Из чего делают медицинский йод. Основные свойства йода: польза и вред для организма

Физические и химические свойства

В таблице Менделеева йод стоит под номером 53 и относится к группе неметаллов. Принятое обозначение галогена I (двухатомная молекула I2). В нормальных условиях это порошок с кристаллической структурой. Варьирует от фиолетового оттенка к черно-серому цвету с металлическими отблесками. При нагревании выделяются концентрированные пары фиолетового цвета. После охлаждения йод снова кристаллизируется, минуя жидкую форму. Чтобы получить йод в жидком виде, его нагревают под высоким давлением. У вещества специфический запах. В воде йод почти не растворяется только в спирте.

У йода только один изотоп – 127. Есть еще радиоактивная разновидность – изотоп 131, который при попадании в организм поражает щитовидную железу и нарушает внутренние процессы. Одна из самых распространенных реакций простых веществ на йод – при попадании на крахмал приобретает синий оттенок. Если йод вступает в реакцию с металлами, образует соли. Из них он может быть вытеснен галогенами своей группы. Также известна сильная йодисто-водородная кислота HJ.

Несмотря на то, что йод встречается повсюду, он считается редким химическим элементом, ведь его концентрация в земной коре невелика. В водах океана, к примеру, йод присутствует в концентрации 20-30 мг/т. Как самостоятельный минерал его можно встретить в некоторых термальных источниках вулканов в Италии. Залежи йодидов обнаружены в Японии и Чили. Наиболее известные йодаты – майерсит, лаутарит, эмболит, йодобромит. В России йод добывают путем переработки некоторых водорослей. Этот способ считается дорогостоящим.

Роль йода в организме человека

Ученые подсчитали, что человек потребляет йод в небольших дозах. За всю жизнь не наберется и чайной ложки вещества в чистом виде. В организме сохраняется резервных 15-20 мг йода. Накапливается он преимущественно в щитовидной железе. Всасывается минерал в тонком кишечнике, в полном объеме попадает в кровь через 2 часа. Также незначительное число йода скапливается в почках, желудке, печени и молочных железах. Основная часть выводится с мочой, но также могут быть задействованы слюнные и потовые железы.

Значение йода для организма человека:

  • Участвует в синтезе тироксина – гормона щитовидной железы, из 4 атомов 3 – это атомы йода. Тиреоидные гормоны участвуют во многих процессах: синтезе РНК (рибонуклеиновая кислота), улучшении метаболизма, обеспечении клеток кислородом, газовом и электролитном обмене, снижении вредного холестерина в крови.
  • Йод очень важен и на стадии закладки эмбриона. Он активно участвует в созревании всех систем и органов. В первую очередь, опорно-двигательной, нервной и сердечно-сосудистой. Доказано, что тиреоидные гормоны ответственны и за формирование головного мозга. В частности, отделов, которые в будущем будут отвечать за интеллектуальное развитие.
  • Йод необходим иммунной системе. Он способствует поддержанию баланса веществ, которые защищают организм от инфекций.
  • Участвует в синтезе красных телец крови, стимулирует обменные процессы в костном мозге.
  • Улучшает состояние сосудов, препятствует развитию диастолической гипертензии.
  • Принимает участие в нормализации гормонов репродуктивной системы. С началом беременности стимулирует развитие в яичнике желтого тела.
  • Ускоряет некоторые химические реакции, происходящие в организме.
  • Без йода было бы затруднительно поддерживать стабильную температуру тела.
  • Необходим йод для усвоения организмом некоторых витаминов и минералов , для нормальной умственной активности.
  • Ускоряет жиросжигание . Доказано, если организм получает достаточно йода, диета дает лучшие результаты.
  • Улучшает работоспособность, устраняет раздражительность.
  • Нужен для нормального состояния волос, кожных покровов и ногтей.

Из-за недостатка йода могут развиться патология щитовидной железы, что скажется на общем состоянии организма. Для плода недостаток йода крайне опасен: он может вызвать нарушение развития, уродство, мертворождение.

Йод активно используют для лечения многих заболеваний, а именно:

  • Для предотвращения появления эндемического зоба.
  • Для лечения болезней глаз (калия йодид входит в состав капель для глаз).
  • Для снижения интоксикации организма тяжелыми металлами (ртутью, свинцом и др.), радиацией.
  • Для лечения атеросклероза (снижает уровень холестерина).
  • При заболеваниях дыхательной системы (принимают препараты внутрь, делают ингаляции, орошения).
  • При грибковых и инфекционных поражениях кожи и волос.
  • Для лечения воспалений мочеполовой системы (ванны, спринцевания, препараты с йодом).
  • Спиртовым раствором обрабатывают пораженную кожу и слизистые.
  • Эффективны и йодные сетки – они улучшают кровообращение, расширяют капилляры. Такие сетки используются для лечения болезней дыхательной и нервной системы. При поражениях мышц и суставов также показаны йодные сетки.

Широкое применение нашел так называемый «синий йод». Смесь используют для усиления работы щитовидной железы.

Для его приготовления необходимо в 50 мл воды добавить 10 г картофельного крахмала (примерно чайная ложка с горкой) и хорошо перемешать. В полученную смесь всыпать 10 г сахарного песка и 0,4 г лимонной кислотой (несколько кристалликов). Приготовленный раствор вливают в 150 мл кипятка, при этом медленно помешивая. Далее средство необходимо охладить до комнатной температуры и влить в него 1 чайную ложку 5% спиртового раствора йода. Смесь моментально приобретет характерный синий цвет.

Состав хранится несколько месяцев, имеет неплохие лечебные свойства и менее токсичен, чем обычный йод.

Основные источники йода


Этот ценный микроэлемент поступает в организм только извне:

  • 3-5% от необходимой нормы мы получаем с питьевой водой,3-5% - c воздухом.
  • До 60% - с продуктами животного происхождения, до 30% - с растительными продуктами.

Интересно! Концентрацию йода в крови называют «йодным зеркалом» (табл.1). Оно должно находиться в пределах 5-10 или 6-10%. Наивысшее содержание йода фиксируется с мая по сентябрь, когда нет недостатка в свежих овощах и фруктах

Таблица 1. Суточная норма йода

Животные источники йода (табл.2):

  • Морские водоросли (особенно красные и бурые).
  • Креветки, моллюски.
  • Морская соль.
  • Морская рыба (палтус, сельдь, тунец, лосось, сардина, треска, пикша). В пресноводной рыбе йод тоже есть, но его концентрация намного ниже.
  • Яйца, молоко, творог, сыр, говяжья печень.

Растительные источники йода (табл.2):

  • Овощи: свекла, морковь, шпинат, репчатый лук, капуста белокочанная. А также помидо

Ио́д (тривиальное (общеупотребительное) название - йод; от др.-греч. ἰώδης - «фиалковый (фиолетовый)») - элемент 17-й группы перйодической таблицы химических элементов (по устаревшей классификации - элемент главной подгруппы VII группы), пятого перйода, с атомным номером 53. Обозначается символом I (лат. Iodum). Химически активный неметалл, относится к группе галогенов.
Простое вещество йод (CAS-номер: 7553-56-2) при нормальных условиях - кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, легко образует фиолетовые пары, обладающие резким запахом. Молекула вещества двухатомна (формула I 2).

История

йод был открыт в 1811 г. Куртуа в золе морских водорослей, а с 1815 г. Гей-Люссак стал рассматривать его как химический элемент.

Название и обозначение
Название элемента предложено Гей-Люссаком и происходит от др.-греч. ἰώδης, ιώο-ειδης (букв. «фиалкоподобный»), что связано с цветом пара, который наблюдал французский химик Бернар Куртуа, нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой. В медицине и биологии данный элемент и простое вещество обычно называют йодом, например «раствор йода», в соответствии со старым вариантом названия, существовавшим в химической номенклатуре до середины XX века.
В современной химической номенклатуре используется наименование йод. Такое же положение существует в некоторых других языках, например в немецком: общеупотребительное Jod и терминологически корректное Iod. Одновременно с изменением названия элемента в 1950-х годах Международным союзом общей и прикладной химии символ элемента J был заменен на I.

Физические свойства

йод при обычных условиях - твердое чёрно-серое вещество с металлическим блеском и специфическим запахом. Пары имеют характерный фиолетовый цвет, так же, как и растворы в неполярных органических растворителях, например в бензоле - в отличие от бурого раствора в полярном спирте. йод при комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым блеском. При нагревании при атмосферном давлении он сублимируется (возгоняется), превращаясь в пары фиолетового цвета; при охлаждении пары йода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки йода от нелетучих примесей.

Химические свойства

йод относится к группе галогенов.
Образует ряд кислот: йодоводородную (HI), йодноватистую (HIO), йодистую (HIO 2), йодноватую (HIO 3), йодную (HIO 4).
Химически йод довольно активен, хотя и в меньшей степени, чем хлор и бром.
1. С металлами йод при легком нагревании энергично взаимодействует, образуя йодиды:
Hg + I 2 = HgI 2

2. С водородом йод реагирует только при нагревании и не полностью, образуя йодоводород:
I 2 + H 2 = 2HI

3. Атомарный йод - окислитель, менее сильный, чем хлор и бром. Сероводород H 2 S , Na 2 S 2 O 3 и другие восстановители восстанавливают его до иона I - :
I 2 + H 2 S = S + 2HI

4. При растворении в воде йод частично реагирует с ней:
I 2 + H 2 O ↔ HI + HIO, pK с =15.99

Иод (лат. Iodum), I, химический элемент VII группы периодической системы Менделеева, относится к галогенам (в литературе встречается также устаревшие название Йод и символ J); атомный номер 53, атомная масса 126,9045; кристаллы черно-серого цвета с металлическим блеском. Природный Иод состоит из одного стабильного изотопа с массовым числом 127. Иод открыл в 1811 году французский химик Б. Куртуа. Нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение фиолетового пара (отсюда название Иод - от греч. iodes, ioeides - похожий цветом на фиалку, фиолетовый), который конденсировался в виде темных блестящих пластинчатых кристаллов. В 1813-1814 годах французский химик Ж. Л. Гей-Люссак и английский химик Г. Дэви доказали элементарную природу Иода.

Распространение Иода в природе. Среднее содержание Иода в земной коре 4·10 -5 % по массе. В мантии и магмах и в образовавшихся из них породах (гранитах, базальтах и других) соединения Иода рассеяны; глубинные минералы Иода неизвестны. История Иода в земной коре тесно связана с живым веществом и биогенной миграцией. В биосфере наблюдаются процессы его концентрации, особенно морскими организмами (водорослями, губками и другими). Известны восемь гипергенных минералов Иода, образующихся в биосфере, однако они очень редки. Основным резервуаром Иода для биосферы служит Мировой океан (в 1 л в среднем содержится 5·10 -5 г Иода). Из океана соединения Иода, растворенные в каплях морской воды, попадают в атмосферу и переносятся ветрами на континенты. (Местности, удаленные от океана или отгороженные от морских ветров горами, обеднены Иодом) Иод легко адсорбируется органическими веществами почв и морских илов. При уплотнении этих илов и образовании осадочных горных пород происходит десорбция, часть соединений Иода переходит в подземные воды. Так образуются используемые для добычи Иода иодобромные воды, особенно характерные для районов нефтяных месторождений (местами 1 л этих вод содержит свыше 100 мг Иода).

Физические свойства Иода. Плотность Иода 4,94 г/см 3 , t пл 113,5°C, t кип 184,35 °С. Молекула жидкого и газообразного Иода состоит из двух атомов (I 2). Заметная диссоциация I 2 = 2I наблюдается выше 700 °C, а также при действии света. Уже при обычной температуре Иод испаряется, образуя резко пахнущий фиолетовый пар. При слабом нагревании Иод возгоняется, оседая в виде блестящих тонких пластинок; этот процесс служит для очистки Иода в лабораториях и в промышленности. Иод плохо растворим в воде (0,33 г/л при 25 °C), хорошо - в сероуглероде и органических растворителях (бензоле, спирте и других), а также в водных растворах иодидов.

Химические свойства Иода. Конфигурация внешних электронов атома Иода 5s 2 5p 5 . B соответствии с этим Иод проявляет в соединениях переменную валентность (степень окисления): -1 (в HI, KI), +1 (в HIO, KIO), +3 (в ICl 3), +5 (в HIO 3 , KIO 3) и +7 (в HIO 4 , KIO 4). Химически Иод довольно активен, хотя и в меньшей степени, чем хлор и бром. С металлами Иод при легком нагревании энергично взаимодействует, образуя иодиды (Hg + I 2 = HgI 2). С водородом Иод реагирует только при нагревании и не полностью, образуя иодистый водород. С углеродом, азотом, кислородом Иод непосредственно не соединяется. Элементарный Иод - окислитель, менее сильный, чем хлор и бром. Сероводород H 2 S, тиосульфат натрия Na 2 S 2 O 3 и другие восстановители восстанавливают его до I - (I 2 + H 2 S = S + 2HI). Хлор и другие сильные окислители в водных растворах переводят его в IO 3 - (5Cl 2 + I 2 + 6H 2 O = 2HIO 3 H + 10НСl). При растворении в воде Иод частично реагирует с ней (I 2 + H 2 O = HI + HIO); в горячих водных растворах щелочей образуются иодид и иодат (3I 2 + 6NaOH = 5NaI + NaIO 3 + 3H 2 O). Адсорбируясь на крахмале, Иод окрашивает его в темно-синий цвет; это используется в иодометрии и качественном анализе для обнаружения Иода.

Пары Иода ядовиты и раздражают слизистые оболочки. На кожу Иод оказывает прижигающее и обеззараживающее действие. Пятна от Иода смывают растворами соды или тиосульфата натрия.

Получение Иода. Сырьем для промышленного получения Иода служат нефтяные буровые воды; морские водоросли, а также маточные растворы чилийской (натриевой) селитры, содержащие до 0,4% Иода в виде иодата натрия. Для извлечения Иода из нефтяных вод (содержащих обычно 20-40 мг/л Иод в виде иодидов) на них сначала действуют хлором (2 NaI + Cl 2 = 2NaCl + I 2) или азотистой кислотой (2NaI + 2NaNO 2 + 2H 2 SO 4 = 2Na 2 SO 4 + 2NO + I 2 + 2H 2 O). Выделившийся Иод либо адсорбируют активным углем, либо выдувают воздухом. На Иод, адсорбированный углем, действуют едкой щелочью или сульфитом натрия (I 2 + Na 2 SO 3 + H 2 O = Na 2 SO 4 + 2HI). Из продуктов реакции свободный Иод выделяют действием хлора или серной кислоты и окислителя, например, дихромата калия (K 2 Cr 2 O 7 + 7H 2 SO 4 + 6NaI = K 2 SO 4 + 3Na 2 SO 4 + Cr 2 (SO 4)S + 3I 2). При выдувании воздухом Иод поглощают смесью оксида серы (IV) с водяным паром (2H 2 O + SO 2 + I 2 = H 2 SO 4 + 2HI) и затем вытесняют Иод хлором (2HI + Cl 2 = 2HCl + I 2). Сырой кристаллический Иод очищают возгонкой.

Применение Иода. Иод и его соединения применяют главным образом в медицине и в аналитической химии, а также в органическом синтезе и фотографии.

Иод в организме. Иод - необходимый для животных и человека микроэлемент. В почвах и растениях таежно-лесной нечерноземной, сухостепной, пустынной и горных биогеохимических зон Иод содержится в недостаточном количестве или не сбалансирован с некоторыми других микроэлементами (Co, Mn, Cu); с этим связано распространение в этих зонах эндемического зоба. Среднее содержание Иода в почвах около 3·10 -4 %, в растениях около 2·10 -5 %. В поверхностных питьевых водах Иода мало (от 10 -7 до 10 -9 %). В приморских областях количество Иода в 1 м 3 воздуха может достигать 50 мкг, в континентальных и горных - составляет 1 или даже 0,2 мкг.

Поглощение Иода растениями зависит от содержания в почвах его соединений и от вида растений. Некоторые организмы (так называемые концентраторы Иода), например, морские водоросли - фукус, ламинария, филлофора, накапливают до 1% Иода, некоторые губки - до 8,5% (в скелетном веществе спонгине). Водоросли, концентрирующие Иод, используются для его промышленного получения. В животный организм Иод поступает с пищей, водой, воздухом. Основной источник Иода - растительные продукты и корма. Всасывание Иода происходит в передних отделах тонкого кишечника. В организме человека накапливается от 20 до 50 мг Иода, в том числе в мышцах около 10-25 мг, в щитовидной железе в норме 6-15 мг. С помощью радиоактивного Иода (131 I и 125 I) показано, что в щитовидной железе Иод накапливается в митохондриях эпителиальных клеток и входит в состав образующихся в них дииод- и моноиодтирозинов, которые конденсируются в гормон тетраиодтиронин (тироксин). Выделяется Иод из организма преимущественно через почки (до 70- 80%), молочные, слюнные и потовые железы, частично с желчью.

В различных биогеохимических провинциях содержание Иода в суточном рационе колеблется (для человека от 20 до 240 мкг, для овцы от 20 до 400 мкг). Потребность животного в Иоде зависит от его физиологического состояния, времени года, температуры, адаптации организма к содержанию Иода в среде. Суточная потребность в Иоде человека и животных - около 3 мкг на 1 кг массы (возрастает при беременности, усиленном росте, охлаждении). Введение в организм Иода повышает основной обмен, усиливает окислительные процессы, тонизирует мышцы, стимулирует половую функцию.

В связи с большим или меньшим недостатком Иода в пище и воде применяют иодирование поваренной соли, содержащей обычно 10-25 г йодистого калия на 1 т соли. Применение удобрений, содержащих Иод, может удвоить и утроить его содержание в сельскохозяйственных культурах.

Иод в медицине. Препараты, содержащие Иод, обладают антибактериальными и противогрибковыми свойствами, они оказывают также противовоспалительное и отвлекающее действие; их применяют наружно для обеззараживания ран, подготовки операционного поля. При приеме внутрь препараты Иода оказывают влияние на обмен веществ, усиливают функцию щитовидной железы. Малые дозы Иода (микроиод) тормозят функцию щитовидной железы, действуя на образование тиреотропного гормона передних долей гипофиза. Поскольку Иод влияет на белковый и жировой (липидный) обмен, он нашел применение при лечении атеросклероза, так как снижает содержание холестерина в крови; повышает также фибринолитическую активность крови. Для диагностических целей используют рентгеноконтрастные вещества, содержащие Иод.

При длительном применении препаратов Иода и при повышенной чувствительности к ним возможно появление иодизма - насморк, крапивница, отек Квинке, слюно- и слезотечение, угревидная сыпь (иододерма) и пр. Препараты Иода нельзя принимать при туберкулезе легких, беременности, при заболеваниях почек, хронической пиодермии, геморрагических диатезах, крапивнице.

Иод радиоактивный. Искусственно радиоактивные изотопы Иода - 125 I, 131 I, 132 I и другие широко используются в биологии и особенно в медицине для определения функционального состояния щитовидной железы и лечения ряда ее заболеваний. Применение радиоактивного Иода в диагностике связано со способностью Иода избирательно накапливаться в щитовидной железе; использование в лечебных целях основано на способности β-излучения радиоизотопов Иода разрушать секреторные клетки железы. При загрязнениях окружающей среды продуктами ядерного деления радиоактивные изотопы Иода быстро включаются в биологический круговорот, попадая, в конечном счете, в молоко и, следовательно, в организм человека. Особенно опасно их проникновение в организм детей, щитовидная железа которых в 10 раз меньше, чем у взрослых людей, и к тому же обладает большей радиочувствительностью. С целью уменьшения отложения радиоактивных изотопов Иода в щитовидной железе рекомендуется применять препараты стабильного Иода (по 100-200 мг на прием). Радиоактивный Иод быстро и полностью всасывается в желудочно-кишечном тракте и избирательно откладывается в щитовидной железе. Его поглощение зависит от функционального состояния железы. Относительно высокие концентрации радиоизотопов Иода обнаруживаются также в слюнных и молочной железах и слизистой желудочно-кишечного тракта. Не поглощенный щитовидной железой радиоактивный Иод почти полностью и сравнительно быстро выделяется с мочой.

Физико-химические свойства йода и его соединений


Введение

1. Физические и химические свойства йода

2. Соединения йода

3. Физиологическая роль йода

Заключение

Список источников литературы


Введение

Йод открыт французским химиком Куртуа в 1811 году, он относится к VII группе периодической системы Д.И. Менделеева. Порядковый номер элемента - 53. В природе он находится в виде стабильного изотопа с атомной массой 127. Искусственно получены радиоактивные изотопы с атомной массой 125, 129, 131 и другой. Йод относится к подгруппе галогенов, являющихся самыми химически активными неметаллами.

Атом йода имеет 7 валентных электронов и вакантные d-орбитали, что дает возможность проявления нечетных валентностей. Йод проявляет в своих соединениях различные степени окисления: -1; +1; +3; +5; +7. В отличие от других галогенов йод образует ряд относительно устойчивых соединений, в которых он проявляет нечетные положительные степени окисления. Большой радиус атома и относительно низкая энергия ионизации дают возможность элементу быть не только акцептором, но и донором электронов во многих химических реакциях. Наиболее устойчивы соединения, в которых йод проявляет степени окисления -1; +1; +5. Соединения семивалентного йода имеют меньшее значение.

При комнатной температуре йод представляет собой фиолетово-черные кристаллы с металлическим блеском плотностью 4,94 г/см3. Кристаллы состоят из двухатомных молекул, связанных между собой силами межмолекулярного взаимодействия Ван-дер-Ваальса. При нагревании до 183°С йод возгоняется, образуя фиолетовые пары. Жидкий йод может быть получен при нагревании до 114°С под давлением. В парах вблизи температуры возгонки йод находится в виде молекул I2 , при температуре выше 800°С молекулы йода диссоциируют на атомы.


1. Физические и химические свойства йода

Йод малорастворим в воде. При комнатной температуре в 100 г воды растворяется около 0,03 г йода, с повышением температуры растворимость йода несколько увеличивается. Гораздо лучше йод растворяется в органических растворителях. В глицерине растворимость йода составляет 0,97 г йода, в четыреххлористом углероде - 2,9 г, в спирте, эфире и сероуглероде - около 20 г йода на 100 г растворителя. При растворении йода в бескислородных органических растворителях (четыреххлористый углерод, сероуглерод, бензол) образуются фиолетовые растворы; с кислородсодержащими растворителями йод дает растворы, имеющие бурую окраску. В фиолетовых растворах йод находится в виде молекул I2, в бурых - в виде неустойчивых соединений со слабыми донорно-акцепторными связями [Неницеску, 1968]. Йод хорошо растворяется в водных растворах йодидов, при этом образуется комплексный трийодид-ион, находящийся в равновесии с исходными веществами и продуктами гидролиза. Трийодид-ион участвует в химических реакциях как эквимолярная смесь молекулярного йода и йодид-иона.

Атом йода обладает очень легко поляризуемой электронной оболочкой. Катионы большинства элементов способны глубоко проникать в электронную оболочку йода, вызывая значительную ее деформацию. Вследствие этого соединения йода обладают более ковалентным характером, чем аналогичные соединения остальных галогенов. Высокая поляризуемость приводит к возможности существования структур с положительным концом диполя на атоме йода. Положительно поляризованный атом йода обусловливает цветность и высокую физиологическую активность химических соединений йода [Мохнач, 1968].

Химическая активность йода ниже, чем у других галогенов. Йод взаимодействует с большинством металлов и с некоторыми неметаллами. Йод не взаимодействует непосредственно с благородными металлами, инертными газами, кислородом, азотом, углеродом. Соединения йода с некоторыми из этих элементов могут быть получены косвенным путем. С большинством элементов йод образует йодиды, при взаимодействии с галогенами образуются соединения положительно поляризованного йода. Йодиды щелочных и щелочноземельных элементов - солеобразные соединения, хорошо растворимые в воде. Йодиды тяжелых металлов более ковалентны. В отличие от легких галогенов йод стабилизирует низшие степени окисления у элементов с переменной валентностью. Не существует йодидов трехвалентного железа и четырехвалентного марганца. Это связано с большим радиусом йодид-иона и недостаточной окислительной активностью йода.

Йодиды неметаллических элементов - вещества с молекулярной структурой и преимущественно ковалентными связями, обладающие кислотным характером. Эти вещества в природе существовать не могут, так как легко разлагаются водой (гидролизуются). Специальными методами могут быть получены соединения, содержащие катион одновалентного йода. Однако они также неустойчивы и легко гидролизуются.

Насыщенные органические соединения не взаимодействуют с йодом, так как энергия связи углерод - водород больше энергии связи углерод-йод. Йод способен присоединяться к кратным углерод - углеродным связям. Степень ненасыщенности вещества можно характеризовать йодным числом, то есть количеством йода, присоединяющегося к единице массы органического соединения. Йод способен замещать водород в активных ароматических системах (толуол, фенол, анилин, нафталин), однако реакция идет труднее, чем для хлора и брома.

2. Соединения йода

Важнейшими соединениями йода являются йодистый водород, йодиды, соединения положительно одновалентного йода, йодаты и йодорганические соединения. Йодистый водород - газ с резким раздражающим запахом. Один объем воды при комнатной температуре растворяет более 1000 объемов йодистого водорода, при этом происходит выделение энергии. Водный раствор йодистого водорода – йодистоводородная кислота - является очень сильной кислотой. Растворы йодистоводородной кислоты и йодид-ион в кислой среде проявляют восстановительные свойства. Нормальный окислительно-восстановительный потенциал системы «йод - йодид-ион» равен +0,54 В, то есть йодид-ион в кислой среде является более сильным восстановителем, чем ион двухвалентного железа. Йодид-ион взаимодействует с ионом двухвалентной меди с образованием нерастворимого в воде йодида одновалентной меди и выделением молекулярного йода. Таким образом, в кислой среде невозможно одновременное существование йодид-ионов и ионов трехвалентного железа, соединений трех- и четырехвалентного марганца, ионов двухвалентной меди. С другой стороны, молекулярный йод окисляет сероводород и сульфид-ион при любом значении рН, образуя при этом йодид-ион. Окислительно-восстановительные свойства йода определяют формы нахождения элемента в различных природных системах. В сильнокислых почвах с господством окислительной обстановки накопление йодидов невозможно, тогда как в анаэробных условиях, создающихся, в частности, в глеевых горизонтах почв, эта форма микроэлемента является устойчивой.

В нейтральной среде йодиды более устойчивы, чем в кислой, хотя и в этих условиях растворы йодидов медленно окисляются кислородом воздуха с выделением молекулярного йода. В щелочной среде устойчивость йодидов возрастает.

Растворимость йодидов возрастает в ряду йодид ртути, йодид золота, йодид серебра, йодид одновалентной меди, йодид свинца. Остальные йодиды металлических катионов и аммония хорошо растворимы в воде.

Наибольшей реакционной способностью и физиологической активностью обладают соединения положительно одновалентного йода. Вследствие своей неустойчивости и реакционной способности они встречаются в биосфере в низких концентрациях. Как было отмечено раньше, однозарядный положительный катион йода может быть получен специальными методами в лаборатории, но в естественных условиях он крайне неустойчив. В природе соединения положительно поляризованного одновалентного йода находятся в других формах.

Окись одновалентного йода не существует. Содержащая йод в степени окисления +1 йодноватистая кислота является очень неустойчивым соединением. Ее разбавленный раствор получают при встряхивании водного раствора йода с окисью ртути. В кислой среде йодноватистая кислота является сильным окислителем, в щелочной среде при рН выше 9 гипойодит-ион взаимодействует с водой с образованием йодид-иона и йодат-иона.

Молекулярный йод, в отличие от кислорода и азота, не является неполярным веществом. Измерения дипольного момента молекулярного йода в свободном состоянии и в растворах дают величины от 0,6 до 1,5 D, что указывает на значительное разделение зарядов в молекуле. В биосфере невозможно изолированное существование молекулярного йода. Везде, в любых средах биосферы молекулы йода будут сталкиваться с поляризующими веществами, из которых наибольшее значение имеет вода.

По классическим представлениям при растворении молекулярного йода в воде устанавливается равновесие:

I2 + H2O=I + HOI.

Равновесие сильно смещено влево. Образующаяся йодноватистая кислота может взаимодействовать с водой как амфотерное соединение. Исследования В.О. Мохнача и сотрудников [Мохнач, 1968] показали, что в растворах молекулярного йода не обнаруживается йодид-ион. Ультрафиолетовые спектры поглощения системы «молекулярный йод-вода» обнаруживают максимумы поглощения в диапазонах 288 - 290 нм, 350 - 354 нм и около 460 нм. Первая полоса - поглощение трийодид-иона, вторая соответствует аниону IO- , третья - поляризованной гидратированной молекуле йода. Отсутствие поглощения в диапазоне 224 - 226 нм свидетельствует об отсутствии йодид-ионов в растворе. По мнению автора, в растворах молекулярного йода устанавливается равновесие 2I2 + Н2О =2Н+ + I3 +IO-. Анион йодноватистой кислоты является причиной сильной окислительной и физиологической активности растворов молекулярного йода.

Другим важным соединением, содержащим положительно поляризованный одновалентный йод, является однохлористый йод. Он образуется при непосредственном взаимодействии йода с хлором. Однохлористый йод представляет собой кристаллы желтого цвета, плавящиеся при 27° С и кипящие при 100 - 102 °С с частичным разложением. Более устойчивая форма однохлористого йода - рубиново-красные кристаллы.

Йод (I 2 ) находится в 7-ой группе периодической таблицы Д.И. Менделеева в подгруппе галогенов . На внешнем уровне у атома йода находится 1 неспаренный электрон, одного электрона не хватает до завершения оболочки инертного газа. Вследствие большого радиуса атома йод проявляет восстановительные свойства, вне зависимости от того, что он находится в подгруппе галогенов. Внешний электрон находится далеко от ядра, поэтому йоду его легче отдать, чем присоединить к себе еще. Поэтому йод выступает в качестве восстановителя.

Физические свойства йода.

Йод представляет собой кристаллы блестящего серо-черного цвета.

Химические свойства йода.

Йод не реагирует с большинством неметаллов, а с металлами реагирует только при нагревании и очень медленно. Например, все другие галоген при реакции с железом дают трехвалентную соль FeHal 3 , а йод - только 2х валентную:

Fe + I 2 = FeI 2,

С водородом реакция протекает так:

H 2 + I 2 = 2 HI,

Реакция обратима и эндотермична.

Получение йода.

Йод получают в лаборатории по реакции:

MnO 2 + 4HI = MnI 2 + I 2 + 2H 2 O.