Орбита в химии. Атомные орбитали

Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.

s -Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:

На первом электронном уровне каждого атома находится только одна s- орбиталь. Начиная со второго электронного уровня помимо s- орбитали появляются также три р -орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р -электрона в районе атомного ядра. Каждая р -орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р -орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:

В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.

У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s -орбитали (отмечены синим цветом) и по одному электрону на двух р -орбиталях (отмечены красным и желтым цветом), третья орбиталь – р z -вакантная:

Гибридизация.

В том случае, когда атом углерода участвует в образовании насыщенных соединений (не содержащих кратных связей), одна s- орбиталь и три р -орбитали объединяются, образуя новые орбитали, представляющие собой гибриды исходных орбиталей (процесс называют гибридизацией). Количество гибридных орбиталей всегда равно количеству исходных, в данном случае, четыре. Получившиеся орбитали-гибриды одинаковы по форме и внешне напоминают асимметричные объемные восьмерки:

Вся конструкция оказывается как бы вписанной в правильный тетраэдр – призма, собранная из правильных треугольников. При этом орбитали-гибриды располагаются вдоль осей такого тетраэдра, угол между любыми двумя осями – 109°. Четыре валентных электрона углерода располагаются на этих гибридных орбиталях:

Участие орбиталей в образовании простых химических связей.

Свойства электронов, разместившихся на четырех одинаковых орбиталях, эквивалентны, соответственно, будут эквивалентны химические связи, образованные с участием этих электронов при взаимодействии с атомами одного типа.

Взаимодействие атома углерода с четырьмя атомами водорода сопровождается взаимоперекрыванием вытянутых гибридных орбиталей углерода со сферическими орбиталями водородов. На каждой орбитали находится по одному электрону, в результате перекрывания каждая пара электронов начинает перемещаться по объединенной – молекулярной орбитали.

Гибридизация приводит лишь к изменению формы орбиталей внутри одного атома, а перекрывание орбиталей двух атомов(гибридных или обычных)приводит к образованию химической связи между ними. В данном случае (см . рисунок, помещенный ниже) максимальная электронная плотность располагается вдоль линии, связывающей два атома. Такую связь называют s -связью.

В традиционном написании структуры образовавшегося метана вместо перекрывающихся орбиталей используют символ валентной черты. Для объемного изображения структуры валентность, направленную от плоскости чертежа к зрителю показывают в виде сплошной клиновидной линии, а валентность, уходящую за плоскость рисунка – в виде штриховой клиновидной линии:

Таким образом, структура молекулы метана определяется геометрией гибридных орбиталей углерода:

Образование молекулы этана аналогично показанному выше процессу, отличие состоит в том, что при взаимоперекрывании гибридных орбиталей двух атомов углерода происходит образование С-С – связи:

Геометрия молекулы этана напоминает метан, валентные углы 109°, что определяется пространственным расположением гибридных орбиталей углерода:

Участие орбиталей в образовании кратных химических связей.

Молекула этилена образована также с участием орбиталей-гибридов, однако в гибридизации участвуют одна s -орбиталь и только две р -орбитали (р х и р у ), третья орбиталь – p z , направленная вдоль оси z , в образовании гибридов не участвует. Из исходных трех орбиталей возникают три гибридных орбитали, которые располагаются в одной плоскости, образуя трехлучевую звезду, углы между осями – 120°:

Два атома углерода присоединяют четыре атома водорода, а также соединяются между собой, образуя s -связь С-С:

Две орбитали p z , не участвовавшие в гибридизации, взаимоперекрываются, их геометрия такова, что перекрывание происходит не по линии связи С-С, а выше и ниже ее. В результате образуются две области с повышенной электронной плотностью, где помещаются два электрона (отмечены синим и красным цветом), участвующие в образовании этой связи. Таким образом, образуется одна молекулярная орбиталь, состоящая из двух областей, разделенных в пространстве. Связь, у которой максимальная электронная плотность расположена вне линии, связывающей два атома, называют p -связью:

Вторая валентная черта в обозначении двойной связи, широко используемая для изображения ненасыщенных соединений уже не одно столетие, в современном понимании подразумевает наличие двух областей с повышенной электронной плотностью, расположенных по разные стороны линии связи С-С.

Структура молекулы этилена задана геометрией гибридных орбиталей, валентный угол Н-С-Н – 120°:

При образовании ацетилена в гибридизации участвует одна одна s -орбиталь и одна р x -орбиталь (орбитали p y и p z , в образовании гибридов не участвуют). Две образовавшиеся гибридные орбитали располагаются на одной линии, вдоль оси х :

Взаимоперекрывание орбиталей-гибридов друг с другом и с орбиталями атомов водорода приводит к образованию s -связей С-С и С-Н, изображаемых с помощью простой валентной черты:

Две пары оставшихся орбиталей p y и p z взаимоперекрываются. На рисунке, приведенном ниже, цветными стрелками показано, что из чисто пространственных соображений наиболее вероятно перекрывание орбиталей с одинаковыми индексами х-х и у-у . В результате образуются две p -связи, окружающие простую s -связь С-С:

В итоге молекула ацетилена имеет палочкообразную форму:

У бензола остов молекулы собран из атомов углерода, имеющих гибридные орбитали, составленные из одной s - и двух р -орбиталей, расположенные в форме трехлучевой звезды (как у этилена), р -орбитали, не участвующие в гибридизации, показаны полупрозрачными:

В образовании химических связей могут также участвовать вакантные, то есть, не содержащие электронов орбитали ().

Орбитали высоких уровней.

Начиная с четвертого электронного уровня, у атомов появляются пять d -орбиталей, их заполнение электронами происходит у переходных элементов, начиная со скандия. Четыре d -орбитали имеют форму объемных четырехлистников, называемых иногда «клеверным листом», они отличаются лишь ориентацией в пространстве, пятая d -орбиталь представляет собой объемную восьмерку, продетую в кольцо:

d -Орбитали могут образовывать гибриды с s- и p- орбиталями. Параметры d -орбиталей обычно используют при анализе строения и спектральных свойств в комплексах переходных металлов.

Начиная с шестого электронного уровня, у атомов появляются семь f -орбиталей, их заполнение электронами происходит в атомах лантаноидов и актиноидов. f -Орбитали имеют довольно сложную конфигурацию, ниже на рисунке показана форма трех из семи таких орбиталей, имеющих одинаковую форму и ориентированных в пространстве различным образом:

f -Орбитали весьма редко используют при обсуждении свойств различных соединений, поскольку расположенные на них электроны практически не принимают участия в химических превращениях..

Перспективы.

На восьмом электронном уровне находится девять g -орбиталей. Элементы, содержащие электроны на этих орбиталях, должны появится в восьмом периоде, пока они недоступны (в ближайшее время ожидается получение элемента № 118, последнего элемента седьмого периода Периодической системы, его синтез проводят в Объединенном институте ядерных исследований в Дубне).

Форма g -орбиталей, вычисленная методами квантовой химии, еще более сложная, чем у f -орбиталей, область наиболее вероятного местонахождения электрона в данном случае выглядит весьма причудливо. Ниже показан внешний вид одной из девяти таких орбиталей:

В современной химии представления об атомных и молекулярных орбиталях широко используют при описании строения и реакционных свойств соединений, также при анализе спектров различных молекул, в некоторых случаях – для прогнозирования возможности протекания реакций.

Михаил Левицкий

Атомная орбиталь - одноэлектронная волновая функция, полученная решением уравнения Шрёдингера для данного атома; задаётся: главным n, орбитальным l, и магнитным m - квантовыми числами. Единственный электрон атома водорода образует вокруг ядра сферическую орбиталь - шарообразное электронное облако, вроде неплотно намотанного клубка пушистой шерсти или ватного шарика.

Сферическую атомную орбиталь ученые договорились называть s-орбиталью . Она самая устойчивая и располагается довольно близко к ядру. Чем больше энергия электрона в атоме, тем быстрее он вращается, тем сильнее вытягивается область его пребывания и наконец превращается в гантелеобразную p-орбиталь :

Гибридизация орбиталей - гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

5.Тетраэдрическая модель атома углерода. Теория строения Бутлерова

Теория химического строения органических веществ была сформулирована А. М. Бутлеровым в 1861 году.

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

Основные представления о химическом строении, заложенные Бутлеровым, были дополнены Вант-Гоффом И Ле-Белем (1874), которые развили идею о пространственном расположении атомов в молекуле органич. в-ва и поставили вопрос о пространственной конфигурации и конформации молекул. Работа Вант-Гоффа положила начало направлению орг. Химии – стереохимии – учению о пространственном строении.Вант-Гофф предлоил тетраэдрическую модель атома углерода – четыре валентности атома в углерода в метане направлены к четырем углам тетраэдра, в центре которого находится углеродный атом, а на вершинах – атомы водорода.

Непредельные карбоновые кислоты

Химические свойства.
Химические свойства непредельных карбоновых кислот обусловлены как свойствами карбоксильной группы, так и свойствами двойной связи. Специфическими свойствами обладают кислоты с близко расположенной от карбоксильной группы двойной связью - альфа, бета-непредельные кислоты. У этих кислот присоединение галогеноводородов и гидратация идут против правила Марковникова:

СН 2 =СН-СООН + НВr -> СН 2 Вr-СН 2 -СООН

При осторожном окислении образуются диоксикислоты:

СН 2 =СН-СООН + [О] + Н 2 0 -> НО-СН 2 -СН(ОН)-СООН

При энергичном окислении происходит разрыв двойной связи и образуется смесь разных продуктов, по которым можно установить положение двойной связи. Олеиновая кислота С 17 Н 33 СООН - одна из важнейших высших непредельных кислот. Это - бесцветная жидкость, затвердевает на холоде. Ее структурная формула: СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН.

Производные карбоновых кислот

Производные карбоновых кислот - это соединения, в которых гидроксильная группа карбоновой кислоты замещена другой функциональной группой.

Просты́е эфи́ры - органические вещества, имеющие формулу R-O-R", где R и R" - углеводородные радикалы. Следует, однако, учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами

Сло́жные эфи́ры (или эсте́ры ) - производные оксокислот (как карбоновых, так и неорганических) с общей формулой R k E(=O) l (OH) m , где l ≠ 0, формально являющиеся продуктами замещения атомов водорода гидроксилов -OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов) .

Отличаются от простых эфиров (этеров), у которых два углеводородных радикала соединены атомом кислорода (R 1 -O-R 2)

Ами́ды - производные оксокислот (как карбоновых, так и минеральных) R k E(=O) l (OH) m , (l ≠ 0), формально являющиеся продуктами замещения гидроксильных групп -OH кислотной функции на аминогруппу (незамещенную и замещенную); рассматриваются также как ацилпроизводные аминов. Соединения с одним, двумя или тремя ацильными заместителями у атома азота называются первичными, вторичными и третичными амидами, вторичные амиды именуются также имидами.

Амиды карбоновых кислот - карбоксамиды RCO-NR 1 R 2 (где R 1 и R 2 - водород, ацил либо алкильный, арильный или другой углеводородный радикал) обычно именуются амидами, в случае других кислот в соответствии с рекомендациями IUPAC при именовании амида в качестве префикса указывается название кислотного остатка, например, амиды сульфокислот RS(=O 2 NH 2 именуются сульфамидами.

Хлорангидри́д карбо́новой кислоты́ (ацилхлорид) - производное карбоновой кислоты, в которой гидроксильная группа -OH в карбоксильной группе -COOH заменена на атом хлора. Общая формула R-COCl. Первый представитель с R=H (хлористый формил) не существует, хотя смесь CO и HCl в реакции Гаттермана - Коха ведёт себя подобно хлорангидриду муравьиной кислоты.

Получение

R-COOH + SOCl 2 → R-COCl + SO 2 + HCl

Нитри́лы - органические соединения общей формулы R-C≡N, формально являющиеся C-замещенными производными синильной кислоты HC≡N

Капрон (поли-ε-капроамид, найлон-6, полиамид 6)- синтетическое полиамидное волокно, получаемое из нефти, продукт поликонденсации капролактама

[-HN(CH 2) 5 CO-] n

В промышленности его получают путем полимеризации производного

Нейло́н (англ. nylon ) - семейство синтетических полиамидов, используемых преимущественно в производстве волокон.

Наиболее распространены два вида нейлона: полигексаметиленадипинамид (анид (СССР/Россия), найлон 66 (США)), часто называемый собственно нейлоном и поли-ε-капроамид (капрон (СССР/Россия), найлон 6 (США)). Известны также другие виды, например, поли-ω-энантоамид (энант (СССР/Россия), найлон 7 (США)) и поли-ω-ундеканамид (ундекан (СССР/Россия), найлон 11 (США), рильсан (Франция, Италия)

Формула волокна из анида: [-HN(CH 2) 6 NHOC(CH 2) 4 CO-] n . Анид синтезируется поликонденсацией адипиновой кислоты и гексаметилендиамина. Для обеспечения стехиометрического отношения реагентов 1:1, необходимого для получения полимера с максимальной молекулярной массой, используется соль адипиновой кислоты и гексаметилендиамина (АГ-соль ):

R = (CH 2) 4 , R" = (CH 2) 6

Формула волокна из капрона (найлона-6): [-HN(CH 2) 5 CO-] n . Синтез капрона из капролактама проводится гидролитической полимеризацией капролактама по механизму «раскрытие цикла - присоединение»:

Пластмассовые изделия могут изготавливаться из жёсткого нейлона - эколона, путём впрыскивания в форму жидкого нейлона под большим давлением, чем достигается бо́льшая плотность материала.

Классификафия


КЕТОКИСЛОТЫ - органические вещества, в состав молекул которых входят карбоксильные (COOH-) и карбонильные (-CO-) группы; служат предшественниками многих соединений, выполняющих важные биологические функции в организме. Существенные нарушения обмена веществ, имеющие место при ряде патологических состояний, сопровождаются повышением концентрации в организме человека тех или иных кетокислот

кето енольная таутомерия

Методы получения Альфа и Бета кетокислот

α-Кетокислоты получают окислением α-гидроксикислот.

β-Кетокислоты ввиду своей неустойчивости получают из сложных эфиров конденсацией Кляйзена.

В органической химии термин «реакция окисления» подразумевает, что окисляется именно органическое соединение, при этом окислителем в большинстве случаев является неорганический реагент.

Алкены

KMnO 4 и H 2 O (нейтральная среда)

3СH2=CH2 + 2KMnO 4 + 4H 2 O = 3C 2 H 4 (OH) 2 + 2MnO 2 + 2KOH - полное уравнение

(кислая среда)

идет разрыв двойной связи:

R-СH 2 =CH 2 -R + [O] → 2R-COOH - схематичное уравнение

Алкиларены

Эитлбензол- алкиларен

Кетоны

Кетоны к действию окислителей весьма устойчивы и окисляюся лишь сильными окислителями при нагревании. В процессе окисления происходит разрыв связей C-C по обе стороны карбонильной группы и в общем случае получается смесь четырех карбоновых кислот:

Окислению кетона предшествует его енолизация, которая может проходить как в щелочной, так и в кислой среде:

Ви́нная кислота́ (диоксиянтарная кислота, тартаровая кислота, 2, 3-дигидроксибутандиовая кислота) НООС-СН(ОН)-СН(ОН)-СООН - двухосновная оксикислота. Соли и анионы винной кислоты называют тартратами.

Известны три стереоизомерные формы винной кислоты: D-(-)-энантиомер (слева вверху), L-(+)-энантиомер (справа вверху) и мезо -форма (мезовинная кислота):


Диастереомеры - стереоизомеры, не являющиеся зеркальными отражениями друг друга . Диастереомерия возникает, когда соединение имеет несколько стереоцентров. Если два стереоизомера имеют противоположные конфигурации всех соответствующих стереоцентров, то они являются энантиомерами.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-13

m квантовыми числами.

Волновая функция рассчитывается по волновому уравнению Шрёдингера в рамках одноэлектронного приближения (метод Хартри - Фока) как волновая функция электрона, находящегося в самосогласованном поле, создаваемым ядром атома со всеми остальными электронами атома.

Сам Э.Шрёдингер рассматривал электрон в атоме как отрицательно заряженное облако, плотность которого пропорциональна квадрату значения волновой функции в соответствующей точке атома. В таком виде понятие электронного облака было воспринято и в теоретической химии.

Однако большинство физиков не разделяли убеждений Э.Шрёдингера - доказательства существования электрона как «отрицательно заряженного облака» не было. Макс Борн обосновал вероятностную трактовку квадрата волновой функции. В 1950 г. Э.Шрёдингер в статье «Что такое элементарная частица?» вынужден согласиться с доводами М.Борна, которому в 1954 году присуждена Нобелевская премия по физике с формулировкой «За фундаментальное исследование в области квантовой механики, особенно за статистическую интерпретацию волновой функции ».

Квантовые числа и номенклатура орбиталей

Радиальное распределение плотности вероятности для атомных орбиталей при различных n и l .

  • Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :
Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.
  • Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задаётся соотношением
Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp ) - резкая серия в атомных спектрах, p (principal )- главная, d (diffuse ) - диффузная, f (fundamental ) - фундаментальная.

  • Магнитное квантовое число m l определяет проекцию орбитального момента импульса на направление магнитного поля и может принимать целые значения в диапазоне от -l до l , включая 0 (m l = -l … 0 … l ):

В литературе орбитали обозначают комбинацией квантовых чисел, при этом главное квантовое число обозначают цифрой, орбитальное квантовое число - соответствующей буквой (см. таблицу ниже) и магнитное квантовое число - выражением в нижнем индексе, показывающем проекцию орбитали на декартовы оси x, y, z, например 2p x , 3d xy , 4f z(x²-y²) . Для орбиталей внешней электронной оболочки, то есть в случае описания валентных электронов, главное квантовое число в записи орбитали, как правило, опускают.

Геометрическое представление

Геометрическое представление атомной орбитали - область пространства, ограниченная поверхностью равной плотности (эквиденситной поверхностью) вероятности или заряда . Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0,9-0,99.

Поскольку энергия электрона определяется кулоновским взаимодействием и, следовательно, расстоянием от ядра, то главное квантовое число n задаёт размер орбитали.

Форма и симметрия орбитали задаются орбитальными квантовыми числами l и m : s -орбитали являются сферически симметричными, p , d и f -орбитали имеют более сложную форму, определяемую угловыми частями волновой функции - угловыми функциями. Угловые функции Y lm (φ , θ) - собственные функции оператора квадрата углового момента L², зависящие от квантовых чисел l и m (см. Сферические функции), являются комплексными и описывают в сферических координатах (φ , θ) угловую зависимость вероятности нахождения электрона в центральном поле атома. Линейная комбинация этих функций определяет положение орбиталей относительно декартовых осей координат.

Для линейных комбинаций Y lm приняты следующие обозначения:

Значение орбитального квантового числа 0 1 1 1 2 2 2 2 2
Значение магнитного квантового числа 0 0 0
Линейная комбинация
Обозначение

Дополнительным фактором, иногда учитываемым в геометрическом представлении, является знак волновой функции (фаза). Этот фактор существеннен для орбиталей с орбитальным квантовым числом l , отличным от нуля, то есть не обладающих сферической симметрией: знак волновой функции их «лепестков», лежащих по разные стороны узловой плоскости, противоположен. Знак волновой функции учитывается в методе молекулярных орбиталей МО ЛКАО (молекулярные орбитали как линейная комбинация атомных орбиталей). Сегодня науке известны математические уравнения, описывающие геометрические фигуры, представляющие орбитали (зависимотси координаты электрона от времени). Это уравнения гармонических колебаний отражающие вращение частиц по всем доступным степеням свободы - орбитальное вращение, спин,... Гибридизация орбиталей представляется как интерференция колебаний.

Заполнение орбиталей электронами и электронная конфигурация атома

На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули . Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n ) определяется правилом Клечковского , порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l ) определяется Правилом Хунда .

Краткую запись распределения электронов в атоме по различным электронным оболочкам атома с учётом их главного и орбитального квантовых чисел n и l называют

Как уже отмечалось, современная теория химической связи основана на квантово-механическом рассмотрении молекулы как системы из электронов и атомных ядер.

Из курсов неорганической химии и физики известно, что электроны представляют собой вид материи, обладающий одновременно свойствами частицы и электромагнитной волны.

Согласно квантовой теории состояние электронов в атоме описывается с помощью четырех квантовых чисел. п главное кван товое число, I - азимутальное квантовое число, т

славное кван-

маспитпое

квантовое число и л

спиновое квантовое число.

Электрон в атоме находится на определенной атомной орби-

тали. Атомная орбиталь (АО) - это область пространства, внутри которой наиболее вероятно нахождение электрона.

Состояние электрона определяется расстоянием электронного облака от ядра, его формой, ориентацией в пространстве и вращением электрона вокруг собственной оси.

В зависимости от расстояния электрона от ядра атома изменяется траектория его движения, то есть форма атомной орбитали (рис. 2.1). Существуют л, р, й, /-атомные орбитали, которые отличаются друг от друга запасом энергии, а следовательно, и формой электронного облака, то есть траекторией движения электрона.

в-орбиталь

/О-орбиталь

о<-орбиталь

±и^. 2.1. 1сим&1ричс^ьйл шиумй й-, и- и и-й!имп^1л иуии1^1&и

для атомных орбиталей ^-типа характерна сферическая симметрия, для электронов р-типа существуют три одинаковые по энергии гантелеобразной формы орбитали, которые отличаются

2. Химическая связь. Взаимное влияние атомов в органических соединениях

друг от друга лишь ориентацией в пространстве. рх, р_^, р^-атоданые

орбитали. В каждой из них существует узловая область р-орбита-ли, где вероятность нахождения электрона равна нулю. Для й-атомных орбиталей существуют пять более сложных геометрических форм.

Электроны 5-орбитали ближе находятся к атомному ядру и с большей силой притягиваются к нему, чем р-электроны, которые более удалены и имеют большую подвижность. Энергия электрона падает в следующем ряду.

/ > й > р > 5

Атомная орбиталь, не занятая электронами, называется в а-кантной и условно обозначается как □.

іі^іоггідгіоліцгіл /iv7iVII ііііл игош^іьи

Согласпо кваптово-мелапическим представлепиям о лимиче-

ской связи число образуемыл атомом ковалептпыл связей определяется количеством одпоэлектроппыл атомпыл орбиталей, то есть количеством песпареппыл электропов. идпако в действительпости атомы элемептов образуют большее число ковалептпыл связей, чем содержат песпареппыл электропов па впешпем эпергетическом уровпе. Например, атом углерода в осповпом (пе ^воізбуждеппом) состояпии имеет два песпареппыл электропа (І5 25 2р), а образует четыре ковалептпые связи. Это можпо объяспить возможпостью

перелода одпого 25-электропа па 2р-подуровепь (І5 25 2р).

іаким образом, па впешпем эпергетическом уровпе атома

углерода палодятся четыре песпареппыл электропа: одип - 5 и три - р. Поскольку лимические связи образуются валептпыми электропами, то связи, папример в молекуле метапа СИ4, должпы были бы быть перавпоцеппыми: одпа связь С-Н образовапа 5-электропом, а три остальпые - р. В действительпости в молекуле метапа все связи совершеппо равпоцеппы. Для объяспепия этого факта в кваптовой мелапике вводится попятие о гибридизации атомпыл орбиталей. Слово гибридизация озпачает взаимодействие,

2р 2р 2р 2р 2р 2р

перекрывание, перемешивание. При перекрывании одного 5-элек-тронного облака с тремя /-электронными облаками образуются четыре качественно новых гибридизированных электронных облака или атомные орбитали:

Таким образом, из нескольких различных по форме и близких по энергии АО путем комбинирования (смешивания, сочетания) образуется такое же количество одинаковых по форме и равных по энергии гибридизированных атомных орбиталей:

Гибридизированные орбитали по сравнению с негибридизи-рованными более выгодны геометрически, так как позволяют увеличить площадь перекрывания с орбиталями других атомов, что ведет к образованию более прочных связей. Результатом перекрывания большей доли гибридной орбитали с орбиталями других атомов является ковалентная связь.

Атом углерода может претерпевать три вида гибридизации с участием s- и р-орбиталей, каждому из которых соответствует определенное валентное состояние атома.

Первое валентное состояние углерода -гибридизация). Обра-

зование а-связи. Состояние вр -гибридизации - результат взаимодействия одной в- и трех р-атомных орбиталей (рис. 2.2).

1в + 3р = 4вр.

25-орбиталь 2р2-орбиталь 2ру-орбиталь 2р2-орбиталь

Рис. 2.2. Схема образования и расположение в пространстве гибридных 5р3-орбиталей

четыре ер -гибридные орбитали

2. Химическая связь. Взаимное влияние атомов в органических соединениях 21

Четыре равноценные орбитали между собой образуют угол 109° 28" и ориентированы в пространстве от центра правильного тетраэдра к его вершинам. Такое размещение связано со стремлением АО к максимальному удалению друг от друга за счет взаимного электростатического отталкивания. Расположение атомных орбиталей определяет название состояния 5р3-гибридизации как тетраэдрическое.

Доля s-облака в каждой из четырех гибридных sp3 -орбиталей равна 7.. В результате перекрывания таких орбиталей с другими ор-

биталями (s, p, d и гибридными sp , sp, sp) вдоль линии, соединяющей центры атомов, образуются только простые ковалентные, или ст-связи (греч. «сигма»). Перекрывание атомных орбиталей вдоль линии, соединяющей центры атомов, называют ст-п ерекрывани-е м, или о с е в ы м, так как максимальная электронная плотность при этом находится на оси, соединяющей два ядра (рис. 2.3).

о-перекрывание

Рис. 2.3. Образование а-связей в молекуле этана

Состояние 5р3-гибридизации характерно для алканов. Рассмотрим образование ст-связей на примере этана.

В молекуле этана в результате осевого s-sp -перекрывания образуются шесть ст-связей СПН, а за счет перекрывания sp -sp -орбиталей - одна СП С-связь.

ст-Связи во многих органических соединениях образуются преимущественно за счет перекрывания гибридизированных орби-талей.

Второе валентное состояние углерода (sp -гибридизация). Образование п-связи. Состояние sp2-гибридизации - результат взаимодействия одной s- и двух р-орбиталей (рис. 2.4).

Образованные три эквивалентные sp -гибридные орбитали находятся в одной плоскости под углом 120°, поэтому sp -гибридизация называется тригональной. Негибридизированная р^-орбиталь

2з-орбиталь 2рх-орбиталь 2/з^-орбиталь

три зр -гибридные орбитали и р2-орбиталь

три ер -гибридные орбитали

±и^. 2.4. ^1риспиь й!имй углерода

в ^р2-гибридизации

расположения гибридных орбиталей. Усливни доля я-облака в каж-дий из трех яр2 -гибридных ирбиталей равна 1/у Такая гибридизация характерна для сиединений с двойными связями, например для этилена (рис. 2.5).

яр -АО углерода

о-перекрывание (о-связь)

Образование л-связи в молекуле атилена

Атомггы углерода в милекуле этилена находятся в яр -гибридизации. За счет перекрывания трех гибридных АО каждиго из атимив ибразуются ст-связи (четыре С-Н и идна С-С); а перекрывание двух негибридизириванных р-орбиталей в плоскости, перпендикулярний плоскости ст-связи (п-перекрывание), приводит к образованию п-связи. Ее максимальная электронная плотность сконцентрирована в двух областях - выше и ниже оси, соединяющей центры атомов. п-Связь менее прочна, чем ст; она образуется только между атомами, которые находятся в яр2- или яр-гибридизации.

2. Химическая связь. Взаимное влияние атомов в органических соединениях 2

Л;/-1ИирИДИ^йЦИШ называют СЩС JIUneUnUU HU1UMJ, ни две

sp-гибридные орбитали расположены под углом 180°. Остальные две негибридизированные р^- и р^-орбитали находятся в двух взаимно перпендикулярных плоскостях и расположены под прямым углом к sp-гибридным АО. Доля s-облака в каждой из двух гибридных sp-орбиталей равна 1/2. Такой тип гибридизации характерен для соединений с тройной связью, например для ацетилена (рис. 2.7).

В молекуле ацетилена sp-гибридизированные атомы образуют две простые ст-связи С-Н и одну ст-связь между двумя атомами углерода, а негибридизированные p-АО образуют две п-связи, расположенные во взаимно перпендикулярных плоскостях.

Для описания химической связи с позиций квантовой механики пользуются двумя основными методами: методом валентных связей (МВС) и методом молекулярных орбиталей (МО).

Метод валентных связей был предложен в 1927 году В. Гайтле-ром и Ф. Лондоном. Основные положения метода заключаются в следующем. Химическая связь представлена в виде пары электронов с противоположными спинами. Она образуется в результате перекрывания атомных орбиталей.

л-перекрывание (я-связь)

а-перекрывание (а-связь)

оира^ивание л-свя:зи в молекуле ацетилена

при иирй^исап^1^1 милсАулш атоммные ирииюли и^1йЮ1СЛ ии^

изменений, а пара связывающих электронов локализована между двумя атомами.

В отличие от метода валентных связей метод молекулярных орбиталей рассматривает молекулу не как совокупность атомов, сохраняющих свою индивидуальность, а как единое целое. Предполагается, что каждый электрон в молекуле движется в суммарном поле, создаваемом остальными электронами и всеми ядрами атомов. Иначе говоря, в молекуле различные АО взаимодействуют между соиой с оиразованием нового типа орииталей, называемых молекулярными орииталями.

Перекрывание двух атомных орииталей приводит к оиразова-нию двух молекулярных орииталей (рис. 2.8).

□"-разрыхляющая МО

АО------АО^^)-

а-связывающая МО

ст*-разрыхляющая МО

а-связывающая МО

Одна из них имеет иолее низкую энергию, чем исходные АО,

ігі паошоасі^л юлошои^шси и^^ншилнш, диуіал ииладасі и^лъъ г>х>і-

2. Химическая связь. Взаимное влияние атомов в органических соединениях 2:

ШАиИ ЛПС^ІИСИ, ЧСМ образующая ее ЛЛ^, И ИйЛМВйСІСИ разрылляю-

щей, или антисвязывающей орбиталью. Заполнение молекулярных орбиталей электронами происходит аналогично заполнению атомных, то есть по принципу Паули и в соответствии с правилом Гунда. Молекулярная разрыхляющая орбиталь в основном состоянии остается вакантной. Ее заполнение электронами происходит при возбуждении молекулы, что ведет к разрыхлению связи и распаду молекулы на атомы.

После завершения формального описания квантово-механического движения стало ясно, что в атомном пространстве каждый объект имеет такую характеристику, как атомная орбиталь.

Атомная орбиталь (АО) - область пространства вокруг ядра атома, в которой по законам квантовой механики с наибольшей вероятностью находится электрон с заданной энергией.

Энергетическое состояние электрона описывается функцией трех целочисленных параметров п } I, т 1У которые называются квантовыми числами. При определенных значениях квантовых чисел можно получить характеристики области, где может находиться электрон.

Квантовые числа имеют следующий физический смысл :

  • п - главное квантовое число , характеризует энергетический уровень и размер орбитали;
  • / - орбитальное квантовое число , характеризует энергетический подуровень и форму орбитали;
  • т { - магнитное квантовое число , учитывает влияние внешнего магнитного поля на энергетическое состояние электрона.

Главное квантовое число п является натуральным и соответствует номерам периодов в таблице Д. И. Менделеева (1, 2, 3, 4, 5, 6, 7). Главное квантовое число определяет основную долю энергии электрона, находящегося на данной орбитали. Это квантовое число называют также номером энергетического уровня. Чем больше п , тем больше размер орбитали.

Атомы, в которых электроны находятся на орбиталях с большим значением п (п > 8), называются ридберговскими атомами. Первые экспериментальные данные по ридберговским атомам в радиоастрономии были получены в 1964 г. сотрудниками ФИАПа (Р. С. Сороченко и др.) на 22-метровом зеркальном радиотелескопе. При ориентации телескопа на туманность Омега в спектре ее радиоизлучения была обнаружена линия излучения с длиной волны X = 3,4 см. Эта длина волны соответствует переходу между ридберговскими состояниями п = 90 и п = 91 в спектре атома водорода. Сегодня в лаборатории получены ридберговские атомы с п ~ 600! Это почти макроскопические объекты размером около 0,1 мм и временем жизни ~1 с. Изучение ридберговских состояний атомов оказалось полезным в работах по созданию квантовых компьютеров.

При этом увеличение размера не меняет формы орбитали. Чем больше п у тем больше энергия электрона. Электроны с одинаковым значением главного квантового числа находятся на одном энергетическом уровне. Номер п энергетического уровня указывает на число подуровней, входящих в состав данного уровня.

Орбитальное квантовое число I может принимать значения / = 0, 1,2,... до (п - 1), т.е. при данном главном квантовом числе п орбитальное квантовое число / может принять п значений. Орбитальное квантовое число определяет геометрическую форму орбиталей и определяет орбитальный момент количества движения (импульс) электрона, т.е. вклад данного подуровня в общую энергию электрона. Кроме численных значений, орбитальное квантовое число / имеет и буквенное обозначение:

Формы 5-, р-, (1-, /-орбиталей приведены на рис. 1.1. Знаки, проставленные на геометрических элементах орбиталей, не являются знаками заряда, а относятся к значениям волновой функции у для этих элементов. Поскольку при расчете вероятности рассматривается | н/| 2 - квадрат величины по модулю, то области орбиталей волновой функции у со знаками «+» и «-» становятся равнозначными.

Рис. 1.1.

Сложная форма большинства орбиталей обусловлена тем, что волновая функция электрона в полярных координатах имеет две составляющие - радиальную и угловую. При этом вероятность нахождения электрона в данной точке зависит как от ее расстояния до ядра, так и от направления в пространстве вектора, связывающего ядро с этой точкой. Эти функции зависят как от / (для 5- и р-орбиталей), так и от т 1 (для с1 - и /-орбиталей).

Например, абрисом (внешним контуром) всех 5-орбиталей является сфера. По оказывается, что вероятность обнаружения электрона внутри этой сферы не равномерна, а напрямую зависит от расстояния данной орбитали от ядра. На рис. 1.2 показана внутренняя структура 15- и 25-орбиталей. Как следует из рисунка, 25-орбиталь подобна «двухслойной луковице» с внутренними оболочками, расположенными на расстоянии 1 и 4 радиуса боровской орбиты. Как правило, в химии факт сложности внутреннего строения орбиталей не играет значительной роли и в данном курсе нс рассматривается.


Рис. 1.2. Распределение вероятности обнаружения электрона в атоме водорода в состояниях is и 2s. г { = 5,29*10 11 м - радиус первой боровской орбиты

Источник : wvw.college.ru/enportal/physics/content/chapter9/section/paragraph3/theory.html

Орбитальное магнитное квантовое число m t может принимать значения от -/ до +/, включая нуль. Это квантовое число определяет ориентацию орбитали в пространстве при воздействии внешнего магнитного поля и характеризует изменение энергии электрона, находящегося на этой орбитали, под влиянием внешнего магнитного поля. Количество орбиталей с данным значением т 1 составляет (2/ + 1).

Рассмотренные три квантовых числа п, /, т { являются следствием решения волнового уравнения Шредингера и позволяют определить энергию электрона через описание его волновых свойств. При этом не учитывался двойственный характер природы элементарных частиц, их корпускулярноволновой дуализм в описании энергетического состояния электрона.

Собственное магнитное квантовое число электрона m s {спин). Как следствие корпускулярных свойств электрона , в описании его энергетического состояния играет роль еще одно число - собственное квантовое число m s электрона {спин). Это квантовое число характеризует не орбиталь, а свойство самого электрона, находящегося на этой орбитали.

Спин (от англ, spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Часто используемая аналогия для описания спина как свойства, связанного с вращением электрона вокруг своей оси, оказалась несостоятельной. Такое описание приводит к противоречию со специальной теорией относительности - экваториальная скорость вращения электрона в этой модели превышает скорость света. Введение спина явилось удачным применением новой физической идеи: постулируется, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Необходимость введения такого пространства состояний свидетельствует о необходимости рассмотрения и более общего вопроса о реальности физического многомирия.

Электрон проявляет свои собственные магнитные свойства в том, что во внешнем электрическом иоле собственный момент импульса электрона ориентируется либо по полю, либо против ноля. В первом случае принимается, что собственное квантовое число электрона m s = +1/2, а во втором m s = -1/2. Отметим, что спин - единственное дробное число среди набора квантовых характеристик, определяющих состояние электрона в атоме.