Случайная величина x задана законом распределения. Примеры решения задач на тему «Случайные величины

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

Определение 1

Случайная величина $Х$ называется дискретной (прерывной), если множество ее значений бесконечное или конечное, но счетное.

Другими словами, величина называется дискретной, если ее значения можно занумеровать.

Описать случайную величину можно с используя закона распределения.

Закон распределения дискретной случайной величины $Х$ может быть задан в виде таблицы, в первой строке которой указаны все возможные значения случайной величины в порядке возрастания, а во второй строке соответствующие вероятности этих значений:

Рисунок 1.

где $р1+ р2+ ... + рn = 1$.

Даная таблица является рядом распределения дискретной случайной величины .

Если множество возможных значений случайной величины бесконечно, то ряд $р1+ р2+ ... + рn+ ...$ сходится и его сумма будет равна $1$.

Закон распределения дискретной случайной величины $Х$ можно представить графически, для чего в системе координат (прямоугольной) строят ломаную линию, которая последовательно соединяет точки с координатами $(xi;pi), i=1,2, ... n$. Линию, которую получили называют многоугольником распределения .

Рисунок 2.

Закон распределения дискретной случайной величины $Х$ может быть также представлен аналитически (с помощью формулы):

$P(X=xi)= \varphi (xi),i =1,2,3 ... n$.

Действия над дискретными вероятностями

При решении многих задач теории вероятности необходимо проводить операции умножения дискретной случайной величины на константу , сложения двух случайных величин, их умножения, поднесения к степени. В этих случаях необходимо придерживаться таких правил над случайными дискретными величинами:

Определение 3

Умножением дискретной случайной величины $X$ на константу $K$ называется дискретная случайная величина $Y=KX,$ которая обусловлена равенствами: $y_i=Kx_i,\ \ p\left(y_i\right)=p\left(x_i\right)=p_i,\ \ i=\overline{1,\ n}.$

Определение 4

Две случайные величины $x$ и $y$ называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приобрела вторая величина.

Определение 5

Суммой двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=X+Y,$ обусловлена равенствами: $z_{ij}=x_i+y_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Определение 6

Умножением двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=XY,$ обусловлена равенствами: $z_{ij}=x_iy_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Примем во внимание, что некоторые произведения $x_{i\ \ \ \ \ }y_j$ могут быть равными между собой. В таком случае вероятность сложения произведения равна сумме соответствующих вероятностей.

Например, если $x_2\ \ y_3=x_5\ \ y_7,\ $то вероятность $x_2y_3$ (или тоже самое $x_5y_7$) будет равна $p_2\cdot p"_3+p_5\cdot p"_7.$

Сказанное выше касается также и суммы. Если $x_1+\ y_2=x_4+\ \ y_6,$ то вероятность $x_1+\ y_2$ (или тоже самое $x_4+\ y_6$) будет равняться $p_1\cdot p"_2+p_4\cdot p"_6.$

Пусnm случайные величины $X$ и $Y$ заданы законами распределения:

Рисунок 3.

Где $p_1+p_2+p_3=1,\ \ \ p"_1+p"_2=1.$ Тогда закон распределения сумы $X+Y$ будет иметь вид

Рисунок 4.

А закон распределения произведения $XY$ будет иметь вид

Рисунок 5.

Фунция распределения

Полное описание случайной величины дает также функция распределения.

Геометрически функция распределения разъясняется как вероятность того, что случайная величина $Х$ принимает значение, которое на числовой прямой изображается точкой, лежащей с левой стороны от точки $х$.

Х ; значение F (5); вероятность того, что случайная величина Х примет значения из отрезка . Построить многоугольник распределения.

  1. Известна функция распределения F(x) дискретной случайной величины Х :

Задать закон распределения случайной величины Х в виде таблицы.

  1. Дан закон распределения случайной величины Х :
Х –28 –20 –12 –4
p 0,22 0,44 0,17 0,1 0,07
  1. Вероятность того, что в магазине есть сертификаты качества для полного ассортимента товаров, равна 0,7. Комиссия проверила наличие сертификатов в четырёх магазинах района. Составить закон распределения, вычислить математическое ожидание и дисперсию числа магазинов, в которых при проверке не обнаружены сертификаты качества.
  1. Для определения средней продолжительности горения электроламп в партии из 350 одинаковых ящиков было взято на проверку по одной электролампе из каждого ящика. Оценить снизу вероятность того, что средняя продолжительность горения отобранных электроламп отличается от средней продолжительности горения всей партии по абсолютной величине меньше чем на 7 часов, если известно, что среднее квадратичное отклонение продолжительности горения электроламп в каждом ящике меньше 9 часов.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,002. Найти вероятность того, что среди 500 соединений произойдёт:

Найти функцию распределения случайной величины Х . Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х .

  1. Станок-автомат изготавливает валики. Считается, что их диаметр – нормально распределённая случайная величина со средним значением 10мм. Чему равно среднее квадратичное отклонение, если с вероятностью 0,99 диаметр заключён в интервале от 9,7мм до 10,3мм.

Выборка А : 6 9 7 6 4 4

Выборка В: 55 72 54 53 64 53 59 48

42 46 50 63 71 56 54 59

54 44 50 43 51 52 60 43

50 70 68 59 53 58 62 49

59 51 52 47 57 71 60 46

55 58 72 47 60 65 63 63

58 56 55 51 64 54 54 63

56 44 73 41 68 54 48 52

52 50 55 49 71 67 58 46

50 51 72 63 64 48 47 55

Вариант 17.

  1. Среди 35 деталей 7 нестандартных. Найти вероятность того, что две наудачу взятые детали окажутся стандартными.
  1. Бросают три игральные кости. Найти вероятность того, что сумма очков на выпавших гранях кратна 9.
  1. Слово «ПРИКЛЮЧЕНИЕ» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы в порядке появления образуют слово: а) ПРИКЛЮЧЕНИЕ; б) ПЛЕН.
  1. В урне содержится 6 чёрных и 5 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:
    1. 2 белых шара;
    2. меньше чем 2 белых шара;
    3. хотя бы один чёрный шар.
  1. А в одном испытании равна 0,4. Найти вероятности следующих событий:
    1. событие А появится 3 раза в серии из 7 независимых испытаний;
    2. событие А появится не менее 220 и не более 235 раз в серии из 400 испытаний.
  1. Завод отправил на базу 5000 доброкачественных изделий. Вероятность повреждения каждого изделия в пути равна 0,002. Найти вероятность того, что в пути будет повреждено не более 3 изделий.
  1. В первой урне 4 белых и 9 чёрных шаров, а во второй урне 7 белых и 3 чёрных шара. Из первой урны случайным образом вынимают 3 шара, а из второй урны – 4. Найти вероятность того, что все вынутые шары одного цвета.
  1. Дан закон распределения случайной величины Х :

Вычислить её математическое ожидание и дисперсию.

  1. В коробке лежат 10 карандашей. Наудачу извлекается 4 карандаша. Случайная величина Х – число синих карандашей среди отобранных. Найти закон её распределения, начальный и центральные моменты 2-го и 3-го порядков.
  1. Отдел технического контроля проверяет 475 изделий на брак. Вероятность того, что изделие бракованное равна 0,05. Найти с вероятностью 0,95 границы, в которых будет заключено количество бракованных изделий среди проверенных.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,003. Найти вероятность того, что среди 1000 соединений произойдёт:
    1. хотя бы 4 неправильных соединения;
    2. более двух неправильных соединений.
  1. Случайная величина задана функцией плотности распределения:

Найти функцию распределения случайной величины Х . Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х.

  1. Случайная величина задана функцией распределения:
  1. По выборке А решить следующие задачи:
    1. составить вариационный ряд;

· выборочное среднее;

· выборочную дисперсию;

Моду и медиану;

Выборка А: 0 0 2 2 1 4

    1. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка В: 166 154 168 169 178 182 169 159

161 150 149 173 173 156 164 169

157 148 169 149 157 171 154 152

164 157 177 155 167 169 175 166

167 150 156 162 170 167 161 158

168 164 170 172 173 157 157 162

156 150 154 163 143 170 170 168

151 174 155 163 166 173 162 182

166 163 170 173 159 149 172 176

Вариант 18.

  1. Среди 10 лотерейных билетов 2 являются выигрышными. Найти вероятность того, что из взятых наудачу пяти билетов один окажется выигрышным.
  1. Бросают три игральные кости. Найти вероятность того, что сумма выпавших очков больше 15.
  1. Слово «ПЕРИМЕТР» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы образуют слово: а) ПЕРИМЕТР; б) МЕТР.
  1. В урне содержится 5 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:
    1. 4 белых шара;
    2. меньше чем 2 белых шара;
    3. хотя бы один чёрный шар.
  1. Вероятность наступления события А в одном испытании равна 0,55. Найти вероятности следующих событий:
    1. событие А появится 3 раза в серии из 5 испытаний;
    2. событие А появится не менее 130 и не более 200 раз в серии из 300 испытаний.
  1. Вероятность нарушения герметичности банки консервов равна 0,0005. Найти вероятность того, что среди 2000 банок две окажутся с нарушением герметичности.
  1. В первой урне 4 белых и 8 чёрных шаров, а во второй урне 7 белых и 4 чёрных шара. Из первой урны случайным образом вынимают 2 шара и из второй урны случайным образом вынимают по три шара. Найти вероятность того, что все вынутые шары одного цвета.
  1. Среди поступающих на сборку деталей, с первого станка 0,1% бракованных, со второго – 0,2%, с третьего – 0,25%, с четвёртого – 0,5%. Производительности станков относятся соответственно как 4:3:2:1. Взятая наудачу деталь оказалась стандартной. Найти вероятность того, что деталь изготовлена на первом станке.
  1. Дан закон распределения случайной величины Х :

Вычислить её математическое ожидание и дисперсию.

  1. У электромонтёра три лампочки, каждая из которых имеет дефект с вероятностью 0,1.. Лампочки ввинчиваются в патрон и включается ток. При включении тока дефектная лампочка сразу же перегорает и заменяется другой. Найти закон распределения, математическое ожидание и дисперсию числа опробованных лампочек.
  1. Вероятность поражения цели равна 0,3 при каждом из 900 независимых выстрелов. Пользуясь неравенством Чебышева, оценить вероятность того, что цель будет поражена не менее 240 раз и не более 300 раз.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,002. Найти вероятность того, что среди 800 соединений произойдёт:
    1. хотя бы три неправильных соединения;
    2. более четырёх неправильных соединений.
  1. Случайная величина задана функцией плотности распределения:

Найти функцию распределения случайной величины Х. Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х.

  1. Случайная величина задана функцией распределения:
  1. По выборке А решить следующие задачи:
    1. составить вариационный ряд;
    2. вычислить относительные и накопленные частоты;
    3. составить эмпирическую функцию распределения и построить её график;
    4. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка А : 4 7 6 3 3 4

  1. По выборке В решить следующие задачи:
    1. составить группированный вариационный ряд;
    2. построить гистограмму и полигон частот;
    3. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка В : 152 161 141 155 171 160 150 157

154 164 138 172 155 152 177 160

168 157 115 128 154 149 150 141

172 154 144 177 151 128 150 147

143 164 156 145 156 170 171 142

148 153 152 170 142 153 162 128

150 146 155 154 163 142 171 138

128 158 140 160 144 150 162 151

163 157 177 127 141 160 160 142

159 147 142 122 155 144 170 177

Вариант 19.

1. На участке работают 16 женщин и 5 мужчин. По табельным номерам отобраны наудачу 3 человека. Найти вероятность того, что все отобранные люди окажутся мужчинами.

2. Бросают четыре монеты. Найти вероятность того, что только на двух монетах появится «герб».

3. Слово «ПСИХОЛОГИЯ» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы образуют слово: а) ПСИХОЛОГИЯ; б) ПОСОХ.

4. В урне содержится 6 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:

a. 3 белых шара;

b. меньше чем 3 белых шара;

c. хотя бы один белый шар.

5. Вероятность наступления события А в одном испытании равна 0,5. Найти вероятности следующих событий:

a. событие А появится 3 раза в серии из 5 независимых испытаний;

b. событие А появится не менее 30 и не более 40 раз в серии из 50 испытаний.

6. Имеется 100 станков одинаковой мощности, работающих независимо друг от друга в одинаковом режиме, при котором их привод оказывается включенным в течение 0,8 рабочего времени. Какова вероятность того, что в произвольно взятый момент времени окажутся включенными от 70 до 86 станков?

7. В первой урне 4 белых и 7 чёрных шаров, а во второй урне 8 белых и 3 чёрных шара. Из первой урны случайным образом вынимают 4 шара, а из второй – 1 шар. Найти вероятность того, что среди вынутых шаров только 4 чёрных шара.

8. В салон по продаже автомобилей ежедневно поступают автомобили трёх марок в объёмах: «Москвич» – 40%; «Ока» – 20%; «Волга» – 40% от всех привезённых машин. Среди машин марки «Москвич» 0,5% имеют противоугонное устройство, «Ока» – 0,01%, «Волга» – 0,1%. Найти вероятность того, что взятая для проверки машина имеет противоугонное устройство.

9. На отрезке наудачу выбраны числа и . Найти вероятность того, что эти числа удовлетворяют неравенствам .

10. Дан закон распределения случайной величины Х :

Х
p 0,1 0,2 0,3 0,4

Найти функцию распределения случайной величины Х ; значение F (2); вероятность того, что случайная величина Х примет значения из интервала . Построить многоугольник распределения.

На этой странице мы собрали примеры решения учебных задач о дискретных случайных величинах . Это довольно обширный раздел: изучаются разные законы распределения (биномиальный, геометрический, гипергеометрический, Пуассона и другие), свойства и числовые характеристики, для каждого ряда распределения можно строить графические представления: полигон (многоугольник) вероятностей, функцию распределения.

Ниже вы найдете примеры решений о дискретных случайных величинах, в которых требуется применить знания из предыдущих разделов теории вероятностей для составления закона распределения, а затем вычислить математическое ожидание, дисперсию, среднее квадратическое отклонение, построить функцию распределения, дать ответы на вопросы о ДСВ и т.п.

Примеры для популярных законов распределения вероятностей:


Калькуляторы на характеристики ДСВ

  • Вычисление математического ожидания, дисперсии и среднего квадратического отклонения ДСВ .

Решенные задачи о ДСВ

Распределения, близкие к геометрическому

Задача 1. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?

Задача 2. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.

Задача 3. Стрелок, имея 3 патрона, стреляет в цель до первого попадания. Вероятности попадания при первом, втором и третьем выстрелах соответственно 0,6, 0,5, 0,4. С.В. $\xi$ - число оставшихся патронов. Составить ряд распределения случайной величины, найти математическое ожидание, дисперсию, среднее квадратичное отклонение с.в., построить функцию распределения с.в., найти $P(|\xi-m| \le \sigma$.

Задача 4. В ящике содержится 7 стандартных и 3 бракованных детали. Вынимают детали последовательно до появления стандартной, не возвращая их обратно. $\xi$ - число извлеченных бракованных деталей.
Составить закон распределения дискретной случайной величины $\xi$, вычислить ее математическое ожидание, дисперсию, среднее квадратическое отклонение, начертить многоугольник распределения и график функции распределения.

Задачи с независимыми событиями

Задача 5. На переэкзаменовку по теории вероятностей явились 3 студента. Вероятность того, что первый сдаст экзамен, равна 0,8, второй - 0,7, третий - 0,9. Найдите ряд распределения случайной величины $\xi$ числа студентов, сдавших экзамен, постройте график функции распределения, найдите $М(\xi), D(\xi)$.

Задача 6. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и С.К.О. этой случайной величины. Построить график функции распределения.

Задача 7. По цели производится 4 выстрела. Вероятность попадания при этом растет так: 0,2, 0,4, 0,6, 0,7. Найти закон распределения случайной величины $X$ - числа попаданий. Найти вероятность того, что $X \ge 1$.

Задача 8. Подбрасываются две симметричные монеты, подсчитывается число гербов на обеих верхних сторонах монет. Рассматривается дискретная случайная величина $X$- число выпадений гербов на обеих монетах. Записать закон распределения случайной величины $X$, найти ее математическое ожидание.

Другие задачи и законы распределения ДСВ

Задача 9. Два баскетболиста делают по три броска в корзину. Вероятность попадания для первого баскетболиста равна 0,6, для второго – 0,7. Пусть $X$ - разность между числом удачных бросков первого и второго баскетболистов. Найти ряд распределения, моду и функцию распределения случайной величины $X$. Построить многоугольник распределения и график функции распределения. Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение. Найти вероятность события $(-2 \lt X \le 1)$.

Задача 10. Число иногородних судов, прибывающих ежедневно под погрузку в определенный порт – случайная величина $X$, заданная так:
0 1 2 3 4 5
0,1 0,2 0,4 0,1 0,1 0,1
А) убедитесь, что задан ряд распределения,
Б) найдите функцию распределения случайной величины $X$,
В) если в заданный день прибывает больше трех судов, то порт берет на себя ответственность за издержки вследствие необходимости нанимать дополнительных водителей и грузчиков. Чему равна вероятность того, что порт понесет дополнительные расходы?
Г) найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины $X$.

Задача 11. Бросают 4 игральные кости. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.

Задача 12. Двое поочередно бросают монету до первого появления герба. Игрок, у которого выпал герб, получает от другого игрока 1 рубль. Найти математическое ожидание выигрыша каждого игрока.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.