Магнитное поле соленоида. Электромагниты

Приборы и принадлежности: лабораторная установка с соленоидом, источник питания, милливольтметр, амперметр.

Краткая теория

Соленоидом называется цилиндрическая катушка, содержащая большое, число витков провода, по которому идет ток. Если шаг вин­товой линии проводника, образующего катушку, мал, то каждый ви­ток с током можно рассматривать как отдельный круговой ток, а соленоид - как систему последовательно соединенных круговых токов одинакового радиуса, имеющих общую ось.

Магнитное поле внутри соленоида можно представить как сумму магнитных полей, создаваемых каждым витком. Вектор индукции маг­нитного поля внутри соленоида перпендикулярен плоскости витков, т.е. направлен по оси соленоида и образует с направлением кольце­вых токов витков правовинтовую систему. Примерная картина силовых линий магнитного поля соленоида показана на рис. 1. Силовые линии магнитного поля замкнуты.

На рис, 2 показано сечение соленоида длиной L и с числом витков N и радиусом поперечного сечения R. Кружки с точками обозначают сечения витков катушки, по которым идет ток I , на­правленный от чертежа на нас, а кружки с крестиками - сечения вит­ков, в которых ток направлен за чертеж. Число витков на единицу длины соленоида обозначим .

Индукция магнитного поля в точке А, расположенной на оси соленоида, определяется путем интегрирования магнитных полей, со­здаваемых каждым витком, и равна

, (1)

где и - углы, образуемые с осью соленоида радиус-векто­рами и , проведенными из точки А к крайним виткам солено­ида, -магнитная проницаемость среды, магнитная постоянная.

Таким образом, магнитная индукция В прямо пропорциональна си­ле тока, магнитной проницаемости среды, заполняющей соленоид, и числу витков на единицу длины. Магнитная индукция также зависит от положения точки А относительно концов соленоида. Рассмотрим нес­колько частных случаев:

1. Пусть точка А находится в центре соленоида, тогда , и . Если соленоид достаточно длинный, то и (2)

2. Пусть точка A находится в центре крайнего витка, тогда , и . Если солено­ид достаточно длинный, то , и (3)

Из формул (2) и (3) видно, что магнитная индукция соленоида на его краю вдвое меньше по сравнению с ее величиной в центре.

3. Если длина соленоида во много раз больше радиуса его витков
("бесконечно" длинный соленоид), то для всех точек, лежащих внутри
соленоида на его оси, можно положить . Тогда
поле можно считать в центральной части соленоида однородным и рассчитывать его по формуле

Однородность магнитного поля нарушается вблизи краев соленоида. В этом случае индукцию можно определять по формуле


где k - коэффициент, учитывающий неоднородность поля.

Экспериментальное изучение магнитного поля соленоида в данной работе осуществляется с помощью специального зонда - маленькой катушки, укрепленной внутри штока с масштабной линейкой. Ось катуш­ки совпадает с осью соленоида, катушка подключается к милливольт­метру переменного тока, входное сопротивление которого много боль­ше сопротивления катушки-зонда. Если через соленоид идет перемен­ный ток стандартной частоты ( =50 Гц), то внутри соленоида и на его краях индукция переменного магнитного поля изменяется по закону (см. (5)):

Амплитуда магнитной индукции в этой формуле зависит от положения точки внутри соленоида. Если поместить в соленоид катуш­ку-зонд, то в соответствии с законом электромагнитной индукции, в ней возникает ЭДС индукции:

, (6)

где N 1 - число витков в катушке, S - площадь поперечного сече­ния катушки, Ф - магнитный поток ( , т.к. ось катушки совпадает с осью соленоида и, следовательно, вектор магнитной ин­дукции перпендикулярен плоскости поперечного сечения катушки.).

Так как величина индукции B изменяется по закону , , то из (6) получается формула для расчета ЭДС:

Из выражения (7) видно, что амплитуда ЭДС зависит от . Таким образом, измеряя амплитуду ЭДС, можно определить :

Коэффициент k учитывающий неоднородность магнитного поля соленоида на краях, можно о определить., по формуле. (5), зная и :

(9)

где - амплитуда переменного тока, идущего через соленоид.

Из формул (7) и (9) следует, что амплитуда ЭДС индукции прямо пропорциональна амплитуде переменного тока :

Включенные в цепь переменного тока амперметр и милливольт­метр измеряют действующие значения тока и ЭДС , которые связаны с амплитудами и соотношениями:

Для действующих значений тока и ЭДС формула (10) имеет вид

(11)

Из формулы (11) следует, что отношение пропорциональ­но коэффициенту K неоднородности индукции магнитного поля в точке соленоида, где проводятся измерения

(12)

где А - коэффициент пропорциональности.

В данной работе требуется выполнить два задания: 1) опреде­лить распределение индукции вдоль оси соленоида при некотором постоянном значении тока; 2) определить значение коэффициента к.

Техника безопасности:

1. Не подключают/ самостоятельно источник питания и милливольтметр к сети 220 В.

2. Не производить переключения цепей, находящихся под напряжением.

Не прикасаться к неизолированным частям цепей.

3. Не оставлять без присмотра включенную схему.

Порядок выполнения работы

Задание № 1. Исследование распределения индукции магнитного поля вдоль оси соленоида.

1. Собрать измерительную цепь по схеме, приведенной на рис. 3. Для этого в цепь соленоида включить источник питания и амперметр, а к выводам катушки - зонда - милливольтметр (для измерения ) В данной установке катушка-зонд имеет следующие параметры: =200 витков, S=2*10 -4 м 2 , частота переменного тока = 50 Гц, Число витков на единицу длины соленоида n = 2400 1/м

1- лабораторный стенд Z - шток «

2- катушка-зонд

3- соленоид
5- амперметр

6- источник питания с регулятором выход­ного напряжения (тока), 7- милливольтметр.

2. Установить шток с масштабной линейкой так, чтобы катушка-зонд оказалась примерно в середине соленоида.

3.Включить источник питания соленоида и установить ток соленоида (по амперметру), равный =25мА. Включить милливольтметр и после прогрева (5 мин) снять показания .

4.Перемещая шток с масштабной линейной, измерить при помощи
милливольтметра действующее значение ЭДС индукции через каждый
сантиметр положения линейки. По формуле (8) вычислить .
Результаты измерений и расчетов занести в таблицу 1 (учтите, что ).

Магнитное поле соленоида.

В уточнённой модели соленоида конечной длины учтём более реальный вид навивки тонкого провода на каркас соленоида. Основным токонесущим элементом конструкции будем считать винтовую линию. Рассмотрим соленоид с каркасом в форме цилиндрической поверхности, поперечное сечение которой является окружностью радиуса . Пусть продольная ось соленоида, как в предыдущем примере, совпадает с осью аппликат, координаты конечных сечений соленоида на оси аппликат имеют значения и , тонкий проводник намотан на каркас равномерно с шагом , то есть число витков на единицу длины соленоида составляет величину , по проводнику течёт ток .


Радиус-вектор точки наблюдения М по условию определен координатами:

Радиус-вектор расположения элемента контура с током опишем с помощью параметрического представления:

Легко видеть, что при возрастании величины параметра на величину радиус-вектор совершит полный оборот вокруг продольной оси соленоида и сместится на шаг навивки относительно исходного положения в пространстве. Будем считать, что электрический ток течет по проводнику в направлении, определяемом увеличением параметра . Проекции вектора на оси декартовой системы координат имеют вид:

(3)

В соответствии с дифференциальной формой закона Био-Савара-Лапласа (1) раздела 6.2 получаем проекции вектора магнитной индукции на оси декартовых координат для произвольной точки наблюдения:

(3)

, (4) . (5)

Как это ни удивительно, но уточнённая модель приводит к более простым зависимостям для проекций дифференциала вектора магнитной индукции: для расчёта величин проекций искомого вектора понадобится только однократное интегрирование по параметру . Пределы интегрирования определяются при этом условием, что тонкий проводник достиг крайнего сечения соленоида:

Выпишем квадратуры для проекций вектора магнитной индукции на оси декартовой системы координат для произвольной точки наблюдения:

, (7)

, (8)

. (9)

Численные значения проекций вектора магнитной индукции на оси декартовой системы координат легко вычисляются с помощью пакета символьных вычислений Maple, если заданы характеристики системы токов и координаты точки наблюдения. Ниже для определенности положим Проведем вычисления осевой составляющей индукции магнитного поля в сечении z=0 в зависимости от координаты x (радиальное направление!). Результаты расчета представлены на рис. 2. Здесь имеет смысл обратить внимание на небольшую неоднородность магнитного поля внутри соленоида (|x|<1) и наличие осевой составляющей магнитного поля вне соленоида (последнее характерно для соленоида конечных размеров).


В качестве второго примера вычислим распределение осевой составляющей магнитной индукции вдоль оси соленоида при сохранении параметров системы токов (рис. 3). Здесь можно отметить качественное совпадение результатов расчета с подобными результатами упрощенной модели соленоида (рис.2 предыдущего раздела).


На практике чаще всего параметр навивки - отношение шага навивки к радиусу поперечного сечения соленоида - не играет существенной роли, но в отдельных случаях подробный расчет может оказаться полезным.

6.2.6. Поверхностная модель земного магнетизма .

У.Гильберт 400 лет тому назад установил, что Земля является «большим магнитом»: поведение стрелки компаса на земной поверхности похоже на поведение намагниченной стрелки в окрестности экспериментального магнитного шара. Во времена У.Гильберта ещё не было ни теории электричества, ни теории магнитного поля. В современных условиях интересно попробовать смоделировать образование магнитного поля Земли, играющего такую важную роль как обеспечении радиационной безопасности жизни на Земле, так и в практической навигации.

Допустим, что по поверхности сферы радиуса течёт ток постоянной по величине погонной плотности в азимутальном направлении. Величина погонной плотности тока определяется выражением

Здесь - дифференциал сила тока, - элемент дуги на поверхности сферы, перпендикулярный направлению тока, - дифференциал угловой координаты сферической системы координат.



Элемент длины «контура», связанного с описанным дифференциалом силы тока определяется выражением

, (2)

координаты точки расположения элемента имеют вид

, (3)

а его проекции на координатные направления декартовой системы координат

Если координаты точки наблюдения М определены проекциями радиус-вектора {x,y,z}, то не представляет труда выписать последовательно выражения для разности радиус-векторов точки наблюдения и точки расположения элемента контура с током, для модуля этой разности, для векторного произведения и получить зависимости для дифференциалов проекций вектора магнитной индукции в точке наблюдения:

(5)

Для реализации практических вычислений в приведенные соотношения вместо «штрихованных» величин необходимо подставить их выражения с использованием координат сферической системы координат (4).

В соответствии с принципом суперпозиции необходимо просуммировать вклад всех элементов «контуров» с током в величину каждой из проекций вектора магнитной индукции в точке наблюдения. Если декартовы координаты точки наблюдения записать с помощью сферических координат, то проекции вектора магнитной индукции на оси декартовой системы координат в точке наблюдения описываются следующими квадратурами:

Здесь , и - угловые координаты точки наблюдения в сферической системе координат.

Располагая полученными соотношениями, можно вычислить направляющие косинусы вектора магнитной индукции относительно исходной декартовой системы координат

, (7)

и записать уравнения для расчёта координат силовой линии в дифференциальной форме:

( для фиксированной точки силовой линии).

Интересно проанализировать зависимости «горизонтальной» и «вертикальной» составляющих вектора магнитной индукции над поверхностью несущей ток сферы от «северной широты» точки наблюдения. Численные результаты при этом таковы. На экваторе () горизонтальная составляющая поля направлена по меридиану в сторону «южного полюса», вертикальная составляющая равна нулю. На широте 45 0 () имеют место и горизонтальная, и вертикальная составляющие магнитного поля, причем абсолютная величина горизонтальной составляющей меньше, чем аналогичная величина на экваторе, а направленность в сторону южного полюса сохранилась. На «северном полюсе» () горизонтальная составляющая магнитного поля обращается в нуль, а вертикальная достигает максимального значения. Полученный результат объясняет причину трудностей определения местоположения в окрестности «северного полюса» сферы: компас теряет способность указывать направление на полюс.

6.2.7. Объёмная модель земного магнетизма .

Рассмотрим более сложную модель распределения электрического тока в земном шаре. Теперь нам предстоит рассчитать магнитное поле, образованное электрическим током, текущим в объёме сферы в азимутальном направлении с известной объёмной плотностью тока.

Допустим, что по объёму сферического тела радиуса течёт ток с постоянной по величине объёмно плотностью в азимутальном направлении. Элемент сила тока с учётом его направления в пространстве при этом можно описать с помощью выражения

В этом выражении - элемент объёма, в котором течёт ток, - координаты этого элемента объёма в сферической системе координат. Допустим, что координаты точки наблюдения имеют вид: { }. В соответствующей декартовой системе координат имеем

Соленоид представляет собой провод, навитый равномерно в виде спирали на общий цилиндрический каркас (см. рис. 12.14). Произведение (IN) числа витков однослойной намотки соленоида на силу тока, обтекающего витки, называется числом ампер-витков.

Соленоиды предназначены для создания в небольшом объеме пространства достаточно сильного магнитного поля. При плотной намотке витков поле соленоида эквивалентно полю системы круговых параллельных токов с общей осью. Если диаметр d витков соленоида во много раз меньше его длины (d  l), то соленоид считается бесконечно длинным (или тонким). Магнитное поле такого соленоида практически целиком сосредоточено внутри, причем вектор магнитной индукции внутри направлен вдоль оси соленоида и связан с направлением тока правилом правого винта.

Рис. 12.15

Рассмотрим воображаемый замкнутый контур внутри соленоида (рис. 12.15). Этот контур не охватывает токов, поэтому по теореме о циркуляции

Разобьем этот круговой интеграл на четыре интеграла (по сторонам контура) и учтем, что на отрезках (1-2) и (3-4) вектор перпендикулярен
, поэтому скалярное произведение (,
) здесь обращается в ноль. Индукция поля во всех точках отрезка (2-3) одинакова и равна 23 , а на отрезке (4-1)  41 , причем l 23 = l 41 = l.

Таким образом, обойдя контур по часовой стрелке, получим

Так как l 0, то В 23 = В 41 = В внутри.

Поскольку контур внутри соленоида был выбран произвольно, то полученный результат справедлив для любых внутренних точек соленоида, то есть поле внутри соленоида однородное:

внутри = const.

Чтобы найти величину индукции этого поля, рассмотрим контур L 2 (а –b –c –d –а ), охватывающий N витков с током (рис. 12.15). Согласно теореме о циркуляции (и на основании предыдущих рассуждений), получим соотношение

Поле снаружи бесконечно длинного соленоида очень слабое ( снаружи =0), им можно пренебречь, следовательно,

(12.35)

где n=N/l - число витков, приходящихся на единицу

длины соленоида.

Таким образом, индукция магнитного поля внутри бесконечно длинного соленоида одинакова по величине и направлению и пропорциональна числу ампер-витков, приходящихся на единицу длины соленоида.

Симметрично расположенные витки вносят одинаковый вклад в магнитную индукцию на оси соленоида, поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине того значения, которое дает формула (12.35), т.е.

(12.36)

Практически, если (l  d ), то формула (12.35) справедлива для точек в средней части соленоида, а формула (12.36) – для точек на оси вблизи его концов.

Применяя закон Био-Савара-Лапласа, можно найти магнитную индукцию поля соленоида конечной длины (рис. 12.16) в произвольной точке А на его оси:

(12.37)

где
- углы между осью соленоида и радиус- вектором, проведенным из рассматриваемой точки к концам соленоида.

Поле такого соленоида неоднородное, величина индукции зависит от положения точки А и длины соленоида. Для бесконечно длинного соленоида
,
, и формула (12.37) переходит в формулу (12.35).

Рис. 6.23. Магнитные силовые линии поля: 1 - соленоида; 2 - полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид - это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh , находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением

На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?

Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R ), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R /l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

Подставляя численное значение d , находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

Пример 2. Найти магнитное поле В е в крайней торцевой точке оси соленоида конечной длины l . Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

Отношение полей в средней и крайней точках оси соленоида равно

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это - так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R , чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля

Для создания магнитного поля в технике используется соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на общий сердечник (рис. 4.5).

Рассмотрим соленоид длиной L , имеющий N витков, по которому течет ток I . Длину соленоида считаем во много раз большей диаметров его витков. Магнитное поле такого соленоида целиком сосредоточено внутри него и однородно. Снаружи соленоида поле мало и его практически можно считать равным нулю.

Величину индукции магнитного поля соленоида можно найти, складывая магнитные индукции полей, создаваемых каждым витком соленоида. Так как витки соленоида намотаны вплотную друг к другу, на длине dx сосредоточено витков. Суммарный ток, протекающий по кольцу, толщиной dx , равен . В точке, находящейся на оси соленоида каждое такое кольцо создает магнитное поле, согласно (4.7), равное:

.

Суммарное поле:

(4.9)

При интегрировании соленоид считаем бесконечным. Как видно из (4.9) магнитное поле соленоида зависит от плотности намотки – числа витков на единицу длины соленоида .

Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная:

= В n dS = Bcos α × dS , (4.10)

где В n – проекция вектора В на направление, перпендикулярное к площадке dS ; α – угол между вектором нормали n и вектором В .

Положительное направление нормали связано правилом правого винта с током, текущим по контуру, ограничивающему площадку dS . Магнитный поток Ф через произвольную поверхность S можно представить в виде:

Действие магнитного поля на заряды



На электрический заряд q , движущийся в магнитном поле с индукцией В со скоростью V , действует сила Лоренца:

. (4.12)

Абсолютная величина магнитной силы:

F = qvB Sin α ,

где α – угол между векторами V и В .

По правилу векторного произведения магнитная сила F перпендикулярна плоскости, в которой лежат вектора V и B .

Если q >0, магнитная сила F совпадает с направлением векторного произведения [V,B ], если q <0, то противоположно.

Для положительного заряда, движущегося в магнитном поле, как показано на рисунке 4.6, сила F направлена вдоль отрицательного направления оси Z . Продольная компонента скорости V ll под действием магнитного поля изменяться не будет и движение заряженной частицы вдоль оси Х – равномерное. Результирующее движение частицы – по винтовой линии (рис.4.6). Спираль может быть как правой, так и левой в зависимости от знака заряда q .

Радиус спирали R найдем из условия, что при равномерном движении частицы по окружности сила F является центростремительной силой:

,

где m – масса заряженной частицы. Отсюда:

.

Время, за которое частица совершит полный оборот (период):

. (4.13)

Из формулы (4.13) следует, что период обращения частицы не зависит от ее скорости. Однако надо помнить, что этот вывод справедлив только при условии V <<c , где: с – скорость света.

Если движение частицы происходит как в магнитном поле с индукцией B , так и в электрическом поле с напряженностью Е , то на нее действует обобщенная сила Лоренца:

. (4.14)

Электромагнитная индукция

Если поток магнитной индукции сквозь контур изменяется со временем, то, согласно закону электромагнитной индукции Фарадея, в контуре возникает ЭДС индукции:

E = – , (4.15)

Знак (–) означает: индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле стремиться скомпенсировать то изменение магнитного потока, которым вызван данный индукционный ток (правило Ленца).

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, индукция которого пропорциональна току: В ~ I. Поэтому сцепленный с контуром магнитный поток пропорционален силе тока в контуре I:

Ф = LI ,

гдеL коэффициент пропорциональности называют коэффициентом самоиндукции или индуктивностью контура.

Если по контуру протекает изменяющийся со временем ток I(t) , то изменяется магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции:

Индуктивность контура L в общем случае зависит от геометрии контура и магнитной проницаемости среды µ. Если эти величины не изменяются, то L = const . Т.е., если контур жесткий и поблизости нет ферромагнетиков, то L = const .

Рассмотрим два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 4.7). Если по контуру 1 пропустить ток I 1 , то он создает поток магнитной индукции через контур 2:

Ф 21 = L 21 I 1 . (4.17)

Коэффициент пропорциональности L 21 называют коэффициентом взаимной индукции контуров (взаимная индуктивность контуров). Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

При изменении силы тока в первом контуре магнитный поток сквозь второй контур изменяется; следовательно, в нем наводится ЭДС взаимной индукции:

. (4.18)

Формула справедлива в отсутствие ферромагнетиков.

Если поменять местами контуры 1 и 2 и повторить все предыдущие рассуждения, то получим:

. (4.19)

Коэффициенты взаимной индукции равны.