Картографирование земли из космоса. Космическая география

Реферат по дисциплине

«География»

По теме:

«Космическая съёмка. Виды и свойства космических снимков, применение их в картографии»

Содержание

Введение (с.3)

    Виды съёмок (c .6)

    Космическая картография (с.8)

    Контроль из космоса за окружающей средой (с.12)

    Заключение (с.15)

    Список литературы (с.16)

Введение

Цель работы: рассмотрение сути космической фотосъёмки.

Космическая фотосъемка - технологический процесс фотографирования земной поверхности с летательного аппарата с целью получения фотографических изображений местности (фотоснимков) с заданными параметрами и характеристиками. К основным задачам космических съемок относятся: исследования планет Солнечной системы; изучение и рациональное использование природных ресурсов Земли; изучение антропогенных изменений земной поверхности; исследование Мирового океана; исследование загрязнения атмосферы и океана; мониторинг окружающей среды; исследование акваторий шельфов и прибрежных частей .

Основным отличием фотографирования из космоса является: большая высота, скорость полета и их периодическое изменение при движении КЛА по орбите; вращение Земли, а следовательно, и объектов съемки относительно плоскости орбиты;быстрое изменение освещенности Земли по трассе полета КЛА; фотографирование через весь слой атмосферы; фотографическая аппаратура полностью автоматизирована. Большая высота съемки вызывает уменьшение масштаба снимка. Выбор высоты орбиты осуществляется исходя из задач, которые решаются при съемке, и необходимости получения фотографических снимков определенного масштаба. В связи с этим повышаются требованияк оптической системе фотоаппаратов с точки зрения качества изображения, которое должно быть хорошим по всему полю. Особенно высоки требования к геометрическим искажениям.

Мы являемся свидетелями того, как человек постепенно осваивает околоземное пространство и автоматами, засылаемыми с Земли, успешно изучают другие планеты солнечной системы. Созданные людьми и запущенные в космос искусственные спутники Земли передают на Землю фотографии нашей планеты, сделанные с больших высот.

Таким образом, сегодня можно говорить о космической геодезии , или, как ее еще называют спутниковой геодезии. Мы являемся свидетелями зарождения нового раздела картографии, который модно было бы назвать космической картографией.

Уже в настоящее время снимки, сделанные из космоса, используются для внесения изменения в содержании карт, являясь наиболее оперативным средством для выявления этих изменений. Дальнейшее развитие космической картографии приведет еще к более значительным результатам.

Значимость, преимущество снимков Земли из Космоса по сравнению с обычными аэрофотоснимками, бесспорны. Прежде всего, их обзорность – снимки с высоты в сотни и тысячи километров позволяют получать и изображения с охватом аэросъемки, и изображения территории протяженностью в сотни и тысячи км. Кроме того, они обладают свойствами спектральной и пространственной генирализации, т. е. отсеиванием второстепенного, случайного и выделением существенного, главного. Космическая съемка дает возможность получать изображение через регулярные промежутки времени, что в свою очередь, позволяют исследовать динамику любого процесса.

Возможность получения космических снимков привела к появлению целого ряда новых тематических карт – карт таких явлений, многочисленные характеристики которых получить другими методами практически невозможно. Так, впервые в истории науки были составлены глобальные карты облачного покрова и ледовой обстановки. Космические снимки незаменимы при изучении динамики атмосферных процессов - тропических циклонов и ураганов. Для этих целей особенно эффективна съемка с цеостационарных спутников – спутников «неподвижно» зависших над одной точкой поверхности Земли, или, точнее двигающихся вместе с землей с одной и той же угловой скоростью.

Принципиально новую информацию космические снимки дали геологам. Они позволили повысить глубинность исследований и породили новый вид картографических произведений – «космофотогеологические» карты. Важнейшим достоинством космических снимков является возможность ведения на них новых черт строения территорий, незаметных на обычных аэрофотоснимках. Именно фильтрация мелких деталей ведет к пространственной организации разоренных фрагментов крупных геологических образований в единое целое. Хорошо заметные на снимках линейные разрывные нарушения, называемые линеаментами, не всегда удается обнаружить при непосредственных полевых обследованиях. Карты линеаментов оказывают существенную помощь при глубинных поисках полезных ископаемых. Неизвестные ранее геологические структуры таким путем открыты в среднем течение Вилюя.

Снимки из Космоса сегодня интенсивно используются в гляциологии, они явятся основным исходным материалом. Практически, все первопроходцы космоса, особенно участники длительных космических полетов, успешно решают различные задачи тематического картографирования. В нашей стране леса занимают более половины территории . Информация о многочисленных характеристиках этого лесного фонда огромна и должна регулярно обновляться. Гигантские объемы оперативной, всеобъемлющей и в тоже время детальной информации немыслимы без помощи космонавтов и космического фотографирования. Практика уже доказала, что космическое картографирование лесов, необходимое звено их изучения и управления ресурсами. Регулярное космическое картографирование изменений, происходящих в лесах очень важно для предупреждения и локализации вредных воздействий, решения задач охраны природы. Только, с помощью космической техники удается получать информацию о санитарном состоянии лесов, а с помощью ежедневных съемок со спутников «Метеор» данные о пожарной обстановке в лесах.

Космическое непрерывное картографирование состояния окружающей среды сегодня обозначают термином «мониторинг». Диапазон средств и методов картографа становиться все шире: от космических высот до подводных глубин, но везде – у пульта управления космическим топографом – планетоходом, у обычного теодолита, у создания карты стоит человек.

Виды съемок.

Космическую съемку ведут разными методами (рис. «Классификация космических снимков по спектральным диапазонам и технологии съемки»).

По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:

одиночное фотографирование,

маршрутную,

прицельную,

глобальную съемку.

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.

Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.

Глобальную съемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Космический снимок по своим геометрическим свойствам принципиально не отличается от аэрофотоснимка, но имеет особенности, связанные с:

фотографированием с больших высот,

и большой скоростью движения.

Так как спутник по сравнению с самолетом движется значительно быстрее, то требует коротких выдержек при съемке.

Космическая съемка различается по:

масштабам,

пространственному разрешению,

обзорности,

спектральным характеристикам .

Эти параметры определяют возможности дешифрирования на космических снимках различных объектов и решения тех геологических задач, которые целесообразно решать с их помощью.

Космическая картография

Особенно широкое применение снимки из космоса нашли в картографии. И это понятно, потому что космический фотоснимок точно и с достаточной подробностью запечатлевает поверхность Земли и специалисты могут легко перенести изображение на карту.

Чтение (дешифрирование) космических снимков, так же как и аэрофотоснимков, основано на опознавательных (дешифровочных) признаках. Основными из них служат форма объектов, их размеры и тон. Реки, озера и другие водоемы изображаются на снимках темными тонами (черным цветом) с четким выделением береговых линий. Для лесной растительности характерны менее темные тона мелкозернистой структуры. Подробности горного рельефа хорошо выделяются резкими контрастными тонами, которые получаются на фотографии в результате различной освещенности противоположных склонов. Населенные пункты и дороги также можно опознать по своим дешифровочным признакам, но только под большим увеличением. На типографских оттисках этого сделать нельзя.

Использование космических снимков в картографических целях начинают с определения их масштаба и привязки к карте. Эту работу обычно выполняют по карте более мелкого масштаба, чем масштаб снимка, так как на нее приходится наносить границы не одного, а целого ряда снимков.

Сличая снимок с картой, можно узнать, что и как изображено на снимке, как это показано на карте и какие дополнительные сведения о местности дает фотоизображение земной поверхности из космоса. И даже в том случае, если карта будет того же масштаба, что и фотоснимок, все равно по снимку можно получить более обширную и главное - свежую информацию о местности по сравнению с картой.

Составление карт по космическим снимкам выполняют так же как и по аэрофотоснимкам. В зависимости от точности и назначения карт применяют различные методы их составления с использованием соответствующих фотограмметрических приборов. Наиболее легко изготовить карту в масштабе снимка. Именно такие карты и помещают обычно рядом со снимками в альбомах и книгах. Для их составления достаточно скопировать на кальку со снимка изображения местных предметов, а затем с кальки перенести их на бумагу.

Такие картографические чертежи называют картосхемами. Они отображают только контуры местности (без рельефа), имеют произвольный масштаб и не привязаны к картографической сетке.

В картографии космические снимки используют прежде всего для создания мелкомасштабных карт. Достоинство космического фотографирования в этих целях заключается в том, что масштабы снимков сходны с масштабами создаваемых карт, а это исключает ряд довольно трудоемких процессов составления. Кроме того, космические снимки как бы прошли путь первичной генерализации. Это происходит в результате того, что фотографирование выполняется в мелком масштабе.

В настоящее время по космическим снимкам созданы разнообразные тематические карты. В ряде случаев характеристики некоторых явлений можно определить только по космическим снимкам, а получить их другими методами невозможно. По результатам космического фотографирования обновлены и детализированы многие тематические карты, созданы новые типы геологических ландшафтных и других карт. При составлении тематических карт особенно полезными являются снимки, полученные в различных зонах спектра, так как они содержат богатую и разностороннюю информацию.

Космические снимки нашли широкое применение при изготовлении промежуточных картографических документов - фотокарт. Их составляют так же, как и фотопланы, путем мозаичного склеивания отдельных снимков на общей основе. Фотокарты могут быть двух видов: на одних показано только фотографическое изображение, а другие дополнены отдельными элементами обычных карт. Фотокарты, как и отдельные снимки, служат ценными источниками изучения земной поверхности. Вместе с тем они являются дополнительным материалом к обычной карте и в полной мере заменить ее не могут.

Облик Земли постоянно меняется, и любая карта постепенно стареет. Космические снимки содержат самые свежие и достоверные сведения о местности и успешно используются для обновления карт не только мелкого, но и крупного масштаба. Они позволяют исправлять карты больших территорий земного шара. Особенно эффективно космическое фотографирование в труднодоступных районах, где полевые работы связаны с большой затратой сил и средств.

Съемка из космоса применяется не только для картографирования земной поверхности. По космическим фотоснимкам составлены карты Луны и Марса. При создании карты Луны были использованы также и данные, полученные с автоматических самоходных аппаратов «Луноход-1» и «Луноход-2». Как же велась съемка с их помощью? При движении самоходного аппарата прокладывался так называемый съемочный ход. Его назначение Ч создать каркас, относительно которого на будущую карту будут наносить топографическую ситуацию. Для построения хода измерялись длины пройденных отрезков пути и углы между ними. С каждой точки стояния «Лунохода» выполнялась телевизионная съемка местности. Телевизионные изображения и данные измерений передавались по радиоканалу на Землю. Здесь производилась обработка, в результате которой составлялись планы отдельных участков местности. Эти отдельные планы привязывались к съемочному ходу и объединялись.

Карта Марса, составленная по космическим снимкам, менее подробна по сравнению с картой Луны, но все же она наглядно и достаточно точно отображает поверхность планеты (рис. 55). Карта сделана на тридцати листах в масштабе 1:5000000 (в 1 см 50 км). Два околополюсных листа составлены в азимутальной проекции, 16 околоэкваториальных листов - в цилиндрической, а остальные 12 листов - в конической проекции. Если все листы склеить друг с другом, то получится почти правильный шар, т. е. глобус Марса.


Рис. 55. Фрагмент фотокарты Марса

Основой для карты Марса, как и для карты Луны, послужили сами фотоснимки, на которых поверхность планеты изображена при боковом освещении, направленном под определенным углом. Получилась фотокарта, на которой рельеф изображен комбинированным способом - горизонталями и естественной теневой окраской. На такой фотокарте хорошо читается не только общий характер рельефа, но и его детали, особенно кратеры, которые нельзя отобразить горизонталями, так как высота сечения рельефа составляет 1 км.

Значительно сложнее обстоит дело со съемкой Венеры. Ее нельзя сфотографировать обычным путем, потому что она укрыта от средств оптического наблюдения плотными облаками. Тогда появилась мысль сделать ее портрет не в световых, а в радиолучах. Для этого разработали чувствительный радиолокатор, который мог как бы прощупывать поверхность планеты.

Чтобы разглядеть ландшафт Венеры, надо приблизить радиолокатор к планете. Это и сделали автоматические межпланетные станции «Венера-15» и «Венера-16».

Сущность радиолокационной съемки заключается в следующем. Установленный на станции радиолокатор посылает отраженные от Венеры радиосигналы на Землю в центр обработки радиолокационной информации, где специальное электронно-вычислительное устройство преобразует полученные сигналы в радиоизображение.

С ноября 1983 г. по июль 1984 г. радиолокаторы «Венеры-15» и «Венеры-16» отсняли северное полушарие планеты от полюса до тридцатой параллели. Затем с помощью ЭВМ на картографическую сетку было нанесено фотоизображение поверхности Венеры и, кроме того, построен профиль рельефа по линии полета станции.

Контроль из космоса за окружающей средой

В настоящее время проблема охраны окружающей среды носит глобальный характер. Вот почему все большее значение приобретают космические методы контроля, позволяющие увеличить объем исследований и ускорить получение и переработку данных. Основное средство осуществления контроля - это система космических съемок, опирающаяся на сеть наземных пунктов. Эта система включает фотографирование с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций. Полученные фотоизображения поступают в наземные приемные центры, где ведется переработка информации.

Что же видно на космических снимках? Прежде всего - почти все формы и виды загрязнений окружающей среды. Промышленность - главный источник загрязнения природы. Деятельность большинства производств сопровождается выбросами отходов в атмосферу. На снимках отчетливо фиксируются шлейфы таких выбросов и простирающиеся на многие километры дымовые завесы. При большой концентрации загрязнений сквозь них не просматривается даже земная поверхность. Известны случаи, когда вблизи некоторых североамериканских металлургических предприятий погибала растительность на площади несколько квадратных километров. Здесь уже сказывается не только воздействие вредных выбросов, но и загрязнение почвы и грунтовых вод. Эти районы представляются на снимках блеклой сухой безжизненной полупустыней среди лесов и степей.

На фотоснимках хорошо заметны выносимые реками взвешенные частицы. Обильные загрязнения особенно характерны для дельтовых участков рек. К этому приводят эрозия берегов, сели, гидротехнические работы. Интенсивность механического загрязнения можно установить по плотности изображения водной поверхности: чем светлее поверхность, тем больше загрязненность. Мелководные участки также выделяются на снимках светлыми пятнами, но в отличие от загрязнений носят постоянный характер, в то время как последние меняются в зависимости от метеорологических и гидрологических условий. Космическая съемка позволила установить, что механическое загрязнение водоемов возрастает в конце весны, начале лета, реже - осенью.

Химическое загрязнение акваторий может быть изучено с помощью многозональных снимков, которые фиксируют, насколько угнетена водная и окаймляющая побережье растительность. По снимкам можно установить и биологическое загрязнение водоемов. Оно выдает себя чрезмерным развитием особой растительности, различимой на снимках в зеленой области спектра.

Выбросы промышленными и энергетическими предприятиями теплой воды в реки хорошо выделяются на инфракрасных снимках. Границы распространения теплой воды позволяют прогнозировать изменения в природной среде. Так, например, тепловые загрязнения нарушают становление ледяного покрова, что хорошо заметно даже в видимом диапазоне спектра.

Большой ущерб народному хозяйству наносят лесные пожары. Из космоса они заметны прежде всего благодаря дымовому шлейфу, простирающемуся иногда на несколько километров. Космическая съемка позволяет быстро определить масштабы распространения пожара. Кроме того, космические снимки помогают обнаружить поблизости облачность, из которой вызывают обильный дождь при помощи специальных распыленных в воздухе реактивов.

Большой интерес представляют космические снимки пылевых бурь. Впервые стало возможно наблюдать их зарождение и развитие, следить за перемещением масс пыли. Фронт распространения пылевой бури может достигать тысячи квадратных километров. Чаще всего пылевые бури проносятся над пустынями. Пустыня - это не безжизненная земля, а важный элемент биосферы и поэтому нуждается в постоянном контроле.

А теперь перенесемся на север нашей страны. Часто спрашивают, почему так много говорят о необходимости охраны природы Сибири и Дальнего Востока? Ведь интенсивность воздействия на нее пока во много раз меньше, чем в центральных районах.

Дело в том, что природа Севера значительно ранимее. Кто был там, тот знает, что после проехавшего по тундре вездехода почвенный покров не восстанавливается и развивается эрозия поверхности. Очищение водных бассейнов происходит в десятки раз медленнее, чем обычно, и даже небольшая вновь проложенная дорога может быть причиной труднообратимого изменения природной обстановки.

Северные территории нашей страны простираются на 11 млн. км 2 . Это - тайга, лесотундра, тундра. Несмотря на тяжелые жизненные условия и материально-технические трудности на Севере появляется все больше городов, увеличивается население. В связи с интенсивным освоением территории Севера особенно остро ощущается нехватка исходных данных для проектирования населенных пунктов и промышленных объектов. Вот почему космическое изучение этих районов так актуально сегодня.

В настоящее время два родственных метода - картографический и аэрокосмический - тесно взаимодействуют при изучении природы, хозяйства и населения. Предпосылки такого взаимодействия заложены в свойствах карт, аэроснимков и космических снимков как моделей земной поверхности.

Заключение

Космические съемки, решают разные задачи, связанные с дистанционным зондированием земли, и свидетельствуют об их широких возможностях. Поэтому космические методы и средства уже сегодня играют значительную роль в изучении Земли и около земного пространства. Технологии идут вперед, в ближайшем будущем их значение для решения этих задач будут существенно возрастать.

Список литературы

    Богомолов Л. А., Применение аэросъёмки и космической съёмки в географических исследованиях, в кн.: Картография, т. 5, М., 1972 (Итоги науки и техники).

    Виноградов Б. В., Кондратьев К. Я., Космические методы землеведения, Л., 1971;

    Кусов В. С «Карту создают первопроходцы», Москва, «Недра», 1983 г., с. 69.

    Леонтьев Н. Ф «Тематическая картография» Москва, 1981 год, из. «Наука», с.102.

    Петров Б. Н. Орбитальные станции и изучение Земли из космоса, «Вестн. АН СССР», 1970, №10;

    Эдельштейн, А. В. «Как создается карта», М., «Недра», 1978 г . c . 456.

Реферат по дисциплине

«География»

По теме:

«Космическая съёмка. Виды и свойства космических снимков, применение их в картографии»

Содержание

Введение (с.3)

    Виды съёмок (c .6)

    Космическая картография (с.8)

    Контроль из космоса за окружающей средой (с.12)

    Заключение (с.15)

    Список литературы (с.16)

Введение

Цель работы: рассмотрение сути космической фотосъёмки.

Космическая фотосъемка - технологический процесс фотографирования земной поверхности с летательного аппарата с целью получения фотографических изображений местности (фотоснимков) с заданными параметрами и характеристиками. К основным задачам космических съемок относятся: исследования планет Солнечной системы; изучение и рациональное использование природных ресурсов Земли; изучение антропогенных изменений земной поверхности; исследование Мирового океана; исследование загрязнения атмосферы и океана; мониторинг окружающей среды; исследование акваторий шельфов и прибрежных частей .

Основным отличием фотографирования из космоса является: большая высота, скорость полета и их периодическое изменение при движении КЛА по орбите; вращение Земли, а следовательно, и объектов съемки относительно плоскости орбиты;быстрое изменение освещенности Земли по трассе полета КЛА; фотографирование через весь слой атмосферы; фотографическая аппаратура полностью автоматизирована. Большая высота съемки вызывает уменьшение масштаба снимка. Выбор высоты орбиты осуществляется исходя из задач, которые решаются при съемке, и необходимости получения фотографических снимков определенного масштаба. В связи с этим повышаются требованияк оптической системе фотоаппаратов с точки зрения качества изображения, которое должно быть хорошим по всему полю. Особенно высоки требования к геометрическим искажениям.

Мы являемся свидетелями того, как человек постепенно осваивает околоземное пространство и автоматами, засылаемыми с Земли, успешно изучают другие планеты солнечной системы. Созданные людьми и запущенные в космос искусственные спутники Земли передают на Землю фотографии нашей планеты, сделанные с больших высот.

Таким образом, сегодня можно говорить о космической геодезии , или, как ее еще называют спутниковой геодезии. Мы являемся свидетелями зарождения нового раздела картографии, который модно было бы назвать космической картографией.

Уже в настоящее время снимки, сделанные из космоса, используются для внесения изменения в содержании карт, являясь наиболее оперативным средством для выявления этих изменений. Дальнейшее развитие космической картографии приведет еще к более значительным результатам.

Значимость, преимущество снимков Земли из Космоса по сравнению с обычными аэрофотоснимками, бесспорны. Прежде всего, их обзорность – снимки с высоты в сотни и тысячи километров позволяют получать и изображения с охватом аэросъемки, и изображения территории протяженностью в сотни и тысячи км. Кроме того, они обладают свойствами спектральной и пространственной генирализации, т. е. отсеиванием второстепенного, случайного и выделением существенного, главного. Космическая съемка дает возможность получать изображение через регулярные промежутки времени, что в свою очередь, позволяют исследовать динамику любого процесса.

Возможность получения космических снимков привела к появлению целого ряда новых тематических карт – карт таких явлений, многочисленные характеристики которых получить другими методами практически невозможно. Так, впервые в истории науки были составлены глобальные карты облачного покрова и ледовой обстановки. Космические снимки незаменимы при изучении динамики атмосферных процессов - тропических циклонов и ураганов. Для этих целей особенно эффективна съемка с цеостационарных спутников – спутников «неподвижно» зависших над одной точкой поверхности Земли, или, точнее двигающихся вместе с землей с одной и той же угловой скоростью.

Принципиально новую информацию космические снимки дали геологам. Они позволили повысить глубинность исследований и породили новый вид картографических произведений – «космофотогеологические» карты. Важнейшим достоинством космических снимков является возможность ведения на них новых черт строения территорий, незаметных на обычных аэрофотоснимках. Именно фильтрация мелких деталей ведет к пространственной организации разоренных фрагментов крупных геологических образований в единое целое. Хорошо заметные на снимках линейные разрывные нарушения, называемые линеаментами, не всегда удается обнаружить при непосредственных полевых обследованиях. Карты линеаментов оказывают существенную помощь при глубинных поисках полезных ископаемых. Неизвестные ранее геологические структуры таким путем открыты в среднем течение Вилюя.

Снимки из Космоса сегодня интенсивно используются в гляциологии, они явятся основным исходным материалом. Практически, все первопроходцы космоса, особенно участники длительных космических полетов, успешно решают различные задачи тематического картографирования. В нашей стране леса занимают более половины территории . Информация о многочисленных характеристиках этого лесного фонда огромна и должна регулярно обновляться. Гигантские объемы оперативной, всеобъемлющей и в тоже время детальной информации немыслимы без помощи космонавтов и космического фотографирования. Практика уже доказала, что космическое картографирование лесов, необходимое звено их изучения и управления ресурсами. Регулярное космическое картографирование изменений, происходящих в лесах очень важно для предупреждения и локализации вредных воздействий, решения задач охраны природы. Только, с помощью космической техники удается получать информацию о санитарном состоянии лесов, а с помощью ежедневных съемок со спутников «Метеор» данные о пожарной обстановке в лесах.

Космическое непрерывное картографирование состояния окружающей среды сегодня обозначают термином «мониторинг». Диапазон средств и методов картографа становиться все шире: от космических высот до подводных глубин, но везде – у пульта управления космическим топографом – планетоходом, у обычного теодолита, у создания карты стоит человек.

Виды съемок.

Космическую съемку ведут разными методами (рис. «Классификация космических снимков по спектральным диапазонам и технологии съемки»).

По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:

одиночное фотографирование,

маршрутную,

прицельную,

глобальную съемку.

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.

Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.

Глобальную съемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Космический снимок по своим геометрическим свойствам принципиально не отличается от аэрофотоснимка, но имеет особенности, связанные с:

фотографированием с больших высот,

и большой скоростью движения.

Так как спутник по сравнению с самолетом движется значительно быстрее, то требует коротких выдержек при съемке.

Космическая съемка различается по:

масштабам,

пространственному разрешению,

обзорности,

спектральным характеристикам .

Эти параметры определяют возможности дешифрирования на космических снимках различных объектов и решения тех геологических задач, которые целесообразно решать с их помощью.

Космическая картография

Особенно широкое применение снимки из космоса нашли в картографии. И это понятно, потому что космический фотоснимок точно и с достаточной подробностью запечатлевает поверхность Земли и специалисты могут легко перенести изображение на карту.

Чтение (дешифрирование) космических снимков, так же как и аэрофотоснимков, основано на опознавательных (дешифровочных) признаках. Основными из них служат форма объектов, их размеры и тон. Реки, озера и другие водоемы изображаются на снимках темными тонами (черным цветом) с четким выделением береговых линий. Для лесной растительности характерны менее темные тона мелкозернистой структуры. Подробности горного рельефа хорошо выделяются резкими контрастными тонами, которые получаются на фотографии в результате различной освещенности противоположных склонов. Населенные пункты и дороги также можно опознать по своим дешифровочным признакам, но только под большим увеличением. На типографских оттисках этого сделать нельзя.

Использование космических снимков в картографических целях начинают с определения их масштаба и привязки к карте. Эту работу обычно выполняют по карте более мелкого масштаба, чем масштаб снимка, так как на нее приходится наносить границы не одного, а целого ряда снимков.

Сличая снимок с картой, можно узнать, что и как изображено на снимке, как это показано на карте и какие дополнительные сведения о местности дает фотоизображение земной поверхности из космоса. И даже в том случае, если карта будет того же масштаба, что и фотоснимок, все равно по снимку можно получить более обширную и главное - свежую информацию о местности по сравнению с картой.

Составление карт по космическим снимкам выполняют так же как и по аэрофотоснимкам. В зависимости от точности и назначения карт применяют различные методы их составления с использованием соответствующих фотограмметрических приборов. Наиболее легко изготовить карту в масштабе снимка. Именно такие карты и помещают обычно рядом со снимками в альбомах и книгах. Для их составления достаточно скопировать на кальку со снимка изображения местных предметов, а затем с кальки перенести их на бумагу.

Такие картографические чертежи называют картосхемами. Они отображают только контуры местности (без рельефа), имеют произвольный масштаб и не привязаны к картографической сетке.

В картографии космические снимки используют прежде всего для создания мелкомасштабных карт. Достоинство космического фотографирования в этих целях заключается в том, что масштабы снимков сходны с масштабами создаваемых карт, а это исключает ряд довольно трудоемких процессов составления. Кроме того, космические снимки как бы прошли путь первичной генерализации. Это происходит в результате того, что фотографирование выполняется в мелком масштабе.

В настоящее время по космическим снимкам созданы разнообразные тематические карты. В ряде случаев характеристики некоторых явлений можно определить только по космическим снимкам, а получить их другими методами невозможно. По результатам космического фотографирования обновлены и детализированы многие тематические карты, созданы новые типы геологических ландшафтных и других карт. При составлении тематических карт особенно полезными являются снимки, полученные в различных зонах спектра, так как они содержат богатую и разностороннюю информацию.

Космические снимки нашли широкое применение при изготовлении промежуточных картографических документов - фотокарт. Их составляют так же, как и фотопланы, путем мозаичного склеивания отдельных снимков на общей основе. Фотокарты могут быть двух видов: на одних показано только фотографическое изображение, а другие дополнены отдельными элементами обычных карт. Фотокарты, как и отдельные снимки, служат ценными источниками изучения земной поверхности. Вместе с тем они являются дополнительным материалом к обычной карте и в полной мере заменить ее не могут.

Облик Земли постоянно меняется, и любая карта постепенно стареет. Космические снимки содержат самые свежие и достоверные сведения о местности и успешно используются для обновления карт не только мелкого, но и крупного масштаба. Они позволяют исправлять карты больших территорий земного шара. Особенно эффективно космическое фотографирование в труднодоступных районах, где полевые работы связаны с большой затратой сил и средств.

Съемка из космоса применяется не только для картографирования земной поверхности. По космическим фотоснимкам составлены карты Луны и Марса. При создании карты Луны были использованы также и данные, полученные с автоматических самоходных аппаратов «Луноход-1» и «Луноход-2». Как же велась съемка с их помощью? При движении самоходного аппарата прокладывался так называемый съемочный ход. Его назначение Ч создать каркас, относительно которого на будущую карту будут наносить топографическую ситуацию. Для построения хода измерялись длины пройденных отрезков пути и углы между ними. С каждой точки стояния «Лунохода» выполнялась телевизионная съемка местности. Телевизионные изображения и данные измерений передавались по радиоканалу на Землю. Здесь производилась обработка, в результате которой составлялись планы отдельных участков местности. Эти отдельные планы привязывались к съемочному ходу и объединялись.

Карта Марса, составленная по космическим снимкам, менее подробна по сравнению с картой Луны, но все же она наглядно и достаточно точно отображает поверхность планеты (рис. 55). Карта сделана на тридцати листах в масштабе 1:5000000 (в 1 см 50 км). Два околополюсных листа составлены в азимутальной проекции, 16 околоэкваториальных листов - в цилиндрической, а остальные 12 листов - в конической проекции. Если все листы склеить друг с другом, то получится почти правильный шар, т. е. глобус Марса.


Рис. 55. Фрагмент фотокарты Марса

Основой для карты Марса, как и для карты Луны, послужили сами фотоснимки, на которых поверхность планеты изображена при боковом освещении, направленном под определенным углом. Получилась фотокарта, на которой рельеф изображен комбинированным способом - горизонталями и естественной теневой окраской. На такой фотокарте хорошо читается не только общий характер рельефа, но и его детали, особенно кратеры, которые нельзя отобразить горизонталями, так как высота сечения рельефа составляет 1 км.

Значительно сложнее обстоит дело со съемкой Венеры. Ее нельзя сфотографировать обычным путем, потому что она укрыта от средств оптического наблюдения плотными облаками. Тогда появилась мысль сделать ее портрет не в световых, а в радиолучах. Для этого разработали чувствительный радиолокатор, который мог как бы прощупывать поверхность планеты.

Чтобы разглядеть ландшафт Венеры, надо приблизить радиолокатор к планете. Это и сделали автоматические межпланетные станции «Венера-15» и «Венера-16».

Сущность радиолокационной съемки заключается в следующем. Установленный на станции радиолокатор посылает отраженные от Венеры радиосигналы на Землю в центр обработки радиолокационной информации, где специальное электронно-вычислительное устройство преобразует полученные сигналы в радиоизображение.

С ноября 1983 г. по июль 1984 г. радиолокаторы «Венеры-15» и «Венеры-16» отсняли северное полушарие планеты от полюса до тридцатой параллели. Затем с помощью ЭВМ на картографическую сетку было нанесено фотоизображение поверхности Венеры и, кроме того, построен профиль рельефа по линии полета станции.

Контроль из космоса за окружающей средой

В настоящее время проблема охраны окружающей среды носит глобальный характер. Вот почему все большее значение приобретают космические методы контроля, позволяющие увеличить объем исследований и ускорить получение и переработку данных. Основное средство осуществления контроля - это система космических съемок, опирающаяся на сеть наземных пунктов. Эта система включает фотографирование с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций. Полученные фотоизображения поступают в наземные приемные центры, где ведется переработка информации.

Что же видно на космических снимках? Прежде всего - почти все формы и виды загрязнений окружающей среды. Промышленность - главный источник загрязнения природы. Деятельность большинства производств сопровождается выбросами отходов в атмосферу. На снимках отчетливо фиксируются шлейфы таких выбросов и простирающиеся на многие километры дымовые завесы. При большой концентрации загрязнений сквозь них не просматривается даже земная поверхность. Известны случаи, когда вблизи некоторых североамериканских металлургических предприятий погибала растительность на площади несколько квадратных километров. Здесь уже сказывается не только воздействие вредных выбросов, но и загрязнение почвы и грунтовых вод. Эти районы представляются на снимках блеклой сухой безжизненной полупустыней среди лесов и степей.

На фотоснимках хорошо заметны выносимые реками взвешенные частицы. Обильные загрязнения особенно характерны для дельтовых участков рек. К этому приводят эрозия берегов, сели, гидротехнические работы. Интенсивность механического загрязнения можно установить по плотности изображения водной поверхности: чем светлее поверхность, тем больше загрязненность. Мелководные участки также выделяются на снимках светлыми пятнами, но в отличие от загрязнений носят постоянный характер, в то время как последние меняются в зависимости от метеорологических и гидрологических условий. Космическая съемка позволила установить, что механическое загрязнение водоемов возрастает в конце весны, начале лета, реже - осенью.

Химическое загрязнение акваторий может быть изучено с помощью многозональных снимков, которые фиксируют, насколько угнетена водная и окаймляющая побережье растительность. По снимкам можно установить и биологическое загрязнение водоемов. Оно выдает себя чрезмерным развитием особой растительности, различимой на снимках в зеленой области спектра.

Выбросы промышленными и энергетическими предприятиями теплой воды в реки хорошо выделяются на инфракрасных снимках. Границы распространения теплой воды позволяют прогнозировать изменения в природной среде. Так, например, тепловые загрязнения нарушают становление ледяного покрова, что хорошо заметно даже в видимом диапазоне спектра.

Большой ущерб народному хозяйству наносят лесные пожары. Из космоса они заметны прежде всего благодаря дымовому шлейфу, простирающемуся иногда на несколько километров. Космическая съемка позволяет быстро определить масштабы распространения пожара. Кроме того, космические снимки помогают обнаружить поблизости облачность, из которой вызывают обильный дождь при помощи специальных распыленных в воздухе реактивов.

Большой интерес представляют космические снимки пылевых бурь. Впервые стало возможно наблюдать их зарождение и развитие, следить за перемещением масс пыли. Фронт распространения пылевой бури может достигать тысячи квадратных километров. Чаще всего пылевые бури проносятся над пустынями. Пустыня - это не безжизненная земля, а важный элемент биосферы и поэтому нуждается в постоянном контроле.

А теперь перенесемся на север нашей страны. Часто спрашивают, почему так много говорят о необходимости охраны природы Сибири и Дальнего Востока? Ведь интенсивность воздействия на нее пока во много раз меньше, чем в центральных районах.

Дело в том, что природа Севера значительно ранимее. Кто был там, тот знает, что после проехавшего по тундре вездехода почвенный покров не восстанавливается и развивается эрозия поверхности. Очищение водных бассейнов происходит в десятки раз медленнее, чем обычно, и даже небольшая вновь проложенная дорога может быть причиной труднообратимого изменения природной обстановки.

Северные территории нашей страны простираются на 11 млн. км 2 . Это - тайга, лесотундра, тундра. Несмотря на тяжелые жизненные условия и материально-технические трудности на Севере появляется все больше городов, увеличивается население. В связи с интенсивным освоением территории Севера особенно остро ощущается нехватка исходных данных для проектирования населенных пунктов и промышленных объектов. Вот почему космическое изучение этих районов так актуально сегодня.

В настоящее время два родственных метода - картографический и аэрокосмический - тесно взаимодействуют при изучении природы, хозяйства и населения. Предпосылки такого взаимодействия заложены в свойствах карт, аэроснимков и космических снимков как моделей земной поверхности.

Заключение

Космические съемки, решают разные задачи, связанные с дистанционным зондированием земли, и свидетельствуют об их широких возможностях. Поэтому космические методы и средства уже сегодня играют значительную роль в изучении Земли и около земного пространства. Технологии идут вперед, в ближайшем будущем их значение для решения этих задач будут существенно возрастать.

Список литературы

    Богомолов Л. А., Применение аэросъёмки и космической съёмки в географических исследованиях, в кн.: Картография, т. 5, М., 1972 (Итоги науки и техники).

    Виноградов Б. В., Кондратьев К. Я., Космические методы землеведения, Л., 1971;

    Кусов В. С «Карту создают первопроходцы», Москва, «Недра», 1983 г., с. 69.

    Леонтьев Н. Ф «Тематическая картография» Москва, 1981 год, из. «Наука», с.102.

    Петров Б. Н. Орбитальные станции и изучение Земли из космоса, «Вестн. АН СССР», 1970, №10;

    Эдельштейн, А. В. «Как создается карта», М., «Недра», 1978 г . c . 456.

Многих пользователей интересуют спутниковые карты онлайн, дающие возможность с высоты птичьего полёта насладиться видом любимых мест нашей планеты. В сети существует достаточно количество таких сервисов, при этом всё их многообразие не должно вводить в заблуждение – большинство таких сайтов используют классический API от «Google Maps». Тем не менее, существует также ряд ресурсов, использующих свой собственный инструментарий для создания спутниковых карт высокого качества. В данном материале я расскажу о лучших спутниковых картах высокого разрешения доступных онлайн в 2017-2018 году, а также поясню, как ими пользоваться.

При создании спутниковых карт земной поверхности обычно используются как снимки из космических спутников, так и фото со специальных летательных аппаратов, позволяющих проводить фотосъёмку на высоте птичьего полёта (250-500 метров).

Созданные таким образом спутниковые карты высочайшего качества разрешения регулярно обновляются, и обычно снимки с них имеют возраст не более 2-3 лет.

Большинство сетевых сервисов не имеют возможностей для создания своих собственных спутниковых карт. Обычно в них используется карты с других, более мощных, сервисов (обычно это Гугл Мапс). При этом внизу (или вверху) экрана вы сможете найти упоминание об авторских правах какой-либо компании на демонстрацию данных карт.


Просмотр спутниковых карт реального времени ныне не доступен для обычного пользователя, так как подобный инструментарий используется преимущественно в военных целях. Пользователям доступны карты, фотографии для которых сделаны на протяжении последних месяцев (а то и лет). Стоит понимать, что какие-либо военные объекты могут быть намеренно заретушированы с целью их скрытия от заинтересованных лиц.

Перейдём к описанию сервисов, позволяющих нам насладиться возможностями спутниковых карт.

Google Карты — вид из космоса в высоком разрешении

Bing Maps – сервис спутниковых карт онлайн

Среди картографических онлайн сервисов достойного качества нельзя пройти стороной мимо сервиса «Bing Maps» («Карты Бинг»), являющего детищем компании «Майкрософт». Как и другие описанные мной ресурсы, данный сайт предоставляет довольно качественные фото поверхности, созданные с помощью спутниковой и аэрофотосъёмки.


Сервис «Bing Maps» — один из наиболее популярных картографических сервисов в США

Функционал сервиса схож с уже описанными выше аналогами:

При этом с помощью кнопки поиска вы сможете определить онлайн местонахождение конкретного спутника, а кликнув на какой-либо спутник на карте вы получить краткую информацию о нём (страна, размер, дата запуска и так далее).


Заключение

Для отображения спутниковых карт высокого разрешения в режиме онлайн стоит воспользоваться одним из перечисленных мной сетевых решений. Наибольшую популярность в общемировом масштабе имеет сервис «Карты Гугл», потому рекомендую использовать данный ресурс для работы со спутниковыми картами онлайн. Если же вас интересует просмотр геолокаций на территории РФ, то лучше использовать инструментарий «Яндекс.Карты». Частота их обновлений в отношений нашей страны превосходит аналогичную частоту от «Гугл Мапс».

Выход человека в космос позволил еще лучше узнать нашу планету. Сведения о ней, доставляемые , многочисленны и разнообразны. Но нас, конечно, интересуют те из них, которые касаются как места обитания человека, - воздушного бассейна и недр, растительного покрова и почв.

Использование снимков из космоса в картографии

По мере усиления потока космической расширяется сфера ее применения. В настоящее время в той или иной степени она используется почти во всех отраслевых и комплексных географических исследованиях. Что касается картографии, то здесь космические снимки еще только начинают изучаться. Тем не менее уже можно указать направления, где она найдет применение в ближайшем будущем. Это прежде всего в изображении береговой зоны морей и озер, затопляемых территорий и прибрежной растительности, а также населенных пунктов, путей сообщения и т. п.

Подсчитано, что использование космических снимков в этих целях дает существенную экономию средств, трудовых затрат и времени.

За рубежом, например в США, есть опыт создания по космическим снимкам общегеографических карт на малоисследованные территории, в частности на . По космическим снимкам сделана карта масштаба 1: 250 000.

Космические снимки нашли применение при изготовлении промежуточных картографических документов - фотокарт. На них может быть и только фотографическое (из космоса) изображение земной поверхности, и дополненное элементами с традиционных карт: общегеографических, геологических, геоморфологических и др.

Фотокарты имеют самостоятельное значение как источники изучения земной поверхности для разных целей ее хозяйственного использования. Они служат для обновления и совершенствования традиционных карт природы, но сами их заменить не могут.

Хотя космические снимки в настоящее время широко используются в различных исследованиях природных явлений и процессов, однако экспериментальные работы не доводятся до создания фундаментальных карт большого пространственного охвата. Для этого, видимо, еще не созрели условия. И тем не менее некоторый опыт составления карт природы с использованием космических снимков имеется. Известно, что телевизионная программа «Время» заканчивается сообщением Гидрометцентра России о прогнозе погоды. Часто при этом показываются синоптические карты, которые составляются с учетом данных, поступающих со спутников.

Сегодня метеорологические исследования в нашей стране проводятся при широком использовании информации, получаемой с метеорологических спутников Земли. В Гидрометцентре России составляются мировые карты облачности на разные даты. А анализ облачного покрова по картам помогает изучать многие атмосферные процессы: струйчатые течения в субтропиках, воздушные течения в верхней тропосфере, тропические штормы и т. п. По картам облачного покрова предложена методика оценки месячных сумм осадков. За рубежом по космическим снимкам составлены карты температуры поверхности океана.

Однако все эти работы относятся к так называемому оперативному картографированию, т. е. к получению карт для непосредственного и кратковременного использования в интересах той или иной государственной службы или ведомства.

Что же касается составления по космическим снимкам фундаментальных тематических карт большого территориального охвата, то в ещё в СССР по инициативе советских геологов велись работы по созданию карты разломов СССР и сопредельных стран масштаба 1: 2 500 000. Это, по существу, был первый опыт использования космической информации в тематической картографии. Работа эта проводилась в Государственном научно-исследовательском и производственном центре «Природа».

В отделе составляют карты космических предметных и информационных состояний Карты ближнего и дальнего космоса.

Примерно это, как картография, топография и геодезия. Необходимо отличать законы земной картографии от космической картографии. На планете, мы вид картографируем в космосе, мы состояние картографируем по законам космического информационного знакового обмена. Это правило опасно нарушать. При нарушении этого правила разрушается естественный обмен организма человека. Бесконечный, неопределённый образ космических предметных и информационных состояний, разрушают естественный информационный обмен человека. Определившиеся предметно-образные единицы во времени обязаны переходить в научные определения и знак этого измерения необходимо регистрировать, архивировать и закреплять в системе образования.

Установлено, что пространство космоса, предметное и одновременно информационное. Следовательно, возможно составлять карты двух видов, где пары единиц находятся в естественном отношении. Карты видимого космоса и карты его, не видимого информационного состояний, при наложении обязаны соответствовать.

Космическая картография в системах солнечной жизни должна развиваться, как отдельное научное направление. Причина первостепенная - если образное выражение информационного состояния или предмета, соответствует действительности то вся информационная природа обмена в организме человека, находится в естественной норме. Второе - естественную космическую природу не возможно последовательно изучать без предмета космической картографии. Наше зрение, как и технические (телескоп, обсерватория) возможности, ограничены, но при знании информационных обменных космических состояний, мы имеем возможность верно определять дальние космические просторы и составлять точные карты. По последним данным нам открылись карты-схемы дальнего космоса, как предметный их вид, так и информационный. Эти карты подменили понятие космической бесконечности и во времени земного развития должны постоянно дополняться по мере изучения космической среды. По системному космическому информационному обмену, мы получаем единицы схем дальних космических информационных и предметных состояний. После получения всего общего объёма информации, мы получим детальный вид общей космической информационной карты. Этого достаточно для начального изучения информационного космоса. Научная последовательность, необходима в обязательном порядке развиваться одновременно в двух направлениях - внешнее и внутреннее. Макрокосмос и микрокосмос - знания обязаны развиваться в равновесии. Общий космический закон гласит - Жизнь сохраняется при твёрдом отношении предметных и информационных единиц и их именах. Закон «души» - душа всегда спокойна при завершённых единицах отношения. Развиваясь односторонне, образуются предметы без имени, которые набирают поисковую силу и с человеком происходит смещение твёрдой памяти. Условно, душа самостоятельно устремляется определить имя предмету и (душа) выходит из тела. Вывод - усилить изучение микрокосмоса и верно именовать новые предметные состояния или явления. Помнить о шкале времени и датировать определение нового предметного имени и имён предметно-образных. Этот закон в отношении и макрокосмических состояний следует строго применять. Составителя карт, необходимо знать законы естественного информационного встречно-обменного состояния организма человека. При знаковом мышлении, человеческое сознание устремлено к тройному логическому обнулению - это информационный (духовный) ноль, моральный и материальный ноль. Ноль есть независимость. Зависимая форма отношений на планете доминирует. Необходимо это исправить. Отношения между людьми обязаны быть независимыми. Образно, соблюдай правило - "Уходя, гаси свет". С веет, есть желание человека.