Тема. Момент силы

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим

шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел.

Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения.

В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т. д. Если вектор силы Р лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы F, не пересекает ось вращения, то эта сила не может быть уравновешена

силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тёло находится в равновесии, если выполняется условие:

где - кратчайшие расстояния от прямых, на которых лежат векторы сил (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы М:

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии от оси вращения. Эту единицу называют ньютон-метром

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или? двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное.

Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия (рис. 46).

Еслн при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю, то тело находится в состоянии безразличного равновесия. В безразличном равновесии находится шар на горизонтальной поверхности (рис. 47).

Тело, имеющее неподвижную ось вращения, находится в устойчивом равновесии, если его центр тяжести расположен ниже оси вращения и находятся на вертикальной прямой, проходящей через ось вращения (рис. 48, а).

При небольшом отклонении от этого положения равновесия алгебраическая сумма моментов сил, действующих на тело, становится отличной от нуля и возникающий момент сил поворачивает тело к первоначальному положению равновесия (рис. 48, б).

Если же центр тяжести находится на вертикальной прямой, проходящей через ось вращения, но расположен выше оси вращения, то равновесие неустойчивое (рис. 49, а, б).

Тело находится в безразличном равновесии, когда ось вращения тела проходит через его центр тяжести (рис. 50).

Равновесие тела на опоре.

Если вертикальная линия, проведенная через центр тяжести С тела, пересекает площадь опоры, то тело находится в равновесии (рис. 51). Если же вертикальная линия, проведенная через центр тяжести, не пересекает площадь опоры, то тело опрокидывается (рис. 52).

11.12.2014

Урок 26 (10 класс)

Тема. Момент силы. Условия равновесия тела, которое имеет ось вращения.

Равенство нулю суммы внешних сил, действующих на твердое тело, необходимо для его равновесия, но недостаточно. В этом легко убедиться. Приложите к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2.

Сумма этих сил равна нулю: . Но доска, тем не менее, будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис.7.3 ). Почему так происходит, понять нетрудно. Ведь любое тело находится в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть не равна нулю. В этом случае тело не будет находиться в равновесии. В рассмотренных примерах доска и руль потому и не находятся в равновесии, что сумма всех сил, действующих на отдельные элементы этих тел, не равна нулю.

Выясним, какое же еще условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твердое тело находилось в равновесии. Для этого воспользуемся теоремой об изменении кинетической энергии.
Найдем, например, условие равновесия стержня, шарнирно закрепленного на горизонтальной оси в точке О (рис.7.4 ). Это простое устройство, как вам известно из курса физики 7 класса, представляет собой рычаг. Пусть к рычагу приложены перпендикулярно стержню силы и . В частности, это могут быть силы натяжения нитей, к концам которых прикреплены грузы. Кроме сил и на рычаг действует направленная вертикально вверх сила реакции со стороны оси рычага. При равновесии рычага сумма всех трех сил равна нулю:

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол . Точки приложения сил и пройдут пути s 1 =BB 1 и s 2 =CC 1 (дуги BB 1 и CC 1 при малых углах можно считать прямолинейными отрезками). РаботаA 1 =F 1 s 1 силы положительна, потому что точка B перемещается по направлению действия силы, а работа A 2 =-F 2 s 2 силы отрицательна, поскольку точка C движется в сторону, противоположную направлению силы . Сила работы не совершает, так как точка ее приложения не перемещается.
Пройденные пути s 1 и s 2 можно выразить через угол поворота рычага , измеренный в радианах: и .
Учитывая это, перепишем выражения для работы так:

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил и , являются перпендикулярами, опущенными из оси вращения на линии действия этих сил.

Кратчайшее расстояние от оси вращения до линии действия силы называют плечом силы .

Будем обозначать плечо силы буквой d . Тогда - плечо силы , а - плечо силы . При этом выражения (7.4) примут вид

Из формул (7.5) видно, что при заданном угле поворота тела (стержня) работа каждой приложенной к этому телу силы равна произведению модуля силы на плечо взятому со знаком «+» или «-». Это произведение будем называть моментом силы.
Моментом силы относительно оси вращения тела называется произведение модуля силы на ее плечо. Момент силы может быть положительным или отрицательным.
Момент силы обозначим буквой M :

Будем считать момент силы положительным , если она стремится повернуть тело против часовой стрелки, и отрицательным, если по часовой стрелке. Тогда момент силы равен M 1 =F 1 d 1 (см. рис. 7.4), а момент силы равен M 2 =-F 2 d 2 . Следовательно, выражения (7.5) для работы можно переписать в виде

а полную работу внешних сил выразить формулой:

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершить работу. Согласно уравнению (7.7) ненулевая работа может быть совершена лишь в том случае, если суммарный момент внешних сил отличен от нуля. Если же суммарный момент внешних сил, действующих на тело, равен нулю, то работа не совершается и кинетическая энергия тела не увеличивается (остается равной нулю), следовательно, тело не приходит в движение. Равенство

и есть второе условие, необходимое для равновесия твердого тела.

При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твердого тела следующие:

Если же тело не абсолютно твердое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равна нулю. Это происходит потому, что под действием внешних сил тело может деформироваться и сумма всех сил, действующих на каждый его элемент, в этом случае не будет равна нулю.
Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.
Условия (7.9) являются необходимыми и достаточными для равновесия твердого тела. Если они выполняются, то твердое тело находится в равновесии, так как сумма сил, действующих на каждый элемент этого тела, равна нулю.

Домашнее задание

1. Е.В. Коршак, А.И. Ляшенко, В.Ф. Савченко. Физика. 10 класс, «Генеза», 2010. Читать §24, 25 (с.92-96).

2. Ответить на вопросы:

Что называется моментом силы?

Какие условия необходимы и достаточны для равновесия твердого тела?


Похожая информация.


Урок № 13

Тема. Момент силы. Условие равновесия тела, имеющего ось вращения

Цель: дать учащимся знания о момент силы правило моментов: показать, что правило моментов выполняется и для тела, которое имеет незакріплену ось вращения; объяснить значение правила моментов в быту.

Тип урока: комбинированный.

План урока

Контроль знаний

1. При каком условии тело находится в равновесии?

2. Какую задачу решает статика?

3. Как определить рівнодійну двух сил?

4. Условие равновесия тела, лежащего на наклонной плоскости?

5. Условие равновесия тела, подвешенного на кронштейне?

6. Равновесие тела, подвешенного на тросах

Изучение нового материала

1. Первое условие равновесия.

2. Плечо силы. Момент силы.

3. Второе условие равновесия (правило моментов)

Закрепление изученного материала

1. Контрольные вопросы.

2. Учимся решать задачи

Изучение нового материала

Длина перпендикуляра, опущенного из оси вращения на линию действия силы, называется плечом силы.

Вращательная действие силы определяется произведением модуля силы на расстояние от оси вращения до линии действия силы.

Моментом силы относительно оси вращения тела называют взятый со знаком «плюс» или «минус» произведение модуля силы на ее плечо:

M = ± Fl .

Будем считать момент положительным, если сила вызывает вращение тела против часовой стрелки, и отрицательным - если по часовой стрелке. В рассмотренном выше примере М1 = - F 1 l 1 , M 2 = F 2 l 2 , поэтому условие равновесия тела, закрепленного на оси, под действием двух сил можно записать в виде

M 1 + M 2 = 0.

3. Второе условие равновесия (правило моментов)

Чтобы тело, закрепленное на неподвижной оси, находилось в равновесии, необходимо, чтобы алгебраическая сумма моментов приложенных к телу сил равна нулю:

М1 + M 2 + М3 +... = 0.

Вопрос к учащимся в ходе изложения нового материала

1. Состояние тела называется равновесием в механике?

2. Обязательно ли равновесие означает состояние покоя?

3. Когда тело, закрепленное на оси, находится в равновесии под действием двух сил?

4. Можно ли применять условия равновесия тела, когда явной оси вращения нет?

Задачи, решаемые на уроке

1. До горизонтального стержня підвішано груз массой 50 кг (рис. 4). Каковы силы давления стержня на опоры, если AC = 40 см, BC = 60 см? Массой стержня можно пренебречь.

Так как стержень находится в равновесии,

mg + N 1 + N 2 = 0.

Отсюда N 1 + N 2 = mg . Применим правило моментов, считая, что ось вращения проходит через точку C . Тогда N 1 l 1 = N 2 l 2 (рис. 5).

Из уравнений получаем:

Подставляя числовые данные, находим N 1 = 300 H , N 2 = 200 H .

Ответ: 300 Н; 200 Н.

2. Легкий стержень длиной 1 м підвішано на двух тросах так, что точки крепления тросов расположены на расстоянии 10 и 20 см от концов стержня. К середине стержня підвішано груз массой 21 кг. Каковы силы натяжения тросов? (Ответ: 88 Р и 120 Р.)

3. Канат, на котором выступает канатоходец, должен выдерживать силу, что намного превышает вес канатоходца. Зачем нужно такое перестрахование?

Домашнее задание

1. Концы шнура длиной 10,4 м прикреплен на одинаковой высоте до двух столбов, расположенных на расстоянии 10 м друг от друга. К середине шнура підвішано груз массой 10 кг. Какой груз нужно подвесить к вертикального шнура, чтобы шнур был растянут с такой же силой?

2. Какой должна быть масса m противовеса, чтобы показан на рис. 6 шлагбаум легко было поднимать и опускать? Масса шлагбаума равна 30 кг.

3. До однородной балки массой 100 кг и длиной 3,5 м підвішано груз массой 70 кг на расстоянии 1 м от одного из концов. Балка концами лежит на опорах. Сила давления на каждую из опор?


По физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №6
к главе «ЛАБОРАТОРНЫЕ РАБОТЫ ».

Цель работы: установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии. Для этого к одному из плеч рычага подвешивают один или несколько грузов, а к другому прикрепляют динамометр (рис. 179).

С помощью этого динамометра измеряют модуль силы F , которую необходимо приложить для того, чтобы рычаг находился в равновесии. Затем с помощью того же динамометра измеряют модуль веса грузов Р . Длины плеч рычага измеряют с помощью линейки. После этого определяют абсолютные значения моментов М 1 и М 2 сил Р и F :

Вывод о погрешности экспериментальной проверки правила моментов можно сделать, сравнив с единицей

отношение:

Средства измерения:

1) линейка; 2) динамометр.

Материалы: 1) штатив с муфтой; 2) рычаг; 3) набор грузов.

Порядок выполнения работы

1. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.

2. Подвесьте в некоторой точке одного из плеч рычага груз.

3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо прило

жить к рычагу для того, чтобы он находился в равновесии.

4. Измерьте с помощью линейки длины плеч рычага.

5. С помощью динамометра определите вес груза Р .

6. Найдите абсолютные значения моментов сил Р и F

7. Найденные величины занесите в таблицу:

M 1 = Pl 1 , Н⋅м

8. Сравните отношение

с единицей и сделайте вывод о погрешности экспериментальной проверки правила моментов.

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.


Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:


Выводы о погрешности экспериментальной проверки правила моментов можно сделать сравнив с единицей отношение:

Средства измерения: линейка (Δl = ±0,0005 м), динамометр (ΔF = ±0,05 H). Массу грузов из набора по механике полагаем равной (0,1±0,002) кг.

Выполнение работы