Интегрирование функции по формуле симпсона. Метод трапеций

Суть метода Симпсона заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени p2(x), т.е. приближение графика функции на отрезке параболой. Для интерполирования подынтегральной функции используются три точки.

Рассмотрим произвольный интеграл. Воспользуемся заменой переменной таким образом, чтобы границы отрезка интегрирования вместо стали [-1,1]. Для этого введем переменную z:

Рассмотрим задачу интерполирования подынтегральной функции, используя в качестве узлов три равноудаленные узловые точки z = -1, z = 0, z = +1 (шаг равен 1, длина отрезка интегрирования равна 2). Обозначим соответствующие значения подынтегральной функции в узлах интерполяции:

Система уравнений для нахождения коэффициентов полинома, проходящего через три точки (-1, f-1), (0, f0) и(1, f-+1) примет вид:

Коэффициенты легко могут быть получены:

Вычислим теперь значение интеграла от интерполяционного многочлена:

Путем обратной замены переменной вернемся к исходному интегралу. Учтем, что:

соответствует

соответствует

соответствует

Получим формулу Симпсона для произвольного интервала интегрирования:

Полученное значение совпадает с площадью криволинейной трапеции, ограниченной осью x, прямыми x = x0, x = x2 и параболой, проходящей через точки

При необходимости, исходный отрезок интегрирования может быть разбит на N сдвоенных отрезков, к каждому из которых применяется формула Симпсона. Шаг интерполирования при этом составит:

Для первого отрезка интегрирования узлами интерполирования будут являться точки a, a+h, a+2h, для второго a+2h, a+3h, a+4h, третьего a+4h, a+5h, a+6h и т.д. Приближенное значение интеграла получается суммированием N площадей:

интегрирование численный метод симпсон

В данную сумму входят одинаковые слагаемые (для внутренних узлов с четным значением индекса - 2i). Поэтому можно перегруппировать слагаемые в этой сумме таким образом:

Приняв во внимание то, что получаем:

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у функции на отрезкесуществуют непрерывные производные. Составим разность:

Применяя к этой разнице последовательно теорему о среднем и дифференцируя R(h) получаем погрешность метода Симпсона:

Погрешность метода уменьшается пропорционально длине шага интегрирования в четвертой степени, т.е. при увеличении числа интервалов вдвое ошибка уменьшается в 16 раз.

Преимущества и недостатки

Формулы Симпсона и Ньютона-Котеса являются хорошим аппаратом для вычисления определенного интеграла достаточное число раз непрерывно дифференцируемой функции. Так, при условии, что четвертая производная не слишком велика, метод Симпсона позволяет получить достаточно высокую точность. В то же время, ее алгебраический порядок точности 3, и формула Симпсона является точной для многочленов степени не выше третьей.

Также методы Ньютона-Котеса и в частности метод Симпсона будут наиболее эффективными в случаях, когда априорная информация о гладкости подынтегральной функции отсутствует, т.е. когда подынтегральная функция задана таблично.

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4

n - количество разбиений

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке. Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках:

Проинтегрируем на отрезке.:

Введем замену переменных:

Учитывая формулы замены,


Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью, прямыми, и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х 1 , х 3 , ..., х 2n-1 имеет коэффициент 4, в четных точках х 2 , х 4 , ..., х 2n-2 - коэффициент 2 и в двух граничных точках х 0 =а, х n =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке . Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения, а также полуцелых точках.

По формуле средних прямоугольников получим I прям =0.785606 (погрешность равна 0.027%), по формуле трапеций I трап =0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок на четыре равные части точками х 0 =0, х 1 =1/4, х 2 =1/2, х 3 =3/4, х 4 =1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0 =1,0000, у 1 =0,8000, у 2 =0,6667, у 3 =0,5714, у 4 =0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 4 4)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

Для построения формулы Симпсона предварительно рассмотрим такую задачу: вычислить площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = Ax 2 + Bx + C, слева прямой х = - h, справа прямой x = h и снизу отрезком [-h; h]. Пусть парабола проходит через три точки (рис.8): D(-h; y 0) E(0; y 1) и F(h; y 2), причем х 2 - х 1 = х 1 - х 0 = h. Следовательно,

x 1 = x 0 + h = 0; x 2 = x 0 + 2h.

Тогда площадь S равна интегралу:

Выразим эту площадь через h, y 0 , y 1 и y 2 . Для этого вычислим коэффициенты параболы А, В, С. Из условия, что парабола проходит через точки D, E и F, имеем:

Решая эту систему, получаем: C = y 1 ; A =

Подставляя эти значения А и С в (3), получаем искомую площадь

Перейдем теперь к выводу формулы Симпсона для вычисления интеграла

Для этого отрезок интегрирования разобьем на 2n равных частей длиной

В точках деления (рис.4).а = х 0 , х 1 , х 2 , ...,х 2n-2 , x 2n-1 , x 2n = b,

Вчисляем значения подынтегральной функции f: y 0 , y 1 , y 2 , ...,y 2n-2 , y 2n-1 , y 2n , де y i = f(x i), x i = a + ih (i = 0, 1, 2,...,2n).

На отрезке подынтегральную функцию заменяем параболой, проходящей через точки (x 0 ; y 0), (x 1 ; y 1) и (x 2 ; y 2), и для вычисления приближенного значения интеграла от х 0 до х 2 воспользуемся формулой (4). Тогда (на рис. 4 заштрихованная площадь):

Аналогично находим:

................................................

Сложив полученные равенства, имеем:

Формула (5) называется обобщенной формулой Симпсона или формулой парабол , так как при ее выводе график подынтегральной функции на частичном отрезке длины 2h заменяется дугой параболы.

Задание на работу:

1. По указанию преподавателя или в соответствии с вариантом из Таблицы 4 заданий (см. Приложение) взять условия – подынтегральную функцию, пределы интегрирования.

2. Составить блок-схему программы и программу, которая должна:

Запросить точность вычисления определенного интеграла, нижний и верхний пределы интегрирования;

Вычислить заданный интеграл методами: для вариантов 1,4,7, 10… - правых, для вариантов 2,5,8,… - средних; для вариантов 2,5,8,… - левых прямоугольников. Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вычислить заданный интеграл методом трапеций (для четных вариантов) и методом Симпсона (для нечетных вариантов).

Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вывести значения контрольной функции для заданного значения аргумента и сравнить с вычисленными значениями интеграла. Сделать выводы.


Контрольные вопросы

1. Что такое определенный интеграл?

2. Почему наряду с аналитическими методами используются численные методы вычисления определенных интегралов.

3. В чем заключается сущность основных численных методов вычисления определенных интегралов.

4. Влияние количества разбиений на точность вычисления определенного интеграла численными методами.

5. Как вычислить интеграл любым методом с заданной точностью?

Возникает задача о численном вычислении определенного интеграла, решаемая с помощью формул, носящих название квад­ратурных.

Напомним простейшие формулы численного интегрирования.

Вычислим приближенное численное значение . Интервал интегрирования [а, b] разобьем на п равных частей точками деле­ния
, называемыми узлами квадра­турной формулы. Пусть в узлах известны значения
:


Величина

называется интервалом интегрирования или шагом. Отметим, что в практике -вычислений число я выбирают небольшим, обычно оно не больше 10-20.На частичном интервале

подынтегральную функцию заменяют интерполяционным много­членом


который на рассматриваемом интервале приближенно представ­ляет функцию f (х).

а) Удержим в интерполяционном многочлене только один первый член, тогда


Полученная квадратная формула

называется формулой прямоугольников.

б) Удержим в интерполяционном многочлене два первых члена, тогда

(2)

Формула (2) называется формулой трапеций.

в) Интервал интегрирования
разобьем на четное число 2n равных частей, при этом шаг интегрирования h будет равен. На интервале
длиной 2h подынтегральную функцию заменим интерполяционным многочленом второй сте­пени, т. е. удержим в многочлене три первых члена:

Полученная квадратурная формула называется формулой Симп­сона

(3)

Формулы (1), (2) и (3) имеют простой геометрический смысл. В формуле прямоугольников подынтегральная функция f(х) на интервале
заменяется отрезком прямой у = ук, параллельной оси абсцисс, а в формуле трапеций - отрезком прямой
и вычисляется соответственно площадь прямо­угольника и прямолинейной трапеции, которые затем сумми­руются. В формуле Симпсона функция f(х) на интервале
длиной 2h заменяется квадратным трехчленом - параболой
вычисляется площадь криволинейной параболической трапеции, затем площади суммируются.

ЗАКЛЮЧЕНИЕ

В завершении работы, хочется отметить ряд особенностей применения рассмотренных выше методов. Каждый способ приближённого решения определённого интеграла имеет свои преимущества и недостатки, в зависимости от поставленной задачи следует использовать конкретные методы.

Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл.

По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения.

Таким образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.

Интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:

    через логарифмы- в случаях простейших дробей 1 типа;

    через рациональные функции- в случае простейших дробей 2 типа

    через логарифмы и арктангенсы- в случае простейших дробей 3 типа

    через рациональные функции и арктангенсы- в случае простейших дробей 4 типа. Универсальная тригонометрическая подстановка всегда рационализирует подынтегральную функцию, однако часто она приводит к очень громоздким рациональным дробям, у которых, в частности, практически невозможно найти корни знаменателя. Поэтому при возможности применяются частные подстановки, которые тоже рационализируют подынтегральную функцию и приводят к менее сложным дробям.

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Как следует из теоремы, условие непрерывности функции яв­ляется достаточным условием интегрируемости функции. Но это не означает, что определенный интеграл существует только для непрерывных функций. Класс интегрируемых функций гораздо шире. Так, например, существует определенный интеграл от функ­ций, имеющих конечное число точек разрыва.

Вычис­ление определенного интеграла от непрерывной функции с по­мощью формулы Ньютона-Лейбница сводится к нахождению первообразной, которая всегда существует, но не всегда явля­ется элементарной функцией или функцией, для которой состав­лены таблицы, дающие возможность получить значение интеграла. В многочисленных приложениях интегрируемая функция зада­ется таблично и формула Ньютона - Лейбница непосредственно неприменима.

Если необходимо получить наиболее точный результат, идеально подходит метод Симпсона .

Из выше изученного можно сделать следующий вывод, что интеграл используется в таких науках как физика, геометрия, математика и других науках. При помощи интеграла вычисляют работу силы, находят координаты центр масс, путь пройденный материальной точкой. В геометрии используется для вычисления объема тела, нахождение длины дуги кривой и др.

(1710-1761).

Рассмотрим отрезок . Пусть известны значения вещественной функции f(x) в точках a, (a+b)/2, b. Существует единственный полином 2-й степени p 2 (x ) , график которого проходит через точки (a, f(a)), ((a+b)/2,f((a+b)/2), (b, f(b)). Формулой Симпсона называется интеграл от этого полинома на отрезке :

Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

Погрешность при интегрировании по отрезку [a ,b ] с шагом h определяется по формуле:

,

где - максимум четвёртой производной функции.

Так же, при невозможности оценить погрешность с помощью максимума четвертой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:

,

где - максимум третьей производной функции.

Ссылки

  • Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»

Wikimedia Foundation . 2010 .

  • Метод Рунге - Куттa
  • Метод Фибоначчи поиска экстремума

Смотреть что такое "Метод Симпсона" в других словарях:

    Формула Симпсона - Суть метода аппроксимация функции f (x) (синий график) квадратичным полиномом P (x) (красный) Формула Симпсона (также … Википедия

    РОМБЕРГА МЕТОД - п р а в и л о Р о м б е р г а, метод вычисления определенного интеграла, основанный на Ричардсона экстраполяции. Пусть вычисляется значение I нек рого функционала, при этом вычисляемое приближенное значение Т(h)зависит от параметра h, так что в… … Математическая энциклопедия

    Численное интегрирование - (историческое название: (численная) квадратура) вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов отыскания значения определённого интеграла. Численное… … Википедия

    Квадратурные формулы

    Квадратурная формула - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Прямоугольников формула - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Формула прямоугольников - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    РОДЫ - РОДЫ. Содержание: I. Определение понятия. Изменения в организме во время Р. Причины наступления Р..................... 109 II. Клиническое течение физиологических Р. . 132 Ш. Механика Р. ................. 152 IV. Ведение Р.................. 169 V … Большая медицинская энциклопедия

    Интегральное исчисление - раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением (См. Дифференциальное исчисление) и составляет вместе с ним одну из основных частей… … Большая советская энциклопедия