Ось параболы. Парабола

Во всей этой главе предполагается, что в плоскости (в которой лежат все рассматриваемые далее фигуры) выбран определенный масштаб; рассматриваются лишь прямоугольные системы координат с этим масштабом.

§ 1. Парабола

Парабола известна читателю из школьного курса математики как кривая, являющаяся графиком функции

(рис. 76). (1)

График любого квадратного трехчлена

также является параболой; можно посредством одного лишь сдвига системы координат (на некоторый вектор ОО), т. е. преобразования

достигнуть того, чтобы график функции (во второй системе координат) совпадал с графиком (2) (в первой системе координат).

В самом деле, произведем подстановку (3) в равенство (2). Получим

Мы хотим подобрать так, чтобы коэффициент при и свободный член многочлена (относительно ) в правой части этого равенства были равны нулю. Для этого определяем из уравнения

что и дает

Теперь определяем из условия

в которое подставляем уже найденное значение . Получим

Итак, посредством сдвига (3), в котором

мы перешли к новой системе координат, в которой уравнение параболы (2) получило вид

(рис. 77).

Вернемся к уравнению (1). Оно может служить определением параболы. Напомним ее простейшие свойства. Кривая имеет ось симметрии: если точка удовлетворяет уравнению (1), то точка симметричная точке М относительно оси ординат, также удовлетворяет уравнению (1) - кривая симметрична относительно оси ординат (рис. 76).

Если , то парабола (1) лежит в верхней полуплоскости , имея с осью абсцисс единственную общую точку О.

При неограниченном возрастании модуля абсцисс ордината также неограниченно возрастает. Общий вид кривой дай на рис. 76, а.

Если (рис. 76, б), то кривая расположена в нижней полуплоскости симметрично относительно оси абсцисс к кривой .

Если перейти к новой системе координат, полученной из старой заменой положительного направления оси ординат на противоположное, то парабола, имеющая в старой системе уравнение , получит в новой системе координат уравнение у . Поэтому при изучении парабол можно ограничиться уравнениями (1), в которых .

Поменяем, наконец, названия осей, т. е. перейдем к иовой системе координат, в которой осью ординат будет старая ось абсцисс, а осью абсцисс - старая ось ординат. В этой новой системе уравнение (1) запишется в виде

Или, если число - обозначить через , в виде

Уравнение (4) называется в аналитической геометрии каноническим уравнением параболы; прямоугольная система координат, в которой данная парабола имеет уравнение (4), называется канонической системой координат (для этой параболы).

Сейчас мы установим геометрический смысл коэффициента . Для этого берем точку

называемую фокусом параболы (4), и прямую d, определенную уравнением

Эта прямая называется директрисой параболы (4) (см. рис. 78).

Пусть - произвольная точка параболы (4). Из уравнения (4) следует, что Поэтому расстояние точки М от директрисы d есть число

Расстояние точки М от фокуса F есть

Но , поэтому

Итак, все точки М параболы равноудалены от ее фокуса и директрисы:

Обратно, каждая точка М, удовлетворяющая условию (8), лежит на параболе (4).

В самом деле,

Следовательно,

и, после раскрытия скобок и приведения подобных членов,

Мы доказали, что каждая парабола (4) есть геометрическое место точек, равноудаленных от фокуса F и от директрисы d этой параболы.

Вместе с тем мы установили и геометрический смысл коэффициента в уравнении (4): число равно расстоянию между фокусом и директрисой параболы.

Пусть теперь на плоскости даны произвольно точка F и прямая d, не проходящая через эту точку. Докажем, что существует парабола с фокусом F и директрисой d.

Для этого проведем через точку F прямую g (рис. 79), перпендикулярную к прямой d; точку пересечения обеих прямых обозначим через D; расстояние (т. е. расстояние между точкой F и прямой d) обозначим через .

Прямую g превратим в ось, прнняв на ней направление DF в качестве положительного. Эту ось сделаем осью абсцисс прямоугольной системы координат, началом которой является середина О отрезка

Тогда и прямая d получает уравнение .

Теперь мы можем в выбранной системе координат написать каноническое уравнение параболы:

причем точка F будет фокусом, а прямая d - директрисой параболы (4).

Мы установили выше, что парабола есть геометрическое место точек М, равноудаленных от точки F и прямой d. Итак, мы можем дать такое геометрическое (т. е. не зависящее ни от какой системы координат) определение параболы.

Определение. Параболой называется геометрическое место точек, равноудаленных от некоторой фиксированной точки («фокуса» параболы) и некоторой фиксированной прямой («директрисы» параболы).

Обозначая расстояние между фокусом и директрисой параболы через , мы можем всегда найти прямоугольную систему координат, каноническую для данной параболы, т. е. такую, в которой уравнение параболы имеет канонический вид:

Обратно, всякая кривая, имеющая такое уравнение в некоторой прямоугольной системе координат, является параболой (в только что установленном геометрическом смысле).

Расстояние между фокусом и директрисой параболы называется фокальным параметром, или просто параметром параболы.

Прямая, проходящая через фокус перпендикулярно к директрисе параболы, называется ее фокальной осью (или просто осью); она является осью симметрии параболы - это вытекает из того, что ось параболы является осью абсцисс в системе координат, относительно которой уравнение параболы имеет вид (4).

Если точка удовлетворяет уравнению (4), то этому уравнению удовлетворяет и точка , симметричная точке М относительно оси абсцисс.

Точка пересечения параболы с ее осью называется вершиной параболы; она является началом системы координат, канонической для данной параболы.

Дадим еще одно геометрическое истолкование параметра параболы.

Проведем через фокус параболы прямую, перпендикулярную к оси параболы; она пересечет параболу в двух точках (см. рис. 79) и определит так называемую фокальную хорду параболы (т. е. хорду, проходящую через фокус параллельно директрисе параболы). Половина длины фокальной хорды и есть параметр параболы.

В самом деле, половина длины фокальной хорды есть абсолютная величина ординаты любой из точек , абсцисса каждой из которых равна абсциссе фокуса, т. е. . Поэтому для ординаты каждой из точек имеем

что и требовалось доказать.

Введем прямоугольную систему координат, где . Пусть осьпроходит через фокусF параболы и перпендикулярен директрисе, а ось проходит посередине между фокусом и директрисой. Обозначим черезрасстояние между фокусом и директрисой. Тогдаа уравнение директрисы.

Число– называетсяфокальным параметромпараболы. Пусть – текущая точка параболы. Пусть– фокальный радиус точки гиперболы.–расстояние от точки до директрисы. Тогда(чертеж 27 .)

Чертеж 27.

По определению параболы . Следовательно,

Возведем уравнение в квадрат, получим:

(15)

где (15) каноническое уравнение параболы, симметричной относительно оси и проходящей через начало координат.

Исследование свойств параболы

1) Вершина параболы:

Уравнению (15) удовлетворяют числа и, следовательно, парабола проходит через начало координат.

2) Симметрия параболы:

Пусть принадлежит параболе, т.е.верное равенство. Точкасимметрична точкеотносительно оси, следовательно, парабола симметрична относительно оси абсцисс.

    Эксцентриситет параболы:

Определение 4.2. Эксцентриситетом параболы называется число , равное единице.

Так как по определению параболы .

4) Касательная параболы:

Касательная к параболе в точке касания определяется уравнением

Где (чертеж 28. )

Чертеж 28.

Изображение параболы

Чертеж 29.

    С использованием ЭСО- Mathcad:

чертеж 30 .)

Чертеж 30 .

a) Построение без использования ИКТ: Для построения параболы задаем прямоугольную систему координат с центром в точке О и единичный отрезок. Отмечаем на оси ОХ фокус ,так как, проводимтакую, что, и директрису параболы. Выполняем построение окружности в точкеи радиусом равным расстоянию от прямойдо директрисы параболы. Окружность пересекает прямуюв точкахи. Строим параболу так, чтобы она проходила через начало координат и через точкии.(чертеж 31 .)

Чертеж 31.

b)С использованием ЭСО- Mathcad:

Полученное уравнение имеет вид: . Для построения линии второго порядка в программеMathcad приводим уравнение к виду: .(чертеж 32 .)

Чертеж 32.

Чтобы обобщить работу по теории линий второго порядка в элементарной математике и для удобства использования информации о линиях при решении задач, заключим все данные о линиях второго порядка в таблицу № 1.

Таблица №1.

Линии второго порядка в элементарной математике

Название линии 2-го порядка

Окружность

Эллипс

Гипербола

Парабола

Характеристические свойства

Уравнение линии

Эксцентриситет

Уравнение касательной в точке (x 0 ; y 0 )

Фокус

Диаметры линий

Где k- угловой коэффициент

Где k угловой коэффициент

Где k угловой коэффициент

        Возможности использования ИКТ в изучении линий второго порядка

Процесс информатизации, охвативший сегодня все стороны жизни современного общества, имеет несколько приоритетных направлений, к которым, безусловно, следует отнести информатизацию образования. Она является первоосновой глобальной рационализации интеллектуальной деятельности человека за счет использования информационно-коммуникационных технологий (ИКТ).

Середина 90-х годов прошлого века и до сегодняшнего дня, характеризуется массовостью и доступностью персональных компьютеров в России, широким использованием телекоммуникаций, что позволяет внедрять разрабатываемые информационные технологии обучения в образовательный процесс, совершенствуя и модернизируя его, улучшая качество знаний, повышая мотивацию к обучению, максимально используя принцип индивидуализации обучения. Информационные технологии обучения являются необходимым инструментом на данном этапе информатизации образования.

Информационные технологии не только облегчают доступ к информации и открывают возможности вариативности учебной деятельности, ее индивидуализации и дифференциации, но и позволяют по-новому организовать взаимодействие всех субъектов обучения, построить образовательную систему, в которой ученик был бы активным и равноправным участником образовательной деятельности.

Формирование новых информационных технологий в рамках предметных уроков стимулируют потребность в создании новых программно-методических комплексов направленных на качественное повышение эффективности урока. Поэтому, для успешного и целенаправленного использования в учебном процессе средств информационных технологий, преподаватели должны знать общее описание принципов функционирования и дидактические возможности программно- прикладных средств, а затем, исходя из своего опыта и рекомендаций, "встраивать" их в учебный процесс.

Изучение математики в настоящее время сопряжено с целым рядом особенностей и трудностей развития школьного образования в нашей стране.

Появился так называемый кризис математического образования. Причины его состоят в следующем:

В изменении приоритетов в обществе и в науке, то есть в настоящее время идет рост приоритета гуманитарных наук;

В сокращении количества уроков математики в школе;

В оторванности содержания математического образования от жизни;

В малом воздействии на чувства и эмоции учащихся.

Сегодня остается открытым вопрос: «Как же наиболее эффективно использовать потенциальные возможности современных информационных и коммуникационных технологий при обучении школьников, в том числе, при обучении математике?».

Компьютер – отличный помощник в изучении такой темы, как “Квадратичная функция”, потому что, используя специальные программы можно строить графики различных функций, исследовать функцию, легко определить координаты точек пересечения, вычислить площади замкнутых фигур и т.д. Например, на уроке алгебры в 9-м классе, посвящённом преобразованию графика (растяжения, сжатия, переносы координатных осей) можно увидеть лишь застывший результат построения, а на экране монитора прослеживается вся динамика последовательных действий учителя и ученика.

Компьютер, как ни одно техническое средство, точно, наглядно и увлекательно открывает перед учеником идеальные математические модели, т.е. то, к чему должен стремиться ребенок в своих практических действиях.

Сколько трудностей приходится испытывать учителю математики для того, чтобы убедить учеников в том, что касательная к графику квадратичной функции в точке касания практически сливается с графиком функции. На компьютере этот факт продемонстрировать очень просто- достаточно сузить интервал по оси Ох и обнаружить, что в очень маленькой окрестности точки касания график функции и касательная совпадают. Все эти действия происходят на глазах у учеников. Этот пример дает толчок к активным размышлениям на уроке. Использование компьютера возможно как в ходе объяснения нового материала на уроке, так и на этапе контроля. При помощи этих программ, например «My Test», ученик самостоятельно может проверить свой уровень знаний по теории, выполнить теоретико-практические задания. Программы удобны своей универсальностью. Они могут быть использованы и для самоконтроля, и для контроля со стороны учителя.

Разумная интеграция математики и компьютерных технологий позволит богаче и глубже взглянуть на процесс решения задачи, ход осмысления математических закономерностей. Кроме того, компьютер поможет сформировать графическую, математическую и мыслительную культуру учеников, а также с помощью компьютера можно подготовить дидактические материалы: карточки, листы опроса, тесты и др. При этом давать возможность ребятам самостоятельно разрабатывать тесты по теме, в ходе чего развивается интерес и творческий подход.

Таким образом, есть необходимость в применении по возможности компьютера на уроках математики более широко, чем есть. Использование информационных технологий будет способствовать повышению качества знаний, расширит горизонты изучения квадратичной функции, а значит, поможет найти новые перспективы для поддержания интереса учащихся к предмету и к теме, а значит и к лучшему, более внимательному отношению к нему. Сегодня современные информационные технологии становятся важнейшим инструментом модернизации школы в целом – от управления до воспитания и обеспечения доступности образования.

- (греч. parabole, от parabollo сближаю). 1) иносказание, притча. 2) кривая линия, происходящая от сечения конуса плоскостью, параллельною какой нибудь его производящей. 3) кривая линия, образующаяся при полете бомбы, ядра и т. п. Словарь… … Словарь иностранных слов русского языка

Иносказание, притча (Даль) См. пример … Словарь синонимов

- (греч. parabole) плоская кривая (2 го порядка). Парабола множество точек М, расстояния которых до данной точки F (фокуса) и до данной прямой D1D2 (директрисы) равны. В надлежащей системе координат уравнение параболы имеет вид: y2=2px, где р=2OF.… … Большой Энциклопедический словарь

ПАРАБОЛА, математическая кривая, КОНИЧЕСКОЕ СЕЧЕНИЕ, образуемое точкой, двигающейся таким образом, что ее расстояние до неподвижной точки, фокуса, равно ее расстоянию до неподвижной прямой, директрисы. Парабола образуется при разрезе конуса… … Научно-технический энциклопедический словарь

Жен., греч. иносказанье, притча. | мат. кривая черта, из числа конических сечений; разрез сахарной головы накось, опостен (параллельно) противной стороне. Парабольные вычисленья. Параболическое реченье, инословие, иноречие, переносное.… … Толковый словарь Даля

парабола - ы, ж. parabole f. <гр. parabole. 1. устар. Притча, иносказание. БАС 1. Француз, захотя посмеяться русаку, приезжему в Париж, спросил: Что такое значит парабол, фарибол и обол? Но тот вскоре ему отвечал: Парабол, есть то, что ты не разумеешь;… … Исторический словарь галлицизмов русского языка

ПАРАБОЛА - (1) незамкнутая кривая линия 2 го порядка на плоскости, являющаяся графиком функции у2 = 2рх, где р параметр. Параболу получают при пересечении кругового (см.) плоскостью, не проходящей через его вершину и параллельной одной из его образующих.… … Большая политехническая энциклопедия

- (от греческого parabole), плоская кривая, расстояния любой точки M которой до данной точки F (фокуса) и до данной прямой D 1D1 (директрисы) равны (MD=MF) … Современная энциклопедия

ПАРАБОЛА, параболы, жен. (греч. parabole). 1. Кривая второго порядка, представляющая коническое сечение прямого кругового конуса плоскостью, параллельною одной из образующих (мат.). || Путь, описываемый тяжелым телом (напр. пулей), брошенным под… … Толковый словарь Ушакова

ПАРАБОЛА, ы, жен. В математике: состоящая из одной ветви незамкнутая кривая, образующаяся при пересечении конической поверхности плоскостью. | прил. параболический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

- «ПАРАБОЛА», Россия, 1992, цв., 30 мин. Документальное эссе. Попытка понять мистическую суть сказаний удмуртов маленького народа в Поволжье. Режиссер: Светлана Стасенко (см. СТАСЕНКО Светлана). Автор сценария: Светлана Стасенко (см. СТАСЕНКО… … Энциклопедия кино

Книги

  • Парабола замысла поиска работы мечты. Архетипы HR-менеджеров... , Марина Зорина. Книга Марины Зориной "Парабола замысла поиска работы мечты" основана на реальном опыте автора и наполнена полезной информацией, касающейся закономерностей процесса внутреннего рекрутмента.…
  • Парабола моей жизни , Титта Руффо. Автор книги - известнейший итальянский певец, солист ведущих оперных театров мира. Воспоминания Титта Руффо, написанные живо и непосредственно, содержат зарисовкитеатральной жизни первой…

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d , не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы .

Директориальное свойство параболы

Точка F называется фокусом параболы, прямая d - директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние p от фокуса до директрисы - параметром параболы, а расстояние \frac{p}{2} от вершины параболы до её фокуса - фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM , соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки M . Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице (e=1) .

Геометрическое определение параболы , выражающее её директориальное свойство, эквивалентно её аналитическому определению - линии, задаваемой каноническим уравнением параболы:

Действительно, введем прямоугольную систему координат (рис.3.45,б). Вершину O параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки O к точке F ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение параболы, используя её геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса F\!\left(\frac{p}{2};\,0\right) и уравнение директрисы x=-\frac{p}{2} . Для произвольной точки M(x,y) , принадлежащей параболе, имеем:

FM=MM_d,

где M_d\!\left(\frac{p}{2};\,y\right) - ортогональная проекция точки M(x,y) на директрису. Записываем это уравнение в координатной форме:

\sqrt{{\left(x-\frac{p}{2}\right)\!}^2+y^2}=x+\frac{p}{2}.

Возводим обе части уравнения в квадрат: {\left(x-\frac{p}{2}\right)\!}^2+y^2=x^2+px+\frac{p^2}{4} . Приводя подобные члены, получаем каноническое уравнение параболы

Y^2=2\cdot p\cdot x, т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

Уравнение параболы в полярной системе координат

Уравнение параболы в полярной системе координат Fr\varphi (рис.3.45,в) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi}, где p - параметр параболы, а e=1 - её эксцентриситет.

В самом деле, в качестве полюса полярной системы координат выберем фокус F параболы, а в качестве полярной оси - луч с началом в точке F , перпендикулярный директрисе и не пересекающий её (рис.3.45,в). Тогда для произвольной точки M(r,\varphi) , принадлежащей параболе, согласно геометрическому определению (директориальному свойству) параболы, имеем MM_d=r . Поскольку MM_d=p+r\cos\varphi , получаем уравнение параболы в координатной форме:

P+r\cdot\cos\varphi \quad \Leftrightarrow \quad r=\frac{p}{1-\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения эллипса, гиперболы и параболы совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( 0\leqslant e<1 для эллипса, e=1 для параболы, e>1 для гиперболы).

Геометрический смысл параметра в уравнении параболы

Поясним геометрический смысл параметра p в каноническом уравнении параболы. Подставляя в уравнение (3.51) x=\frac{p}{2} , получаем y^2=p^2 , т.е. y=\pm p . Следовательно, параметр p - это половина длины хорды параболы, проходящей через её фокус перпендикулярно оси параболы.

Фокальным параметром параболы , так же как для эллипса и для гиперболы, называется половина длины хорды, проходящей через её фокус перпендикулярно фокальной оси (см. рис.3.45,в). Из уравнения параболы в полярных координатах при \varphi=\frac{\pi}{2} получаем r=p , т.е. параметр параболы совпадает с её фокальным параметром.


Замечания 3.11.

1. Параметр p параболы характеризует её форму. Чем больше p , тем шире ветви параболы, чем ближе p к нулю, тем ветви параболы уже (рис.3.46).

2. Уравнение y^2=-2px (при p>0 ) определяет параболу, которая расположена слева от оси ординат (рис. 3.47,a). Это уравнение сводится к каноническому при помощи изменения направления оси абсцисс (3.37). На рис. 3.47,a изображены заданная система координат Oxy и каноническая Ox"y" .

3. Уравнение (y-y_0)^2=2p(x-x_0),\,p>0 определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси абсцисс (рис.3.47,6). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

Уравнение (x-x_0)^2=2p(y-y_0),\,p>0 , также определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси ординат (рис.3.47,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36) и переименования координатных осей (3.38). На рис. 3.47,б,в изображены заданные системы координат Oxy и канонические системы координат Ox"y" .

4. y=ax^2+bx+c,~a\ne0 является параболой с вершиной в точке O"\!\left(-\frac{b}{2a};\,-\frac{b^2-4ac}{4a}\right) , ось которой параллельна оси ординат, ветви параболы направлены вверх (при a>0 ) или вниз (при a<0 ). Действительно, выделяя полный квадрат, получаем уравнение

Y=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c \quad \Leftrightarrow \quad \!\left(x+\frac{b}{2a}\right)^2=\frac{1}{a}\left(y+\frac{b^2-4ac}{4a}\right)\!,

которое приводится к каноническому виду (y")^2=2px" , где p=\left|\frac{1}{2a}\right| , при помощи замены y"=x+\frac{b}{2a} и x"=\pm\!\left(y+\frac{b^2-4ac}{4a}\right) .


Знак выбирается совпадающим со знаком старшего коэффициента a . Эта замена соответствует композиции: параллельного переноса (3.36) с x_0=-\frac{b}{2a} и y_0=-\frac{b^2-4ac}{4a} , переименования координатных осей (3.38), а в случае a<0 еще и изменения направления координатной оси (3.37). На рис.3.48,а,б изображены заданные системы координат Oxy и канонические системы координат O"x"y" для случаев a>0 и a<0 соответственно.

5. Ось абсцисс канонической системы координат является осью симметрии параболы , поскольку замена переменной y на -y не изменяет уравнения (3.51). Другими словами, координаты точки M(x,y) , принадлежащей параболе, и координаты точки M"(x,-y) , симметричной точке M относительно оси абсцисс, удовлетворяют уравнению (3.S1). Оси канонической системы координат называются главными осями параболы .


Пример 3.22. Изобразить параболу y^2=2x в канонической системе координат Oxy . Найти фокальный параметр, координаты фокуса и уравнение директрисы.

Решение. Строим параболу, учитывая её симметрию относительно оси абсцисс (рис.3.49). При необходимости определяем координаты некоторых точек параболы. Например, подставляя x=2 в уравнение параболы, получаем y^2=4~\Leftrightarrow~y=\pm2 . Следовательно, точки с координатами (2;2),\,(2;-2) принадлежат параболе.

Сравнивая заданное уравнение с каноническим (3.S1), определяем фокальный параметр: p=1 . Координаты фокуса x_F=\frac{p}{2}=\frac{1}{2},~y_F=0 , т.е. F\!\left(\frac{1}{2},\,0\right) . Составляем уравнение директрисы x=-\frac{p}{2} , т.е. x=-\frac{1}{2} .

Общие свойства эллипса, гиперболы, параболы

1. Директориальное свойство может быть использовано как единое определение эллипса, гиперболы, параболы (см. рис.3.50): геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e , называется:

а) эллипсом , если 0\leqslant e<1 ;

б) гиперболой , если e>1 ;

в) параболой , если e=1 .

2. Эллипс, гипербола, парабола получаются в сечениях кругового конуса плоскостями и поэтому называются коническими сечениями . Это свойство также может служить геометрическим определением эллипса, гиперболы, параболы.

3. К числу общих свойств эллипса, гиперболы и параболы можно отнести биссекториальное свойство их касательных. Под касательной к линии в некоторой её точке K понимается предельное положение секущей KM , когда точка M , оставаясь на рассматриваемой линии, стремится к точке K . Прямая, перпендикулярная касательной к линии и проходящая через точку касания, называется нормалью к этой линии.

Биссекториальное свойство касательных (и нормалей) к эллипсу, гиперболе и параболе формулируется следующим образом: касательная (нормаль) к эллипсу или к гиперболе образует равные углы с фокальными радиусами точки касания (рис.3.51,а,б); касательная (нормаль) к параболе образует равные углы с фокальным радиусом точки касания и перпендикуляром, опущенным из нее на директрису (рис.3.51,в). Другими словами, касательная к эллипсу в точке K является биссектрисой внешнего угла треугольника F_1KF_2 (а нормаль - биссектрисой внутреннего угла F_1KF_2 треугольника); касательная к гиперболе является биссектрисой внутреннего угла треугольника F_1KF_2 (а нормаль - биссектрисой внешнего угла); касательная к параболе является биссектрисой внутреннего угла треугольника FKK_d (а нормаль - биссектрисой внешнего угла). Биссекториальное свойство касательной к параболе можно сформулировать так же, как для эллипса и гиперболы, если считать, что у параболы имеется второй фокус в бесконечно удаленной точке.

4. Из биссекториальных свойств следуют оптические свойства эллипса, гиперболы и параболы , поясняющие физический смысл термина "фокус". Представим себе поверхности, образованные вращением эллипса, гиперболы или параболы вокруг фокальной оси. Если на эти поверхности нанести отражающее покрытие, то получаются эллиптическое, гиперболическое и параболическое зеркала. Согласно закону оптики, угол падения луча света на зеркало равен углу отражения, т.е. падающий и отраженный лучи образуют равные углы с нормалью к поверхности, причем оба луча и ось вращения находятся в одной плоскости. Отсюда получаем следующие свойства:

– если источник света находится в одном из фокусов эллиптического зеркала, то лучи света, отразившись от зеркала, собираются в другом фокусе (рис.3.52,а);

– если источник света находится в одном из фокусов гиперболического зеркала, то лучи света, отразившись от зеркала, расходятся так, как если бы они исходили из другого фокуса (рис.3.52,б);

– если источник света находится в фокусе параболического зеркала, то лучи света, отразившись от зеркала, идут параллельно фокальной оси (рис.3.52,в).

5. Диаметральное свойство эллипса, гиперболы и параболы можно сформулировать следующим образом:

середины параллельных хорд эллипса (гиперболы) лежат на одной прямой, проходящей через центр эллипса (гиперболы) ;

середины параллельных хорд параболы лежат на прямой, коллинеарной оси симметрии параболы .

Геометрическое место середин всех параллельных хорд эллипса (гиперболы, параболы) называют диаметром эллипса (гиперболы, параболы) , сопряженным к этим хордам.

Это определение диаметра в узком смысле (см. пример 2.8). Ранее было дано определение диаметра в широком смысле, где диаметром эллипса, гиперболы, параболы, а также других линий второго порядка называется прямая, содержащая середины всех параллельных хорд. В узком смысле диаметром эллипса является любая хорда, проходящая через его центр (рис.3.53,а); диаметром гиперболы является любая прямая, проходящая через центр гиперболы (за исключением асимптот), либо часть такой прямой (рис.3.53,6); диаметром параболы является любой луч, исходящий из некоторой точки параболы и коллинеарный оси симметрии (рис.3.53,в).

Два диаметра, каждый их которых делит пополам все хорды, параллельные другому диаметру, называются сопряженными. На рис.3.53 полужирными линиями изображены сопряженные диаметры эллипса, гиперболы, параболы.

Касательную к эллипсу (гиперболе, параболе) в точке K можно определить как предельное положение параллельных секущих M_1M_2 , когда точки M_1 и M_2 , оставаясь на рассматриваемой линии, стремятся к точке K . Из этого определения следует, что касательная, параллельная хордам, проходит через конец диаметра, сопряженного к этим хордам.

6. Эллипс, гипербола и парабола имеют, кроме приведенных выше, многочисленные геометрические свойства и физические приложения. Например, рис.3.50 может служить иллюстрацией траекторий движения космических объектов, находящихся в окрестности центра F притяжения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!