных паров.

Лавы образуют потоки, ширина и длина которых зависит от уклонов конусов горы и окружающего рельефа местности. Известен случай (Исландия), когда длина лавового потока достигла 80 км при его мощности 10-50 м. Скорость потоков различная, зависит от типа магмы и колеблется от 5-7 до 30 км/ч. При взрыве вулканов из их жерла одновременно с лавой вылетает твердый материал в виде обломков разных размеров: 1) глыбы (бомбы) весом несколько тонн; 2) куски, которые называют лапилли (1-3 см в диаметре) и 3) частицы в виде песка и пыли. Пылеватые частицы называют вулканическим пеплом. Все эти обломки разлетаются на различные расстояния и создают многометровые наносы. Наиболее далеко уносится вулканический пепел (сотни и даже тысячи километров).

Одновременно с лавой и камнями вулканы выбрасывают газы. В большинстве случаев газы ядовиты. Не менее опасны водяные пары, которые быстро конденсируются, что приводит к образованию на склонах и у подножий конусов грандиозных грязевых потоков (селей). Они обладают большой разрушительной силой и создают многометровые наносы.

Вышесказанное подтверждает, что автодороги и, особенно, аэродромы следует строить на определенном отдалении от действующих вулканов.

Расстояние обычно определяют исходя из многолетнего опыта строительства в каждом конкретном районе и с учетом особенностей извержений того или иного вулкана.

Интересен один из случаев, когда люди пытались бороться со стихией. Извержение вулкана Этна (Сицилия) продолжалось 130 дней. В потоки лавы было заброшено 300 т цементных блоков, связанных тяжелыми стальными цепями. Это изменило направление главного потока.

Сейсмические явления

Сейсмические (от греч. Бе^тоз - сотрясение) явления - упругие колебания земной коры, происходящие вследствие того, что в ее недрах (или в верхней мантии) возникают напряжения, которые в конечном итоге под действием тектонических сил находят выход в деформации сжатых пород, в образовании разрывов, что проявляется в виде толчков. Таким образом, сейсмические толчки - явление чисто механическое. При толчках возникают упругие волны, которые распространяются во все стороны от мест разрывов. Эти волны называются сейсмическими.

Если большинство пород, слагающих земную кору, рассматривать как упругую среду, то сейсмические волны передают деформации, возникающие в горных породах, на значительные расстояния и с большой скоростью. Эти волны по виду деформаций делятся на продольные и поперечные.

Продольные волны (или волны сжатия - растяжения) заставляют колебаться частицы пород в направлении, совпадающем с движением волны. Поперечные волны (или «волны сдвига») распространяются в направлении, перпендикулярном направлению движения продольных волн. Скорость и энергия этих волн в 1,7 раза меньше, чем у продольных.

При встрече подземных упругих волн с поверхностью земли возникает новый вид колебательного движения - так называемые поверхностные волны. Это обычные волны тяжести, которые приводят к деформациям поверхности земли (рис. 5).

Место, где возникает сейсмический толчок, лежащее в глубине земной коры, носит название гипоцентра. Глубина залегания гипоцентра бывает 1 - 10 км - поверхностные сейсмические явления;


Рис. 5. Схема распространения сейсмических волн на поверхности земли (Г) и

в земной коре (2):

Г - гипоцентр; Э - эпицентр. Сейсмические волны: / - продольные; 2- поперечные; 3- поверхностные


Рис. 6. Последствия землетрясений: а - в городском квартале; б - на горном плато в Иране

30-50 км - коровые и 100-700 км - глубокие. Наиболее разрушительными являются поверхностные сейсмические явления.

Проекция гипоцентра на дневную поверхность называется эпицентром. Сила удара продольной волны в эпицентре максимальна.

Анализ случаев сейсмических явлений показал, что в сейсмически активных районах Земли до 70 % гипоцентров располагается до глубины 60 км.

Продолжительность действия сейсмических волн обычно ограничивается несколькими секундами, иногда минутами, но бывают случаи и более длительного воздействия. Так, например, в 1923 г. на Камчатке сейсмическое явление продолжалось с февраля по апрель (195 толчков).

Сотрясения земной коры сейсмического происхождения происходят очень часто и как стихийное бедствие после ураганов и тайфунов занимают второе место по величине материального ущерба, наносимого человечеству (рис. 6). Ежегодно на земном шаре регистрируется около 100 тыс. сейсмических явлений, из которых около 100

Р и с 6. Продолжение

приводят к разрушениям, а в ряде случаев к катастрофам, как, например, в Токио (1923 г.), Сан-Франциско (1906 г.), в Чили и на острове Сицилия (1968 г.). Исключительное по силе сейсмическое явление произошло в Монголии (1956 г.) Один из горных пиков раскололся пополам, часть горы высотой 400 м обрушилась в ущелье, образовалась сбросовая впадина длиной до 18 км и шириной около 800 м, на

  • 5 м и более
  • 0,5...1,0 м

Рис. 7.

поверхности земли появились трещины шириной до 20 м, главная из которых протянулась на 250 км.

Сейсмические явления возникают как на суше, так и на дне океанов. В связи с этим среди них различают моретрясения и землетрясения.

Моретрясения возникают в океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрое поднятие и опускание дна порождает на его поверхности пологие волны (цунами) с расстоянием между гребнями в несколько километров и высотой в многие метры (рис. 7). При подходе к берегам вместе с подъемом дна высота волны увеличивается до 15-20 м и более. Уникальный случай произошел в 1964 г. на Аляске, где высота волны достигла 66 м при скорости движения 585 км/ч.

Цунами передвигаются на расстояния в сотни и даже тысячи километров со скоростью 500-800 км/ч и более.

В России цунами бывают в Тихом океане у берегов Камчатки и Курильских островов. Одно из таких цунами было в 1952 г. Перед приходом волны море отступило на 500 м, а через 40 мин волна со страшной силой ударила в берег, разрушила все постройки и дороги, покрыла прибрежную территорию песком, илом и обломками пород. Через некоторое время, вслед за первой, пришла вторая волна высотой в 10-15 м, которая довершила разгром берега ниже десятиметровой отметки.

Цунами возникают реже землетрясений. Так, за 200 последних лет на Камчатке и Курилах их было всего 14, из которых четыре были катастрофическими. Последнее глобальное катастрофическое цунами произошло в Индийском океане в конце декабря 2004 г., когда по общим оценкам погибло более 200 тыс. человек в Индонезии и странах Индокитая.

Строительство автодорог и аэродромов на берегах, куда может подойти цунами, требует выполнения защитных мероприятий. В России, как и в сопредельных странах Тихоокеанского региона, действует служба наблюдений, которая своевременно оповещает о приближении цунами. Это позволяет укрыть людей от опасности. Автомобильные дороги размещают на высокой части рельефа, при необходимости прикрывают берега железобетонными молами, ставят волноотбойные стены, создают защитные земляные насыпи.

Землетрясения - это сейсмические явления на суше. В России землетрясения бывают на Кавказе, Алтае, Саянах, Прибайкалье, Сахалине, Курильских островах и Камчатке. Все эти территории находятся в геосинклинальном поясе. До настоящего времени только эти районы считались сейсмическими, но уже во второй половине XX в. стало очевидным, что землетрясения при определенных условиях могут возникать и на платформах, хотя они в отличие от тектонических землетрясений имеют другое происхождение.

По происхождению для суши предлагается различать четыре типа землетрясений:

  • 1. Тектонические, вызванные тектоническими силами земной коры и составляющие подавляющее большинство землетрясений. Они характеризуются широкими площадями и большой силой или, иначе говоря, высокой балльностью.
  • 2. Вулканические, связанные с извержением вулканов и имеющие локальное распространение, но иногда большой силы.
  • 3. Денудационные (обвальные и провальные), порождаемые падением больших массивов горных пород со склонов или падением в провалы в результате карстообразования. Такие землетрясения имеют также локальный характер и сравнительно небольшую силу.
  • 4. Техногенные, связанные с производственной деятельностью человека.

На сегодня вполне очевидно, что производственная деятельность человека может влиять на сейсмическую обстановку даже на глобальном уровне. Это так называемые наведенные землетрясения. Они могут быть вызваны заполнением обширных водохранилищ, откачкой нефти, газа, межпластовых подземных вод, ядерными взрывами, массированными военными бомбардировками и т. д. Вышеприведенный перечень показывает, что человек может оказывать определенное воздействие на геологическое пространство и своей деятельностью


Рис. 8.

способен создавать побудительные причины негативных тектонических событий, известных как природно-техногенные катастрофы.

Оценка силы землетрясений. Человечество уже многие столетия ведет наблюдение и регистрацию землетрясений на земном шаре. Теперь широко используется специальная аппаратура, в частности, сейсмографы, которые позволяют качественно определять, где произошло землетрясение, и оценивать его силу. Приборы автоматически регистрируют колебания Земли и вычерчивают сейсмограмму (рис. 8).

В настоящее время выявлена зависимость землетрясений от строения, состава и состояния земной коры. Это выглядит следующим образом.

  • 1. В плотных породах скорость распространения сейсмического толчка больше, нежели в рыхлых связных и несвязных осадочных породах, однако сила землетрясения (его балльность), наоборот, возрастает в последних.
  • 2. Обводненность, водонасыщение, высокое положение уровня грунтовых вод увеличивают интенсивность землетрясений. Территории, сложенные плывунами, илами, заболоченными и обводненными осадочными породами, являются районами повышенной интенсивности землетрясений.
  • 3. Геологические структуры и тектонические нарушения, расположенные поперек движения сейсмических волн, могут уменьшать интенсивность землетрясений.
  • 4. Отдельно стоящие и резко очерченные формы рельефа поверхности земли (холмы, крутые склоны гор и оврагов) могут повышать сейсмичность территории.

Каждое землетрясение обязательно сопровождается рядом физических явлений. Это звуки, световые эффекты, волны на твердых средах, обвалы, оползни и оплывы, трещины и провалы в земле, разрушения домов, дорог и мостов. Очень характерны звуки в виде «подземного гула».

Интенсивность проявления землетрясений на поверхности земли (сотрясаемость поверхности) оценивается по сейсмическим шкалам. В России для оценки силы землетрясений используется шкала, состоящая из 12 баллов (табл. 1). Каждому баллу отвечает определенная величина сейсмического ускорения - а, мм/с 2 , вычисляемая по формуле

а = 4п 2 А/Т 2 ,

где Л - амплитуда колебаний, мм; Т - период колебаний сейсмической волны, с. По величине а определяют коэффициент сейсмичности, который необходим для оценки прочности и устойчивости сооружений:

Кс = а/&

где # - ускорение силы тяжести, мм/с 2 .

Таблица 1

Сейсмическая 12-балльная шкала

Кроме 12-балльной шкалы, которая используется во многих странах мира, очень известной является шкала Рихтера (шкала магнитуд - М). Магнитуды - это расчетные величины. Максимальные значения магнитуд М- 8,5-9.

Строительство автодорог и аэродромов. Важное место занимает сейсмическое районирование территорий и прогноз проявления возможных землетрясений. Сейсмическое районирование выражается в составлении сейсмических карт, по которым можно определять значение максимального балла для данной территории (рис. 9). Эго трудная задача. В последние годы карты периодически обновляют, так как сейсмичность земной коры в ряде районов возрастает. В большинстве случаев на новых картах значения баллов повышают. Стихия коварна. Это можно видеть на следующем примере. В 1976 г. землетрясение

Р и с. 9. Карта сейсмического районирования. Линии сейсмических баллов:

I - от 1 до 5; II - от 5 до 7; III - до 8

в Узбекистане (8 баллов) разрушило поселок Газли. Поселок отстроили, но в 1984 г. землетрясение повторилось, но уже силой 9 баллов и он был снова разрушен.

В последние годы в России создана Карта общего сейсмического районирования территории страны (имеется в виду Карта тектонических землетрясений). Из этой карты видно, что если раньше особо опасными по сейсмике считались Сахалин, Камчатка, Курилы, то теперь к этим территориям относят Восточную Сибирь и примыкающие к ней Прибайкалье и Забайкалье, включая горный Алтай. Для этих территорий возможны землетрясения в 9 баллов (по шкале Рихтера - Л/до8,5). Впервые на Карте появились зоны 10-балльных землетрясений (Сахалин, Камчатка, Курилы). Раньше таких районов в России не было. Территория Северного Кавказа с 6-7-балльной оценки переведена на 9-балльную.

Прогноз землетрясений. Предотвратить землетрясения нельзя. Прогноз требует ответа на три вопроса - где, какой силы и когда произойдет землетрясение. Наука работает в этом направлении, но точные достоверные ответы пока отсутствуют.

Строительство при прогнозе землетрясений в 6 баллов и больше осуществляется согласно Строительным нормам и правилам (СНиП). Величину балла определяют по Карте и корректируют в зависимости от рельефа, геологии и гидрогеологии данной местности. Корректировку баллов осуществляют только в ббльшую сторону.

В сейсмических районах автодороги и аэродромы рекомендуется строить вдали от крутых склонов гор и обрывов, откосы выемок и земляного полотна свыше 4 м делают более пологими, при 6 баллах и более высота насыпей и глубина выемок не должны превышать 15-20 м, водонасыщенные грунты под насыпями следует осушать дренажами, особое внимание уделяется повышению устойчивости мостов, которые опасно строить на тектонических разломах.