Гипотеза планка о квантовом характере излучения. Сущность гипотезы планка

Гипотеза Планка о квантах

Классическая электродинамика дала серьезный сбой, когда ее попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Однако ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями квантами. Энергия кванта пропорциональна частоте излучения:

E = h ν (1)

C оотношение (1) называется формулой Планка, а коэффициент пропорциональности h - постоянной Планка.

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

h = 6 , 63 * 10 - 34 Дж с(2 )

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

Фотоэффект

Фотоэффект это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.

Герц, однако, был поглощен исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведенные Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

Опыты Столетова

В своих экспериментах А.Г.Столетов использовал фотоэлемент собственной конструкции.

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод K и анод A . На катод и анод подается напряжение, величину U которого можно менять с помощью потенциометра и измерять вольтметром V .

Сейчас к катоду подсоединен «минус», а аноду «плюс», но можно сделать и наоборот (и эта перемена знака существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод. В данном случае, например, напряжение U положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны e , которые разгоняются напряжением U и летят на анод. Включенный в цепь миллиамперметр mA регистрирует электрический ток. Этот ток называется фототоком, а выбитые электроны, его создающие, называются фотоэлектронами.

В опытах Столетова можно независимо изменять три величины: анодное напряжение,

Интенсивность света и его частоту.
Рис. 1. Фотоэлемент Столетова


З ависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2.

Полученная кривая показывает, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим v .

Если напряжение U отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод: mv 2 /2 < eU , где m = 9,1*10 -31 кг - масса электрона,

e = - 1,610 -19 Кл- его заряд. Рис. 2 . Характеристика фотоэлемента

Будем постепенно увеличивать напряжение, т. е. двигаться слева направо вдоль оси U из отрицательных значений в положительные.

Поначалу тока по-прежнему нет, но точка разворота электронов становится все ближе к аноду. Наконец, при достижении напряжения U з , которое называется задерживающим напряжением, электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

Mv 2 /2 = eU з (3)

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т. е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под все большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать, т.к. электрическое поле теперь разгоняет электроны, поэтому все большее их число получают шанс оказаться на аноде. Однако достигают анода пока еще не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т. е. вдоль катода), хоть и развернется полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

При достаточно больших положительных значениях напряжения ток достигает своей предельной величины I н , называемой током насыщения, и дальше возрастать перестает - напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода в каком бы направлении и с какими бы скоростями они не начинали движение. Дальнейших возможностей увеличиваться у фототока нет.

Законы фотоэффекта

Величина I н тока насыщения - количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта: Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).

Чем больше энергии несет излучение, тем ощутимее наблюдаемый результат.

Теперь будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. По формуле (3) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3):

Как видим, существует некоторая частота ν 0 , называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если ν< ν 0 , то фотоэффекта нет.

Если же ν > ν 0 , то максимальная кинетическая энергия фотоэлектронов линейно растет с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом ν < ν 0 , то фотоэффект не возникает, какова бы ни была интенсивность. Если ν > ν 0: максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта. Рис. 3. Зависимость энергии

фотоэлектронов от частоты света

Второй закон фотоэффекта: Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности .

Третий закон фотоэффекта: Для каждого вещества существует красная граница фотоэффекта наименьшая частота света ν 0 , при которой фотоэффект еще возможен . При ν < ν 0 фотоэффект не наблюдается ни при какой интенсивности света.

Революция физики совпала с началом XX века. К концу XIX века ученые считали, что построение физической картины мира практически закончено и следующим поколениям ученых останется только уточнять цифры после запятых в физических константах.

Лорд Кельвин (Рис. 1): «Над физикой стоит ясное небо, все законы физики уже открыты, осталось только два облачка».

Рис. 1. Лорд Кельвин

Первым таким облачком Кельвин считал распространение электромагнитных волн в вакууме с постоянной скоростью без какой-либо среды. Через пять лет появилась теория относительности Эйнштейна. Эта теория заставила изменить представление о пространстве и времени, в котором мы живем.

Второе облачко, по словам Кельвина, – это спектр излучения нагретых тел. Если тело имеет высокую температуру, то оно может стать источником видимого излучения. Трудность состояла в том, что теоретическая физика не могла объяснить спектр излучения нагретого тела. В начале ХХ века эту трудность преодолели, тепловое излучение нагретых тел получило свое объяснение, из этого объяснения появилась новая область физики –квантовая механика .

Английские ученыеРелей и Джинс предприняли попытку объединить законы теплового излучения в один. Этот закон очень хорошо подтверждал экспериментальные данные, но он соответствовал только средней части спектра излучения для желтых и зеленых лучей. Когда происходило смещение в сторону синих, фиолетовых и ультрафиолетовых лучей, то этот закон нарушался.

Из закона Релея-Джинса, следовало, чточем короче длина волны, тем большей должна быть интенсивность теплового излучения (Рис. 2). Ничего подобного на опыте не наблюдалось. А при переходе к коротким волнам, интенсивность должна была расти и вовсе неограниченно, но этого не происходит.

Рис. 2. Закон Релея-Джинса

Нет, и не может быть никакого неограниченного роста интенсивности волн. Если какой-либо физический закон приводит к слову «неограниченно» – это его крах.

Физики это создавшееся положение назвалиультрафиолетовой катастрофой .

В конце XIX века физики не могли предположить, что это катастрофа не частного закона излучения, а катастрофа раздела классической физики.

С 1896 года Макс Планк (Рис. 3) заинтересовался проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым.

Рис. 3. Макс Планк

При повышении температуры тело раскаляется докрасна, затем становится оранжево-желтым, и в конце концов – белым (Рис. 4–6).

Рис. 4. Цветность чернотельного излучения

Рис. 5. Цветность чернотельного излучения

Рис. 6. Цветность чернотельного излучения

Многократно проверенные законы электромагнетизма Максвелла не применимы к коротким волнам. Это удивительно, так как эти законы прекрасно описывают распространение радиоволн антенной.

Именно на основании этих законов было предсказано существование электромагнитных волн.

Электродинамика Максвелла приводила к бессмысленному выводу:нагретое тело в результате постоянного излучения электромагнитных волн должно было охладиться до нуля .

С точки зрения классической физики теплового равновесия между веществом и излучением существовать не может. На опыте доказано, что нагретое тело не тратит всю свою энергию на излучение электромагнитных волн.

В 1900 году Макс Планк выдвинул квантовую гипотезу .

Гипотеза Планка:

Нагретое тело испускает и поглощает свет не непрерывно, а определенными конечными порциями энергии – квантами (квант (от лат. quantum) – количество).

Энергия каждой порции прямо пропорциональна частоте излучения.

универсальная Планка (h ) – постоянная универсальная величина.

Энергия квантов разного цвета имеет разное значение (Рис. 7).

Например:

Рис. 7. Энергия квантов

Энергия светового потока определяется частотой излучения и количеством квантов в потоке.

Новая теория объясняла экспериментальные данные.

Формула Макса Планка позволяет определять различные характеристики квантов электромагнитного изучения.

Решим задачу (Рис. 8–10):

Рис. 8. Задача 1

Максимальная длина волны видимой части света соответствует красному цвету (760 нм).

Рис. 9. Решение задачи 1

подставив числа в формулу, получим результат:

Рис. 10. Решение задачи 1

Решим еще одну задачу (Рис. 11–12):

Рис. 11. Задача 2

Рис. 12. Решение задачи 2

Для определения вида, к которому следует отнести излучение, понадобится электромагнитная шкала (Рис. 13):

Рис. 13. Электромагнитная шкала

Ответ задачи: рентгеновское излучение.

После открытия Планка начала развиваться новая и самая современная физическая теория – квантовая теория. Ее развитие продолжается и сейчас.

В своих расчетах Планк выбрал наиболее простую модель излучающей системы (стенок полости) в виде гармонических осцилляторов (электрических диполей) со всевозможными собственными частотами. Здесь Планк следовал Рэлею. Но Планку пришла мысль связать с энергией осциллятора не его температуру, а его энтропию . Оказалось, что полученное выражение хорошо описывает экспериментальные данные (октябрь 1900 г.). Однако обосновать свою формулу Планк смог только в декабре 1900 года, после того, как более глубоко понял вероятностный смысл энтропии , на которую указал Больцман ().

Термодинамическая вероятность – число возможных микроскопических комбинаций, совместимое с данным состоянием в целом.

В данном случае это число возможных способов распределения энергии между осцилляторами. Однако, такой процесс подсчета возможен, если энергия будет принимать не любые непрерывные значения , а лишь дискретные значения , кратные некоторой единичной энергии . Эта энергия колебательного движения должна быть пропорциональна частоте.

Итак, энергия осциллятора должна быть целым кратным некоторой единицы энергии , пропорциональной его частоте.

Где n = 1, 2, 3…

Минимальная порция энергии

,

Где – постоянная Планка; и .

То, что – это гениальная догадка Макса Планка.

Принципиальное отличие вывода Планка от выводов Рэлея и других в том, что «не может быть и речи о равномерном распределении энергии между осцилляторами».

Окончательный вид формулы Планка:

Из формулы Планка можно получить и формулу Рэлея–Джинса, и формулу Вина, и закон Стефана–Больцмана.

· В области малых частот, т.е. при ,

Поэтому ,

отсюда получается формула Рэлея–Джинса :

· В области больших частот, при ,единицей в знаменателе можно пренебречь, и получается формула Вина :

.

· Из (1.6.1) можно получить закон Стефана–Больцмана :

. (1.6.3)

Введем безразмерную переменную , тогда

.

Подставив в (1.6.3) эти величины и проинтегрировав, получим:

.

То есть получили закон Стефана–Больцмана : .

Таким образом, формула Планка полностью объясняла законы излучения абсолютно черного тела. Следовательно, гипотеза о квантах энергии была подтверждена экспериментально, хотя сам Планк не слишком благосклонно относился к гипотезе о квантовании энергии. Тогда было совершенно не ясно, почему волны должны излучаться порциями.

Для универсальной функции Кирхгофа Планк вывел формулу:

. (1.6.4)

Где с – скорость света.

излучения черного тела во всем интервале частот и температур (рис. 1.3). Теоретически вывод этой формулы М. Планк представил 14 декабря 1900 г . на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

Из формулы Планка, зная универсальные постоянные h , k и c , можно вычислить постоянную Стефана–Больцмана σ и Вина b . С другой стороны, зная экспериментальные значения σиb , можно вычислить h и k (именно так было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

Планка, кто ее создатель и насколько важной она стала для развития современной науки. Также показано значение идеи квантования для всего микромира.

Смартфон и квантовая физика

Современный окружающий нас мир сильно отличается по технологиям от всего, что было привычно еще сотню лет назад. Все это стало возможным только благодаря тому, что на заре двадцатого века ученые преодолели барьер и поняли, наконец: вещество в самом маленьком масштабе не непрерывно. А открыл эту эру своим предположением замечательный человек - Макс Планк.

Биография Планка

Его именем названы: одна из физических констант, квантовое уравнение, научное сообщество в Германии, астероид, космический телескоп. Его изображение было выбито на монетах и напечатано на марках и купюрах. Каким же человеком был Макс Планк? Он родился в середине девятнадцатого века в немецкой дворянской небогатой семье. Среди его предков было немало хороших юристов и служителей церкви. Образование М.Планк получил хорошее, но коллеги-физики в шутку называли его «самоучкой». Основные знания ученый получил из книг.

Гипотеза Планка родилась из предположения, которое он вывел теоретически. В своей научной карьере он придерживался принципа «наука важнее всего». В первую мировую войну Планк старался сохранить связи с зарубежными коллегами из стран-противниц Германии. Приход нацистов застал его на должности директора большого научного сообщества - и ученый стремился защитить своих сотрудников, помогал выехать за границу тем, кто бежал от режима. Так что гипотеза Планка была не единственным, за что его уважали. Однако он никогда открыто не высказывался против Гитлера, очевидно понимая, что не только принесет вред себе, но и не сможет помогать тем, кто нуждался в этом. К сожалению, многие физики не приняли такой позиции М. Планка и прекратили переписку с ним. У него было пятеро детей, и только самый младший пережил отца. Старшего сына забрала Первая, среднего - Вторая мировая война. Обе дочери не пережили родов. При этом современники отмечали, что только дома Планк был самим собой.

Источники квантов

Со школы ученый интересовался Оно гласит: любой процесс идет только с увеличением хаоса и потерей энергии или массы. Он был первым, кто сформулировал его именно так - в терминах энтропии, которая может только возрастать в термодинамической системе. Позже именно эта работа привела к тому, что была сформулирована знаменитая гипотеза Планка. Также он был одним из тех, кто ввел традицию разделять математику и физику, практически создав теоретический раздел последней. До него все естественные науки были смешаны, а эксперименты проводились одиночками в лабораториях, которые почти не отличались от алхимических.

Гипотеза о квантах

Исследуя энтропию электромагнитных волн в рамках терминов осцилляторов и опираясь на экспериментальные данные, полученные за два дня до того, 19 октября 1900 Планк представил другим ученым формулу, которую впоследствии назовут его именем. Она связывала между собой энергию, длину волны и температуру излучения (в предельном случае для Всю следующую ночь его коллеги под руководством Рубенса ставили эксперименты, чтобы подтвердить эту теорию. И она оказалась верной! Однако чтобы теоретически обосновать вытекающую из этой формулы гипотезу и при этом избежать математических сложностей типа бесконечностей, Планку пришлось признать, что энергия излучается не непрерывным потоком, как считалось раньше, а отдельными порциями (Е=hν). Такой подход рушил все существующие представления о твердом теле. Квантовая гипотеза Планка совершила революцию в физике.

Последствия квантования

Поначалу ученый не осознавал важность сделанного им открытия. Какое-то время выведенная им формула употреблялась только как удобный способ сократить количество математических операций для вычисления. При этом как Планк, так и другие ученые, использовали непрерывные уравнения Максвелла. Смущала только постоянная h, которой никак не удавалось придать физический смысл. Позже только Альберт Эйнштейн и Пауль Эренфест, разбираясь в новых явлениях радиоактивности и пытаясь найти математическое обоснование оптическим спектрам, поняли всю важность того, что такое гипотеза Планка. Говорят, что доклад, на котором впервые прозвучала формула , открыл эру новой физики. Вероятно, Эйнштейн был первым, кто осознал ее начало. Так что это и его заслуга тоже.

Что квантуется

Все состояния, которые могут принимать любые элементарные частицы, дискретны. Электрон в ловушке может находиться только на определенных уровнях. Возбуждение атома, как и противоположный процесс - эмиссия, тоже происходит скачками. Любые электромагнитные взаимодействия - это обмен квантами соответствующей энергии. Энергию атома человечество обуздало только благодаря пониманию дискретности Надеемся, теперь у читателей не возникнет вопроса, в чем заключается гипотеза Планка, и каково ее влияние на современный мир, а значит, каждого из людей.

Основоположником квантовой физики считается немецкий физик-теоретик Макс Карл Эрнст Людвиг Планк. Именно он в 1900 г. заложил основы квантовой теории, предположив, что при тепловом излучении энергия испускается и поглощается отдельными порциями – квантами.

Позже было доказано, что любому излучению присуща прерывность.

Из биографии

Родился Макс Планк 23 апреля 1858 г. в г. Киле. Его отец, Иоганн Юлиус Вильгельм фон Планк, был профессором права. В 1867 г. Макс Планк начал обучаться в Королевской Максимилиановской гимназии в Мюнхене, куда к тому времени переехала его семья. В 1874 г.Планк закончил гимназию и занялся изучением математики и физики в Мюнхенском и Берлинском университетах. Планку был всего 21 год, когда в 1879 г. он защитил свою диссертацию «О втором законе механической теории тепла», посвящённую второму началу термодинамики. Через год он защищает вторую диссертацию «Равновесное состояние изотропных тел при различных температурах» и становится приват-доцентом факультета физики в Мюнхенском университете.

Весной 1885 г. Макс Планк – экстраординарный профессор кафедры теоретической физики Кильского университета. В 1897 г. был издан курс лекций Планка по термодинамике.

В январе 1889 г. Планк приступил к выполнению обязанностей экстраординарного профессора кафедры теоретической физики Берлинского университета, а в 1982 г. он стал ординарным профессором. Одновременно он возглавил Институт теоретической физики.

В 1913/14 учебном году Планк занимал пост ректора Берлинского университета.

Квантовая теория Планка

Берлинский период стал наиболее плодотворным в научной карьере Планка. Занимаясь проблемой теплового излучения с 1890 г., в 1900 г. Планк предположил, что электромагнитное излучение не является непрерывным. Оно излучается отдельными порциями – квантами. А величина кванта зависит от частоты излучения. Планком была выведена формула распределения энергии в спектре абсолютно чёрного тела. Он установил, что свет испускается и поглощается порциями-квантами с определённой частотой колебаний. А энергия каждого кванта равна частоте колебания, умноженной на постоянную величину , получившую название константы Планка.

E = hn , где n – частота колебаний, h –константа Планка.

Константу Планка называют основной константой квантовой теории , или квантом действия .

Это величина, связывающая величину энергии кванта электромагнитного излучения с его частотой. Но так как любое излучение происходит квантами, то константа Планка справедлива для любой линейной колебательной системы.

19 декабря 1900 г., когда на заседании Берлинского физического общества Планк доложил о своём предположении, стал днём рождения квантовой теории.

В 1901 г. на основе данных по излучение чёрного тела Планку удалось вычислить значение постоянной Больцмана . Он также получил число Авогадро (число атомов в одном моле) и установил величину заряда электрона с высочайшей точностью.

В 1919 г. Планк стал лауреатом Нобелевской премии по физике за 1918 г. за заслуги «в деле развития физики благодаря открытию квантов энергии».

В 1928 г. Максу Планку исполнилось 70 лет. Он вышел в формальную отставку. Но сотрудничество с Обществом фундаментальных наук кайзера Вильгельма не прекратил. В 1930 г. он стал президентом этого общества.

Планк был членом академий наук Германии и Австрии, научных обществ и академий Ирландии, Англии, Дании, Финляндии, Нидерландов, Греции, Италии, Венгрии, Швеции, США и Советского Союза.Германское физическое общество учредило медаль Планка. Это высшая награда этого общества. И первым почётным её обладателем стал сам Макс Планк.