Симметрия (в физике). Симметрия физических явлений

Принципы симметрии в физике

В основе естествознания лежит несколько исключительно плодотворных идей. Симметрия является той идеей, посредством которой человек на протяжении веков пытался создать порядок, красоту. Термин «симметрия» по-гречески означает соразмерность, пропорциональность, одинаковость в расположении частей. Главенствующую роль принципов симметрии предопределяет, в конечном счете, фактическое присутствие симметрии во всем, что нас окружает.

Применяя принципы симметрии при разработке научных классификаций в структурных исследованиях, можно делать научные предсказания. Например, О.П. Мороз полагает, что когда мы пытаемся разрешить загадку о том, что толкнуло Максвелла на решающий шаг и подсказало ему идею тока смещения, обстоятельства дела наводят нас на вполне вероятный ответ: симметрия. Симметрия между электричеством и магнетизмом.

Рассмотрим проблему классификации элементарных частиц. Их принято распределять по трем семействам: первое – это фотон; второе составляют шесть лептонов: электрон, электронное нейтрино, мюон, мюонное нейтрино, таон, таонное нейтрино; третье семейство состоит из нескольких сотен адронов (мезонов и барионов). Каждой частице, за исключением фотона, нейтрального пиона и эта-мезона, соответствует античастица.

До недавних пор физиков немало смущало резкое несоответствие между обилием адронов и очень небольшим числом лептонов. В 1964 г. Гелл-Манн и Цвейг предположили, что все адроны состоят из кварков и число типов кварков должно равняться числу типов лептонов. В настоящее время известны шесть лептонов и шесть типов кварков. Симметрия между кварками и лептонами выглядит сегодня очень многозначительно. Она наводит на мысль, что при всей разительной непохожести частиц в их природе есть что-то общее. По-видимому, именно на создание единой теории кварков и лептонов будут направлены усилия физиков в будущем.

По Г. Вейлю, симметричным называется такой объект, который можно как-то изменять, получая в результате то же, с чего начали. Этим объектом может быть не только тело, но также и физический
закон. Симметрия физических законов заключается в их неизменнос-ти (или инвариантности) по отношению к тем или иным преобразованиям.

Каковы симметрии (инвариантности) физических законов? Например, инвариантны ли физические законы относительно преобразований подобия (или изменения пространственного масштаба)? Сегодня мы знаем ответ: нет. Действительно, при описании движения микрочастиц законы классической механики применять нельзя, нужно использовать законы квантовой механики.

Что если изменить систему отсчета? Все физические законы инвариантны по отношению к переходу из одной инерциальной системы отсчета в другую (принцип относительности Эйнштейна).

Можно ли поменять местами частицы? Законы квантовой механики инварианты по отношению к перестановке двух любых частиц одного типа.

Принципы симметрии устанавливаются экспериментально при анализе известных законов. В свою очередь известные принципы симметрии позволяют открывать новые законы, выявляют структуру физических теорий и взаимосвязь присущих им законов, позволяют разрешать проблемные ситуации в развитии научного знания.

О симметрии пространства (однородности и изотропности) и симметриях времени (однородности и обратимости) знали еще ученые древнего мира: свойства любого объекта (например, треугольника), а следовательно, и законы не зависят ни от положения объекта на данной оси, ни от положения этой оси, ни от момента времени, когда эти свойства рассматриваются. В механике и электродинамике обратимость законов видна из уравнений (уравнения не изменяются при замене t на –t ).

Обнаружено, что каждая симметрия обеспечивает свой закон сохранения: закон сохранения количества движения обусловлен однородностью пространства, закон сохранения момента импульса – изотропностью пространства, закон сохранения энергии – однородностью времени. И наоборот, когда какая-либо величина остается неизменной, это значит, что существует симметрия, обеспечивающая сохранение этой величины. Например, известны законы сохранения электронного, мюонного и барионного зарядов, а также закон сохранения странности. Можно ожидать, что эти законы сохранения – тоже следствие определенных симметрий, о которых мы не знаем.

Теория элементарных частиц предполагает, что максимальная симметрия царствует на сверхмалых расстояниях, а на больших возникает спонтанное нарушение, которое может сильно замаскировать симметрию.

Принципы симметрии значительно более устойчивы, чем законы. Поэтому открытие нарушений известных симметрий приводит к значительным проблемным ситуациям. Разрешение их позволяет сделать выдающиеся открытия.

Так, например, Галилей весьма отрицательно отнесся к кепплеровским законам, согласно которым круговая симметрия планетных движений, предложенная Коперником, заменялась менее очевидной – эллиптической. Преодолением этой проблемной ситуации явилась работа Ньютона, в полной мере объяснившая «кепплеровские симметрии».

Когда было обнаружено, что уравнения Максвелла неинвариантны относительно преобразований Галилея, возникла проблемная ситуация. Радикальное решение проблемы найдено Эйнштейном, который обосновал преобразования Лоренца в рамках специальной теории относительности.

Однако в истории известны ситуации, когда принцип симметрии, будучи возведенным в ранг универсальной и абсолютно достоверной истины, становился преградой в развитии физики. Например, в ранг незыблемой истины было возведено представление Аристотеля о выделенной вертикали к земной поверхности. Потребовались героические усилия Николая Кузанского, Джордано Бруно, Коперника, Галилея, Декарта и других ученых, чтобы проложить дорогу к утверждению принципа симметрии – «пространство изотропно».

И тут в мой разум грянул блеск с высот,

Неся свершенье всех его усилий.

(Данте)

Всякое человеческое познание

начинается с созерцаний,

переходит к понятиям

и заканчивает идеями.

(И.Кант)

План: стр.

I. Введение

1. Наука о природе.

2. Чем заинтересовала меня тема?

II. Основная часть

  1. Физика и математика.
  2. Красота науки.
  3. Симметрия пространства и времени.
  4. Симметрия пространства.
  5. Однородность и обратимость времени.
  6. Зеркальная симметрия.
  7. Повороты в пространстве времени.
  8. Симметрия физических явлений.
  9. Нарушение зеркальной симметрии.
  10. Зарядовозеркальная симметрия.
  11. Спонтанное нарушение симметрии.
  12. Внутренняя симметрия.
  13. Калибровочная инвариантность.
  14. Изотопическая симметрия.
  15. Странность. История одной симметрии.
  16. Кварки.

III. Заключение

  1. Наука физика моё увлечение.

IV. Термины и литература

I. Введение

Наука о природе физика, открывающая суть и основы материального мира, ведёт нас строгим и нелегким путем к истине. Любопытство и удивление толкают человека на этот путь, заставляют его учиться всю долгую жизнь. За это природа дарит ему великое благо знание, и оно служит человеку, облегчая его труд на Земле, открывая путь в космос.

Развитие науки имеет свои законы. Из наблюдения окружающего рождается предположение о природе и связях процессов и явлений; из фактов и правдоподобных предположений строится теория; теория проверяется экспериментом и, подтвердившись, продолжает развиваться, снова проверяется бесчисленное множество раз.… Такой ход развития и составляет научный метод; он позволяет отличить заблуждение от научной истины, подтвердить предположение, избежать ошибок.

У физики своя форма приложения общего научного метода, свои принципы познания. Они позволяют увидеть странный мир симметрий, начинающийся с простейшей геометрической правильности и простирающийся до свойств элементарных частиц. Принципы симметрии лежат в основе самых сложных, самых современных физических теорий, более того в основе законов природы. Главное направление современной физики поиск симметрий и единства законов природы.

Мы с вами постараемся понять суть тех удивительных событий, которые произошли в физике в XX веке, когда была создана квантовая теория, позволяющая открыть законы, управляющие микрообъектами; теория относительности, давшая новое представление о пространстве и времени... Когда эти теории объединились, они привели к открытию целого мира элементарных частиц, к разгадке тайн далеких звезд, к познанию истории Вселенной.

Однажды в газете я прочитал сообщение о катастрофе самолета, причиной гибели которого было нарушение симметрии в конструкции, всего на 1о. Меня заинтересовала связь симметрии с другими науками, особенно с физикой. Хотелось узнать больше. И оказалось, что по данной теме существует богатейший материал, который я с удовольствием читал, изучал, восхищался. В своем реферате тщательно подбирал сведения, показывающие связь симметрии и физики. Физика намечает пути к пониманию единства, симметрии, динамики явлений природы, она старается нарисовать, по возможности, точную картину мира, выясняет, какие возможные геометрические понятия осуществляются в нашем мире. Самым важным понятием для изучения окружающего мира является симметрия. Идею симметрии подсказывает сама природа. Любопытство, желание узнать, как устроена природа всё это побудило меня к изучению данной темы. Что же такое теоретическая физика, как работают физики-теоретики? Как они изучают природу с помощью бумаги и карандаша, выводя новые соотношения, опираясь на ранее найденные экспериментально и теоретически законы природы. Какую роль играет симметрия.

II. Основная часть.

1. Физика и математика.

Макс Борн немецкий ученый, один из основателей квантовой механики сказал: Математический формализм оказывает совершенно удивительную услугу в деле описания сложных вещей… Действительно, количественное описание физического мира невозможно без математики: она дает способ решения уравнений, методы описания, она открывает красоту опытных наук. Многие симметрии можно увидеть только с помощью сложнейших математических построений, после искусных преобразований.

Мы начали со слов Макса Борна, но привели только первую половину его высказывания о математическом формализме, а вторая вот: … но он нисколько не помогает в понимании реальных процессов.

Математические построения не зависят от свойств окружающего мира, математика не интересует, для каких физических величин будут использованы уравнения, поэтому математика стала универсальным инструментом для всех естественных наук. Все выводы математики должны быть логически строгими и безупречными, вытекающими и приняты аксиом.

Симметрия (в физике) Симметрия в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу .

Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

Непрерывные преобразования

1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование ‒ реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование ‒ параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория ).

5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом , барионным зарядом , лептонным зарядом , гиперзарядом ), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

где yj ‒ волновая функция частицы j , ‒ комплексно сопряжённая ей функция, zj ‒ соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е ), b ‒ произвольный числовой множитель.

Наряду с этим электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля (А , j):

А ® А + grad f, , (2)

где f (x , у , z, t ) ‒ произвольная функция координат (х , у , z ) и времени (t ), с ‒ скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной b, являющейся произвольной функцией координат и времени: , где

‒ Планка постоянная . Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой ‒ он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины b являются произвольными функциями координат и времени (и даже операторами , преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга ‒ Милса теория).

6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил , заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий ‒ SU (3)-C . (см. Сильные взаимодействия ).

Дискретные преобразования

Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот ‒ тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.

1) Пространственная инверсия (Р ). Относительно этого преобразования симметричны процессы, вызванные сильным и электромагнитным взаимодействиями. Указанные процессы одинаково описываются в двух различных декартовых системах координат, получаемых одна из другой изменением направлений осей координат на противоположные (т. н. переход от «правой» к «левой» системе координат). Это преобразование может быть получено также зеркальным отражением относительно трёх взаимно перпендикулярных плоскостей; поэтому С. по отношению к пространственной инверсии называемой обычно зеркальной С. Наличие зеркальной С. означает, что если в природе осуществляется какой-либо процесс, обусловленный сильным или электромагнитным взаимодействием, то может осуществиться и другой процесс, протекающий с той же вероятностью и являющийся как бы «зеркальным изображением» первого. При этом физические величины, характеризующие оба процесса, будут связаны определённым образом. Например, скорости частиц и напряжённости электрического поля изменят направления на противоположные, а направления напряжённости магнитного поля и момента количества движения не изменятся.

Нарушением такой С. представляются явления (например, правое или левое вращение плоскости поляризации света), происходящие в веществах-изомерах (оптическая изомерия ). В действительности, однако, зеркальная С. в таких явлениях не нарушена: она проявляется в том, что для любого, например левовращающего, вещества существует аналогичное по химическому составу вещество, молекулы которого являются «зеркальным изображением» молекул первого и которое будет правовращающим.

Нарушение зеркальной С. наблюдается в процессах, вызванных слабым взаимодействием .

2) Преобразование замены всех частиц на античастицы (зарядовое сопряжение , С). С. относительно этого преобразования также имеет место для процессов, происходящих в результате сильного и электромагнитного взаимодействий, и нарушается в процессах слабого взаимодействия. При преобразовании зарядового сопряжения меняются на противоположные значения заряды частиц, напряжённости электрического и магнитного полей.

3) Последовательное проведение (произведение) преобразований инверсии и зарядового сопряжения (комбинированная инверсия , СР ). Поскольку сильные и электромагнитные взаимодействия симметричны относительно каждого из этих преобразований, они симметричны и относительно комбинированной инверсии. Однако относительно этого преобразования оказываются симметричными и слабые взаимодействия, которые не обладают С. по отношению к преобразованию инверсии и зарядовому сопряжению в отдельности. С. процессов слабого взаимодействия относительно комбинированной инверсии может быть указанием на то, что отсутствие зеркальной С. в них связано со структурой элементарных частиц и что античастицы по своей структуре являются как бы «зеркальным изображением» соответствующих частиц. В этом смысле процессы слабого взаимодействия, происходящие с какими-либо частицами, и соответствующие процессы с их античастицами связаны между собой так же, как явления в оптических изомерах.

Открытие распадов долгоживущих K0 L -мезонов на 2 p-мезона и наличие зарядовой асимметрии в распадах K0 L ® p+ + e- + ne (p+ + m- + nm ) и K0 L ® p- + е+ + nе (p- + m+ + nm ) (см. К-мезоны ) указывают на существование сил, несимметричных относительно комбинированной инверсии. Пока не установлено, являются ли эти силы малыми добавками к известным фундаментальным взаимодействиям (сильному, электромагнитному, слабому) или же имеют особую природу. Нельзя также исключить возможность того, что нарушение СР-С. связано с особыми геометрическими свойствами пространства-времени на малых интервалах.

4) Преобразование изменения знака времени (обращение времени , Т ). По отношению к этому преобразованию симметричны все элементарные процессы, протекающие в результате сильного, электромагнитного и слабого взаимодействий (за исключением распадов K0 L -meзонов).

5) Произведение трёх преобразований: зарядового сопряжения С, инверсии Р и обращения времени Т (СРТ -симметрия; см. СРТ-теорема ). СРТ- С. вытекает из общих принципов квантовой теории поля. Она связана главным образом с С. относительно Лоренца преобразований и локальностью взаимодействия (т. е. с взаимодействием полей в одной точке). Эта С. должна была бы выполняться, даже если бы взаимодействия были несимметричны относительно каждого из преобразований С , Р и Т в отдельности. Следствием СРТ -инвариантности является т. н. перекрёстная (кроссинг) С. в описании процессов, происходящих с частицами и античастицами. Так, например, три реакции ‒ упругое рассеяние какой-либо частицы a на частице b: a + b ® a + b, упругое рассеяние античастицы

на частице b: + b ®

B и аннигиляция частицы а и её античастицы

в пару частиц b, : а +

описываются единой аналитической функцией (зависящей от квадрата полной энергии системы и квадрата переданного импульса), которая в различных областях изменения этих переменных даёт амплитуду каждого из указанных процессов.

6) Преобразование перестановки одинаковых частиц. Волновая функция системы, содержащей одинаковые частицы, симметрична относительно перестановки любой пары одинаковых частиц (т. е. их координат и спинов ) с целым, в частности нулевым, спином и антисимметрична относительно такой перестановки для частиц с полуцелым спином (см. Квантовая механика ).

Симметрия и законы сохранения

Согласно Нётер теореме , каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода ‒ законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности ‒ сохранение изотопического спина в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив суперпозиции принцип , из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности , сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть y1 ‒ волновая функция, описывающая какое-либо состояние системы, а y2 ‒ волновая функция системы, получающаяся в результате пространств. инверсии (символически: y2 = Р y1 , где Р ‒ оператор пространств. инверсии). Тогда , если существует С. относительно пространственной инверсии, y2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции y1 и y2 : симметричная комбинация ys = y1 + y2 и антисимметричная yа = y1 ‒ y2 . При преобразованиях инверсии состояние y2 не меняется (т. к. P ys = P y1 + P y2 = y2 + y1 = ys ), а состояние ya меняет знак (P ya = P y1 ‒ P y2 = y2 ‒ y1 = ‒ ya ). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором ‒ отрицательна (‒1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).

Аналогично, из С. относительно зарядового сопряжения и комбинированной инверсии следует существование зарядовой чётности (С -чётности) и комбинированной чётности (СР -чётности). Эти величины, однако, могут служить характеристикой только для абсолютно нейтральных (обладающих нулевыми значениями всех зарядов) частиц или систем. Действительно, система с отличным от нуля зарядом при зарядовом сопряжении переходит в систему с противоположным знаком заряда, и поэтому невозможно составить суперпозицию этих двух состояний, не нарушая закона сохранения заряда. Вместе с тем для характеристики системы сильно взаимодействующих частиц (адронов) с нулевыми барионным зарядом и странностью (или гиперзарядом), но отличным от нуля электрическим зарядом, можно ввести т. н. G -чётность. Эта характеристика возникает из изотопической инвариантности сильных взаимодействий (которую можно трактовать как С. относительно преобразования поворота в «изотопическом пространстве») и зарядового сопряжения. Примером такой системы может служить пи-мезон . См. также ст. Сохранения законы .

Симметрия квантово-механических систем и стационарные состояния. В ырождение

Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика , Перестановочные соотношения ). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению . Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг через друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа ). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного осциллятора .

Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, «включающего» возмущающее поле.

Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C . сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия ). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

С. С. Герштейн.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Симметрия (в физике)" в других словарях:

    - (от греч. symmetria соразмерность) законов физики. Если законы, устанавливающие соотношение между величинами, характеризующими физ. систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях… … Физическая энциклопедия

    Симметрия (от греч. symmetria ‒ соразмерность) в математике, 1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости a в пространстве (относительно прямой а на плоскости), ‒ преобразование пространства (плоскости), при… … Большая советская энциклопедия

«Я думаю, что было бы интересно ввести в изучение физических явлений также и рассмотрение свойств симметрии, столь знакомое кристаллографам».

Так начиналась небольшая статья Пьера Кюри «О симметрии в физических явлениях: симметрия электрического и магнитного полей», опубликованная в 1894 году во французском «Физическом журнале».

До Кюри физики часто использовали соображения, вытекающие из условий симметрии. Достаточно сказать, что многие задачи механики, и особенно статики, решались только исходя из условий симметрии. Но обычно эти условия достаточно простые и наглядные и не требуют детального рассмотрения. Впервые физики столкнулись с нетривиальным проявлением симметрии физических свойств при изучении кристаллов.

Впервые четкое определение симметрии физических явлений дал Кюри в своей статье. «Характеристическая симметрия некоторого явления, - писал он, - есть максимальная симметрия, совместимая с существованием явления». Всеобщий подход к симметрии физиче­ских явлений, развитый им, очень точно разъяснила Мария Кюри в биографическом очерке о своем муже: «П. Кю­ри безгранично расширил понятие о симметрии, рас­сматривая последнюю как состояние пространства, в ко­тором происходит данное явление. Для определения этого состояния надо знать не только строение среды, но и учесть характер движения изучаемого объекта, а также действующие на него физические факторы. При характеристике симметрии среды важно помнить сле­дующие идеи Кюри: нужно определить особую симмет­рию каждого явления и ввести классификацию, позво­ляющую ясно видеть основные группы симметрии. Мас­са, электрический заряд, температура имеют один и тот же тип симметрии, называемый скалярным; это есть, иначе говоря, симметрия сферы. Поток воды и постоян­ный электрический ток имеют симметрию стрелы типа полярного вектора. Симметрия прямого кругового ци­линдра принадлежит к типу тензора».

    1. Симметрия в механике

Пьер Кюри пришел к симметрии физических явлений от симметрии кристаллов (геометрических фигур) через симметрию материальных фигур. Это принесло важные результаты при описании физических свойств кристал­лов и обещает большие успехи в других областях фи­зики.

Но работы Пьера Кюри не оказали влияния на раз­витие идеи симметрии в физике. Причины этого стран­ного парадокса, кроме указанных ранее (кристаллографичность работ Кюри, краткость, если не конспектив­ность их изложения), состоит еще и в том, что они поя­вились слишком поздно, тогда, когда физика уже нако­пила большой опыт несколько иного подхода к симмет­рии физических явлений, который связан с развитием механики в XVII-XIX веках.

В то время механика была фактически всей физикой. Самым главным считалось изучение движения и взаимо­действия тел. Соответствующие законы, кажущиеся нам сейчас такими очевидными, потребовали колоссального труда нескольких поколений выдающихся ученых. Ко­перник, Кеплер, Галилей, Декарт, Гюйгенс шаг за ша­гом двигались к пониманию истинных законов, управля­ющих движением материальных тел.

Окончательно эти законы были сформулированы Исааком Ньютоном (1643-1727). Но поскольку движе­ние совершается в пространстве и во времени, ему приш­лось обобщить и сформулировать некие положения, пос­тулирующие их свойства.

Ньютон считал, что существует абсолютное пространство, свободное и независимое от каких-либо тел. Это абсолютное пространство изотропно, то есть любые направления в нем одинаковы. Кроме того, оно однород­но, так как любые две точки пространства ничем не от­личаются друг от друга. Существует также абсолютное время, независимое от каких-либо процессов, текущее вечно и равномерно. Равномерность течения времени предполагает его однородность: скорость течения време­ни со временем не меняется.


И тут в мой разум грянул блеск с высот,

Неся свершенье всех его усилий.

(Данте)


Всякое человеческое познание

начинается с созерцаний,

переходит к понятиям

и заканчивает идеями.

(И.Кант)


План: стр.

I. Введение

1. Наука о природе.

2. Чем заинтересовала меня тема?

II. Основная часть

1. Физика и математика.

2. Красота науки.

3. Симметрия пространства и времени.

4. Симметрия пространства.

5. Однородность и обратимость времени.

6. Зеркальная симметрия.

7. Повороты в пространстве – времени.

8. Симметрия физических явлений.

9. Нарушение зеркальной симметрии.

10. Зарядово–зеркальная симметрия.

11. Спонтанное нарушение симметрии.

12. Внутренняя симметрия.

13. Калибровочная инвариантность.

14. Изотопическая симметрия.

15. Странность. История одной симметрии.

16. Кварки.

III. Заключение

1. Наука физика – моё увлечение.

IV. Термины и литература

I . Введение

Наука о природе – физика, открывающая суть и основы материального мира, ведёт нас строгим и нелегким путем к истине. Любопытство и удивление толкают человека на этот путь, заставляют его учиться всю долгую жизнь. За это природа дарит ему великое благо – знание, и оно служит человеку, облегчая его труд на Земле, открывая путь в космос.

Развитие науки имеет свои законы. Из наблюдения окружающего рождается предположение о природе и связях процессов и явлений; из фактов и правдоподобных предположений строится теория; теория проверяется экспериментом и, подтвердившись, продолжает развиваться, снова проверяется бесчисленное множество раз.… Такой ход развития и составляет научный метод; он позволяет отличить заблуждение от научной истины, подтвердить предположение, избежать ошибок.

У физики своя форма приложения общего научного метода, свои принципы познания. Они позволяют увидеть странный мир симметрий, начинающийся с простейшей геометрической правильности и простирающийся до свойств элементарных частиц. Принципы симметрии лежат в основе самых сложных, самых современных физических теорий, более того – в основе законов природы. Главное направление современной физики – поиск симметрий и единства законов природы.

Мы с вами постараемся понять суть тех удивительных событий, которые произошли в физике в XX веке, когда была создана квантовая теория, позволяющая открыть законы, управляющие микрообъектами; теория относительности, давшая новое представление о пространстве и времени... Когда эти теории объединились, они привели к открытию целого мира элементарных частиц, к разгадке тайн далеких звезд, к познанию истории Вселенной.

Однажды в газете я прочитал сообщение о катастрофе самолета, причиной гибели которого было нарушение симметрии в конструкции, всего на 1 о. Меня заинтересовала связь симметрии с другими науками, особенно с физикой. Хотелось узнать больше. И оказалось, что по данной теме существует богатейший материал, который я с удовольствием читал, изучал, восхищался. В своем реферате тщательно подбирал сведения, показывающие связь симметрии и физики. Физика намечает пути к пониманию единства, симметрии, динамики явлений природы, она старается нарисовать, по возможности, точную картину мира, выясняет, какие возможные геометрические понятия осуществляются в нашем мире. Самым важным понятием для изучения окружающего мира является симметрия. Идею симметрии подсказывает сама природа. Любопытство, желание узнать, как устроена природа – всё это побудило меня к изучению данной темы. Что же такое теоретическая физика, как работают физики-теоретики? Как они изучают природу с помощью бумаги и карандаша, выводя новые соотношения, опираясь на ранее найденные экспериментально и теоретически законы природы. Какую роль играет симметрия.

II . Основная часть.

1. Физика и математика.

Макс Борн – немецкий ученый, один из основателей квантовой механики – сказал: «Математический формализм оказывает совершенно удивительную услугу в деле описания сложных вещей…» Действительно, количественное описание физического мира невозможно без математики: она дает способ решения уравнений, методы описания, она открывает красоту опытных наук. Многие симметрии можно увидеть только с помощью сложнейших математических построений, после искусных преобразований.

Мы начали со слов Макса Борна, но привели только первую половину его высказывания о математическом формализме, а вторая вот: «… но он нисколько не помогает в понимании реальных процессов».

Математические построения не зависят от свойств окружающего мира, математика не интересует, для каких физических величин будут использованы уравнения, поэтому математика стала «универсальным инструментом для всех естественных наук». Все выводы математики должны быть логически строгими и безупречными, вытекающими и приняты аксиом.

Физика старается нарисовать по возможности точную картину мира, используя и недоказанные предположения, оценивая, насколько они убедительны, угадывая, какие недостающие соотношения реализуются в природе. Если математик исследует все возможные типы геометрий, то физик выясняет, какие именно геометрические соотношения осуществляются в нашем мире.

Физик думает не столько о методах решения, сколько о том, законны ли сделанные упрощения, с какой точностью и при каких значениях переменных, найденные уравнения правильно описывают явление и, главное, что произойдет, если результат подтвердится или будет опровергнут опытом, от каких предположений придется отказаться, как изменится наш взгляд на все другие известные явления. Если случится, что все результаты какой-либо области физики можно будет вывести из нескольких строго установленных экспериментально аксиом, эта область станет разделом прикладной математики или техники, как это произошло с классической механикой, электродинамикой, теорией относительности. Теоретические построения в физике требуют постоянного согласования с уже известными законами природы, с тем, что мы знаем об окружающем мире. Физическая теория не логическая конструкция, а здание, построенное на правдоподобных предположениях, которые предстоит проверить.

Физика и математика – науки с разными целями и подходами к решению задач.

2. Красота науки.

Древнегреческий астроном Птолемей разработал математическую теорию движения планет вокруг неподвижной Земли, и эта теория позволяла вычислять их на небе. В 1542 г. был написан главный труд великого польского ученого Николая Коперника «Об обращении небесных сфер», совершивший переворот в естествознании, объяснявший движение небесных светил вращением Земли вокруг оси и обращением Земли и планет вокруг Солнца. Гелиоцентрическая система Коперника сменила сложную геоцентрическую систему Птолемея.

Согласно замечательной теории 20 в. – теории относительности, законы природы можно формулировать в любой системе координат, даже во вращающейся. Во Вселенной не существует выделенной системы координат, и раз так, то обе точки зрения – и Птолемея, и Коперника – равноправны, первая принимает за систему отсчета Землю, а вторая – Солнце.

Но тут свое веское слово сказала красота системы Коперника. Простота описания движения планет в гелиоцентрической системе так облегчает работу ……. , что превращается в качественно новое явление, дает дорогу развитию теории. Открытие законов Кеплера, небесная механика Ньютона – следствия открытой Коперником красоты мира.

Физика имеет скрытую внутреннюю красоту мироздания, но и красота самой физической теории часто настолько убедительна, что заставляет физиков ставить сложнейшие эксперименты, чтобы подтвердить или опровергнуть сделанные предположения.

Когда ученый находит изящное построение, оно почти всегда или решает поставленную задачу, или пригодится в будущем для других задач. Поиски красоты ведут нас к познанию природы.

3. Симметрия пространства и времени.

Соразмерность – таково древнее значение слова «симметрия». Античные философы читали симметрию, порядок и определенность сущностью прекрасного. Архитекторы, художники, даже поэты и музыканты с древнейших времен знали законы симметрии. Строго симметрично строятся геометрические орнаменты; в классической архитектуре господствуют прямые линии, углы, круги, равенство колонн, окон, арок, сводов. Конечно симметрия в искусстве не буквальная – мы не увидим на картине человека слева и точно такого же справа. Законы симметрии художественного произведения подразумевают не однообразие форм, а глубокую согласованность элементов. Ассиметрия – другая сторона симметрии, ни природа, ни искусство не терпят точных симметрий.

Понятий симметрии в науке постоянно развивалось и уточнялось. Наука открыла целый мир новых, неизвестных раньше симметрий, поражающий своей сложностью и богатством, - симметрии пространственные и внутренние, глобальные и локальные; даже такие вопросы, как возможность существования антимиров, поиски новых частиц, связаны с понятием симметрии.

4. Симметрия пространства.

Самая простая из симметрий – однородность и изотропность пространства. Красивое слово «изотропность» означает независимость свойств объектов от направления. Однородность пространства означает, что каждый физический прибор должен работать одинаково в любом месте, если не изменяются окружающие физические условия.

И так, физические законы должны быть инвариантны – неизменны – относительно перемещений и поворотов.

5. Однородность и обратимость времени.

Однородно не только пространство, но и время. Все физические явления идут одинаково, когда бы они не начались – минуту или миллиард лет назад. Свет далеких звезд идет до нас миллиарды лет, но длины волн света, излучаемого атомами звезд, такие же как у земных атомов, электроны на далеких звездах движутся так же, как и на Земле. На этом примере с большой точностью установлено равномерность хода времени, и это означает, что во всякое время относительная скорость всех процессов в природе одинаково.

Законы природы не изменяются и от замены времени на обратное; посмотрев назад по времени, мы увидим то же, что впереди.

И все-таки это наблюдаемая в практической жизни необратимость кажущаяся. За ней стоит строгая обратимость механических законов. Но когда система сложная, нужно очень долго ждать, пока произойдет чудо, и разбитая чашка снова станет целой. На это уйдет больше времени, чем существует Вселенная. Действительно, молекулы могут случайно так согласовать свои движения, что невероятное случится. В простых системах вероятность странных событий гораздо больше; там прямо можно наблюдать одинаковость расположения событий вперед и назад по времени. В малом объеме газа молекулы то стекаются вместе, то растекаются, так что плотность только в среднем совпадает с плотностью газа, и характер этих колебаний совершенно симметричен относительно прошлого и будущего.

В механике и электродинамике обратимость времени прямо видна из уравнений; глубоко проанализировав другие явления, в том числе и биологические, физики пришли к заключению, что речь идет о всеобъемлющем свойстве Вселенной. Но оказалось, что в «слабом взаимодействии» элементарных частиц некоторые симметрии нарушаются, в том числе и обратимость времени. Кроме того симметрии нарушаются на космологических расстояниях и временах. Так как Вселенная двадцать миллиардов лет назад была сверхплотной, так как она с тех пор расширяется, существует слабое нарушение временной однородности и обратимости, но это практически не влияет на обычные земные эксперименты.

Симметрии, о которых мы рассказали, на научном языке формулируются так: все законы природы инвариантны относительно операции переноса в пространстве и времени и относительно поворотов в пространстве. С очень большой точностью.

6. Зеркальная симметрия.

Если мы закрутим волчок налево, он будет кружиться и двигаться так же, как закрученный направо, только фигуры движения правого волчка будут зеркальным отражением фигур левого. Чтобы проверить зеркальную симметрию, можно построить такую установку, в которой все детали и их расположения будут зеркально симметричны прежним. Если обе установки будут давать одинаковый результат, значит явление зеркально симметрично. Это требование соблюдается для зеркально ассиметричных молекул: если они образуются в равных условиях, число левых молекул равно числу правых.

В истории физики был удивительных случай, когда открытие двух зеркальных форм вещества было сделано с помощью микробов! Основоположник современной микробиологии Луи Пастер предположил, что искусственная кислота состоит из двух зеркально-симметричных форм, одна поворачивает направление плотности поляризации направо, а другая – налево. В результате направление не меняется.

7. Повороты в пространстве – времени.

Замечательное свойство механических движений было обнаружено Галилеем: они одинаковы в неподвижной системе координат и в равномерно движущейся на Земле и в летящем самолете. В 1924 году нидерландский физик Хендрик Антон Лоренц обнаружил, что это свойство существует и в электродинамических явлениях. Попутно выяснилось важное обстоятельство: скорость заряженных тел не может превысить скорости света. Анри Пуанкари показал, что результаты Лоренца означают инвариантность уравнений электродинамики относительно поворотов в четырехмерном пространстве, где кроме трех координат есть еще одна – временная. Эйнштейн обнаружил, что эта симметрия всеобщая, что все явления природы не изменяются при таких поворотах.

Как проявляется эта симметрия в физических законах?

Все физические величины различаются по тому, как они изменяются при повороте. Совсем не изменяются скаляры; другие – векторы – ведут себя при поворотах как отрезок, проведенный из начала координат в какую-нибудь точку пространства; как произведение двух векторов изменяются тензоры; спиноры – это величины, из которых можно образовать квадратичную комбинацию, изменяющуюся как вектор, или скалярную, не изменяющуюся при поворотах.

Симметрия требует, чтобы во всех слагаемых уравнениях стояли величины, одинаково изменяющиеся при поворотах. Так же как нельзя сравнивать время и длину, массу и скорость, невозможно приравнять скаляр к вектору – уравнение нарушится при повороте.

Суть симметрии именно в этом разделении величин на скаляры, векторы, тензоры, спиноры…

Все симметрии, которые мы рассмотрели, - зеркальная, однородность и изотропность пространства и времени – в начале 20 века были объединены теорией относительности в единую симметрию четырехмерного пространства – времени.

Все явления природы инвариантны относительно сдвигов, поворотов и отражении в этом пространстве.

8. Симметрия физических явлений.

Кроме симметрии пространства – времени существует еще множество других симметрий, управляющих физическими явлениями, определяющих свойства элементарных частиц и их взаимодействий. Мы увидим, что каждой симметрии обязательно соответствует свой закон сохранения, который выполняется с такой же точностью, как и сама симметрия.

Когда в 30-х годах изучался радиоактивный распад, оказалось, что энергия вылетающих при распаде электронов меньше разности энергий ядер до и после распада. Физики предположили, что вместе с электронами вылетает нейтральная частица – нейтрино, унося излишек энергии. Существование нейтрино было затем доказано на опыте по его непосредственному действию на вещество. Энергия сохраняется с той же точностью, с какой соблюдается однородность времени.

И так, каждой симметрии соответствует свой закон сохранения. И наоборот, когда какая-либо величина остается неизменной, значит существует симметрия, обеспечивающая сохранение этой величины. Неудивительно, что законы сохранения энергии, импульса, углового момента соблюдаются во всех явлениях природы, они есть следствие такого свойства нашего мира, как симметрия пространства и времени.

9. Нарушение зеркальной симметрии.

Оказалось, что заряженный К-мезон распадается двумя способами: на два или три пи-мезона, а зеркальная симметрия запрещает ему распадаться обоими способами.

Зеркальная симметрия связана с законом сохранения – сохраняется величина, которая называется четностью. Что это такое?

Свойства частиц не должны изменятся при зеркальном отражении, но волновая функция может изменить знак. Когда она не изменяет знака, состояние называется четным, а когда изменяет – нечетным. Значит, если существует зеркальная симметрия, каждая частица имеет определенную четность.

Примерно в то же время американские физики изучали В-распад кобальта, при котором из ядер вылетаю электроны антинейтрино. Оказалось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля, в которое был помещен кобальт. По закону зеркальной симметрии они должны были одинаково часто вылетать, как под тупыми углами, так и под острыми.

Смятение физиков было таково, что они усомнились и в других свойствах симметрии пространства. Тогда Лев Давыдович Ландау и независимо Ли Цзундао и Янг Чтельнин предположили, что участвующие в В-распаде электроны, нейтрино, нуклоны зеркально асимметричны и, чтобы восстановить симметрию, нужно перейти к античастицам. Казалось, что выход найден – асимметрия вылета объяснялась асимметрией участвующих частиц. Тогда асимметрия слабого взаимодействия не означала бы нарушения зеркальной симметрии пространства.

10. Зарядово-зеркальная симметрия.

Для всех явлений природы, кроме слабых взаимодействий, существует еще зарядовая симметрия: законы природы не изменяются, если все электрические заряды заменить на обратные.

Были предсказаны и обнаружены античастицы – позитрон, антипротон, антинейтрон и т.д. Из них можно составить ядро антиэлемента. Если к такому ядру, заряженному отрицательно, прибавить позитроны, получится антиатом, из антиатомов – антивещество, с теми же свойствами, что и обычное вещество.

После опытов, о которых мы только же рассказали, зарядовую симметрию пришлось уточнить. В место ней существует Зарядово-зеркальная симметрия: законы природы не изменяются, если все заряды в мире заменить на обратные, и одновременно произвести зеркальное отражение. Антимир – зеркальное отражение нашего мира.

Большинство астрофизиков считают, что антимиров нет. Дело в том, что на границах вещества и антивещества должна происходить аннигиляция электронов и позитронов – они превратились бы в пары квантов с энергией каждого 0,5 МэВ. Таких квантов должно было быть очень много во Вселенной, их нет.

Зарядово-зеркальная симметрия тоже оказалась неточной: в опытах по распаду все того же К-мезона было обнаружено принципиально важное нарушение закона Зарядово-зеркальной симметрии. Означает ли это асимметрию пространства, пока не известно.

11. Спонтанное нарушение симметрии.

Симметричные уравнения могут иметь ассиметричные решения. Теория элементарных частиц предполагает, что максимальная симметрия, царствует на сверхмалых расстояниях, а на больших возникает спонтанное нарушение, которое может сильно замаскировать симметрию. Симметрию не всегда можно легко увидеть. Ее примеры встречаются на каждом шагу: капля воды, лежащая на столе, - пример такого нарушения; было бы более симметрично, если вода размазалась бы по столу тонким слоем. Кристаллические решетки твердых тел – нарушение разных симметрий; однородное хаотичное расположение атомов, которое возникает при высокой температуре, полнее отражает симметрию, однородность и изотропность пространства. Но при достаточно низких температурах устойчиво ассиметричное состояние твердого тела – кристаллическая решетка.

12. Внутренняя симметрия.

Нам предстоит обсудить еще один тип симметрий, также оплодотворяющий современную физику, как и пространственные.

Существуют «внутренние симметрии», которые означают неизменность явлений не при отражении, сдвигов или поворотах пространства, а при изменении некоторых внутренних свойств полей или частиц. Так сильные взаимодействия слабо зависят от заряда участвующих частиц, это свойство позволяет установить «изотопическую симметрию сильных взаимодействий» - пример внутренней симметрии.

Каждая симметрия (внутренняя) так же как и пространственная приводит к своему закону сохранения и наоборот – когда какая-либо величина сохраняется во многих явлениях, это, как правило, означает, что существует симметрия, обеспечивающая сохранение.

13. Калибровочная инвариантность.

Калибровочная инвариантность или калибровочная симметрия, означает, что никакие электродинамические явления не изменяются при тех изменениях векторного потенциала, которые сохраняют значения электрического и магнитного полей в каждой точке пространства-времени. Следствие этого свойства электродинамики выполняется на опыте с большой точностью. Какие же изменения вектора потенциала допустимы. Самое простое – добавление к векторному потенциалу постоянного слагаемого, независящего от координат. От этого разности значений векторного потенциала не изменяются и, значит напряженности будут прежними. Но, оказывается, векторный потенциал допускает гораздо больший произвол – к нему можно добавить определенным образом подобранную функцию от координат и времени без того, чтобы изменить электрические и магнитные поля.

Калибровочная инвариантность должна дополняться в каждой точке пространства, это локальная симметрия.

Калибровочная инвариантность обеспечивает сохранение полного заряда не только во всем пространстве, но и в каждой точке. Заряды могут только перелетать, они не могут исчезнуть в одной области пространства и появиться в другой без того, чтобы возник электрический ток, переносящий заряды.

Хорошо проверенный на опыте закон кулона тоже есть следствие калибровочной инвариантности, даже малое нарушение этого требования изменило бы закон распространения длинных радиоволн, что противоречило бы нашему повседневному опыту. Требование калибровочной симметрии было определяющем при создании квантовой электродинамике, в которой законы квантовой механики применяются не только к частицам, но и к самому электромагнитному полю.

Понимание калибровочной инвариантности особенно обогатилось после создания квантовой механики. Волновые функции заряженных частиц изменяются при калибровочном изменении векторного потенциала таким образом, чтобы оставались неизменными уравнения движения всей системы – полей и взаимодействующих с ними частиц. Такая обобщенная калибровочная инвариантность приводит к громадному количеству наблюдаемых следствий.

14. Изотопическая симметрия.

Один из простых примеров внутренней симметрии – «изотопическая инвариантность сильных взаимодействий» - подтвердился многочисленными экспериментами и оказался очень важным для построения теории ядра.

Введем новое понятие – изотопический спин, и пусть его свойства напоминают обычный спин, тогда изоспин 1 будет иметь три проекции, а изоспин 1/2 – две. У нуклона два изотопических состояния, следовательно, его изоспин равен ½, а протон и нейтрон соответствуют двум проекциям: ½ и ½. У Пи-мезона изотопический спин 1. Положительный, отрицательный и нейтральный Пи-мезоны соответствуют трем проекциям изоспина 1. Таким образом сильные взаимодействия обладают свойством изотопической инвариантности, они не зависят от того, в каком изотопическом состоянии находятся взаимодействующие частицы.

Изотопическая симметрия неточна: частицы разных зарядов имеют хоть и близкие, но неравные массы.

15. Странность.

Создание мощных ускорителей и чувствительных методов обнаружения привело к открытию огромного количества новых частиц. Они рождаются при столкновении нуклонов или обнаруживаются по их влиянию на расстояние. Прежде всего обнаружились «странные» частицы. Их странность в том, что они рождаются не поодиночке, как пи-мезоны, а только парами – частица с античастицей. Чтобы объяснить это свойство, пришлось приписать частицам, помино спина и изоспина, еще одно число – «странность».

Вскоре обнаружились и другие странные частицы. Для включения их в одно семейство с нуклоном или пионом понадобилось усложнение изотопической симметрии. Нужно было предположить более широкую симметрию, включающую странные частицы. Обнаружились два больших семейства сильновзаимодействующих частиц: барионы и мезоны.

Изобилие частиц, обнаруженных в результате успехов теоретической и экспериментальной физики, не радовало, а только озадачивало теоретиков. Начались попытки найти проматерию или прочастицы, с тем, чтобы всеобилие наблюдаемых частиц получалось бы из комбинаций нескольких элементарных, или, говоря осторожнее, более элементарных частиц.

История одной симметрии.

Необыкновенно поучительна и драматична история работ по нахождению субчастиц, из которых состоят адроны. Из разрозненных фактов постепенно возникало все более отчетливая картина устройства адронов. Мы перечислим главные события этой драмы, за которыми стоят огромные усилия физиков всех стран, временные удачи и провалы, судьбы людей, потерявших годы в попытках найти истину на неправильном пути. Вместе с тем мы увидим, что неудавшиеся попытки каждый раз приближали к цели и подготовили правильные решения.

16. Кварки.

Все многочисленные попытки получить наблюдаемые семейства барионов и мезонов из частиц с целым электрическим и барионным зарядом потерпели неудачу. Неожиданный выход из тупика был найден американскими теоретиками Мари Гелл-Маном и независимо Джорджем Цвейгом.

Они предположили, что все адроны составлены из частиц с барионным зарядом, равным 1/3 нуклонного, и с электрическим зарядом, равным 2/3 или 1/3 заряда протона. Спин у этих частиц такой же, как и нуклона, равный ½. Частицы с дробным электрическим зарядом никогда не появлялись на опыте, и физики были так прочно убеждены в том, что все заряды кратны электронному или протонному, что идея частиц с дробным разрядом казалась дикой. Гелл-ман назвал эти дикие частицы кварками.

Все адроны, как по мановению волшебной палочки, улеглись в те группы с одинаковыми свойствами, которые были ранее установлены экспериментально.

Барионы состоят из троек кварков, чтобы барионный заряд был равен 1. Из трех кварков можно составить две комбинации со спином ½ и 3/2, поэтому и возникают два семейства барионов. Пришлось ввести три типа кварков: верхний (u), нижний (ά), странный (S). Кварк u имеет электрический заряд 2/3; ά – u –s кварки – 1/3; странный кварк имеет странность 1, а u – uά - кварки имеют странность 0. Кварки u, ά есть две изоспиновые проекции одной частицы с изоспином ½. Нейтрон и протон устроены так: n=(uάά); p=(άuu). Легко увидеть, что при этом заряд нейтрона равен 0, а протона – 1, как и полагается.

Кварки нужно раскрасить!

Среди барионов, составляющих десятку со спином 3/2, есть дельта – резонанс. ou обозначается ∆. Эта частица живет недолго, ее трудно увидеть в свободном состоянии. Однако она проявляется в рассеянии пи-мезонов и нуклонов. Дельта-барион представляет собой связанное состояние нуклона и пи-мезона. В процессе рассеивания пи-мезон и нуклон на время объединяются в дельта-барион. Поэтому сечение рассеивания пи-мезона на покоящемся нуклоне имеет максимум (резонанс) при энергии пи-мезона, соответствующей этому связанному состоянию.

Воспользуемся известной везде, где есть телевизор или радио, формулой E=mc 2 , энергия равна массе, умноженной на квадрат скорости света. Разделив энергию пи-мезона в максимуме сечения на с 2 и прибавив к массе нуклона, получим массу дельта-резонанса (m ∆ =E п. +m k . /с 2). Поскольку нуклон и пи-мезон не странные частицы, странность дельты равна нулю. А это означает, что она состоит из u- и ά- кварков.

По зависимости сечения от угла отклонения рассеивания частиц было установлено, что спин дельты равен 3/2. Были обнаружены четыре изотопические разновидности дельта-бариона, отличающиеся только электрическим зарядом.

Это дельта-барионы с зарядами -1, 0, 1, 2. Мы перебрали все возможности, следовательно других дельта-барионов нет. Частицу с двойным отрицательным зарядомможно построить только у антикварков: (uuu)= ∆.

Обратим особое внимание на дельта плюс-плюс барион, который, как мы только что видим состоит, состоит из тройки u – кварков.

Но для того, чтобы спин дельта равнялся 3/2, нужно, чтобы проекции спинов всех трех u – были одинаковы и равны ½.

Возникает противоречие с принципом Паули! Ведь согласно этому принципу частицы с полуцелым спином не могут находиться в одном и том же состоянии. Чтобы избежать противоречия, можно было бы попытаться по разному распределить эти три кварка в пространстве внутри дельта-бариона. Но при таком неравномерном распределении возрастает энергия, а следовательно, и масса дельта-бариона. Вместо наблюдаемой массы мы получили бы значительно большую. Было много теоретических попыток обойти принцип Паули, но все они потерпели неудачу. Оказалось, что единственная возможность – предположить, что каждый кварк, помимо спина и заряда, имеет еще одну характеристику, которая была условно названа «цвет». Каждый кварк может иметь один из трех цветов, скажем красный, желтый, синий. Противоречие с принципом Паули снимается: u-кварки в дельта-барионе разноцветные, а разным частицам не запрещается находиться в одном состоянии.

Кварки не могут жить друг без друга.

Многочисленные экспериментальные и теоретические исследования подтвердили дробные заряды и трехцветность кварков. Кварки стали таким же достоверным объектом физики, как протон или электрон. И вместе с тем, несмотря на многие попытки, не удалось найти экспериментально свободные частицы с дробным зарядом. Кварки не вылетают из адронов даже при энергичных столкновениях. В изолированном состоянии могут находиться только «белые» частицы, адроны и лептоны; цветные же частицы – кварки – можно наблюдать только внутри адронов. Их нельзя удалить далеко друг от друга. При попытке их раздвижения они превращаются в белые частицы.

На первый взгляд невылетание кварков не такое уж странное свойство. Нейтрон живет в ядрах неограниченно долго, а в свободном состоянии распадается за пятнадцать минут. Конечно, это громадное время для ядерной частицы, но, например, ∆-резонанс распадается за такое малое время, что его невозможно увидеть в свободном состоянии и он может наблюдаться только по его влиянию на пион – нуклонное расстояние. Кварки и антикварки при раздвижении так быстро превращаются в белые частицы, что далеко друг от друга их нельзя обнаружить.

Необычность этого физического объекта в том, что кварки не живут друг без друга. До того, как кварк и антикварк превратятся в белые частицы, они скреплены друг с другом силовыми взаимодействиями, на какое бы расстояние они не раздвигались. В электродинамике два противоположных заряда тоже притягиваются друг к другу, но сила этого притяжения убывает как квадрат расстояния. Поэтому при рождении пары электрон-позитрон эти частицы можно считать свободными, как только они хотя бы немного раздвинутся так, чтобы потенциальная энергия стала меньше кинетической. В случае пары кварк-антикварк такой момент никогда не наступает – потенциальная энергия их взаимодействия растет с расстоянием!

Это объясняется свойствами того поля, которое скрепляет кварки: оно не убывает с расстоянием, как электрическое.

Были обнаружив и другие типы, или, как принято называть ароматы кварков – «очарованный» и «красивый».

Теория предсказывает еще один аромат – «высший». Этот квару пока не подтвержден опытом.

Итак, есть кварки и антикварки шести ароматов - u, ά, s, c, b, t, и каждый из кварков имеет три цвета.

Будем надеяться, что этим исчерпывается изобретательность природы и больше кварков не обнаружится.

Поле, склеивающее кварки.

Как ни важно знать симметрии, они не исчерпывают всех свойств физических объектов. Нужно еще знать, как взаимодействуют и движутся поля и частицы.

Поле, склеивающее кварки, было названо «глюонным», от английского слова «glue» - клей. Так же как и для электромагнитного поля, применение квантовой механики к глюонному полю приводит к скачкообразному изменению энергии. Энергия поля изменяется скачками величины E=RW (λ), где RW – есть частота поля с длиной волны λ. Порция энергии глюонного поля называется «глюоном», аналогично тому, как порция энергии электромагнитного поля называется «квантом» или «фотоном».

Так как глюон может виртуально (на время) превратиться в пару кварк-антикварк, то его волновая функция преобразует так же, как волновая функция пары, и, значит, из девяти глюонных полей можно тоже образовать одно белое поле. Симметрия требует, чтобы все восемь цветных глюонных полей одинаково взаимодействовали с кварками. Белое же глюонное поле может взаимодействовать совсем иначе – него своя константа взаимодействия, ведь оно может превращаться только в белые кварковые комбинации. Это поле, по-видимому, никогда не возникает.

Но на этом теория сильных взаимодействий не заканчивается. Недостаточно найти свойства преобразований кварков и восьми глюонных полей. Главная задача – найти уравнение, которое описывает эти поля и их взаимодействия с кварками. И, наконец, не менее важно решить эти уравнения, выразить массы всех адронов и их взаимодействия через свойства пока «элементарных» частиц – глюонов и кварков. Так поступали физики, определяя свойства, считавшиеся элементарными, ядер и электронов.

Предположим, что частица вызывает бурный процесс в счетчике Гейгера-Мюллера, в результате чего она и регистрируется. Это процесс есть катастрофа в масштабах микромира. Огромный мост или современный реактивный самолет внезапно разваливаются вследствие возникновении в их конструкции резонансных колебаний. Это есть пример катастрофы уже в привычных для нас масштабах. Примеры катастроф могут быть достаточно разнообразными – внезапная кристаллизация переохлажденной жидкости, рождение горного обвала, возникновение генерации излучения в лазере. Во всех подобных случаях система характеризуется неустойчивой симметрией, которая может разрушиться под действием различного рода случайных факторов. Эти случайные факторы могут оказывать весьма незначительное воздействие, могут являться, казалось бы, совершенно безобидными. Но они разрушают симметрию и тем самым развязывают в неустойчивой системе бурно протекающие процессы, которые могут рассматриваться как своего рода катастрофы.

III. Заключение.

Я проследил путь теоретиков-физиков, развитие физических явлений, доказательств. Все области физики переплетаются в один клубок с математической и поясняется физическая картина явлений, возникает проект решения, получение новых открытий, где симметрия играет важную роль. Я понял, что симметрия – это однородность времени. Все физические процессы протекают одинаково, когда бы они не начались – вчера, сегодня, завтра… Все симметрии, которые изложены в моем реферате, объединяются в одну, всеобщую, - все явления природы инвариантны относительно сдвигов, поворотов, отражений в пространстве. А разве не удивительно, что законы сохранения получаются как следствия различных симметрий. Глядя на окружающий мир, изучая физику, я невольно связываю все открытия с симметрией. Для человеческого разума симметрия обладает, по-видимому, совершенно особой притягательной силой.

Симметрия – в широком и узком смысле является той идеей, которой человек на протяжении веков пытался постичь и создать порядок во всех физических явлениях. И нашу Вселенную со всеми ее сложностями, видимо, построят в будущем согласно понятиям о симметрии. Свой реферат я хотел бы закончить следующими словами:

«Радость видеть, понимать, доказывать – самый прекрасный дар природы. Конца познанью нет!».