Тяжёлая вода: польза и вред. Что легче лед или вода? Что тяжелее вода

1,1042 г/см³ Динамическая вязкость 0,00125 Па·с Термические свойства Т. плав. 3,81 °C Т. кип. 101,43 °C Кр. давл. 21,86 МПа Мол. теплоёмк. 84,3 Дж/(моль·К) Уд. теплоёмк. 4,105 Дж/(кг·К) Энтальпия образования −294,6 кДж/моль Энтальпия плавления 5,301 кДж/моль Энтальпия кипения 45,4 кДж/моль Давление пара 10 при 13,1 °C
100 мм рт. ст. при 54 °C
Химические свойства Растворимость в воде неограниченная Растворимость в эфире малорастворима Растворимость в этаноле неограниченная Оптические свойства Показатель преломления 1,32844 (при 20 °C) Классификация Рег. номер CAS 7789-20-0 PubChem Рег. номер EINECS 232-148-9 SMILES InChI RTECS ZC0230000 ChEBI ChemSpider Безопасность NFPA 704 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Тяжёлая вода́ - обычно этот термин применяется для обозначения тяжёловодородной воды , известной также как оксид дейтерия . Тяжёловодородная вода имеет ту же химическую формулу , что и обычная вода , но вместо двух атомов обычного лёгкого изотопа водорода (протия) содержит два атома тяжёлого изотопа водорода - дейтерия , а её кислород по изотопному составу соответствует кислороду воздуха . Формула тяжёловодородной воды обычно записывается как D 2 O или 2 H 2 O. Внешне тяжёлая вода выглядит как обычная - бесцветная жидкость без вкуса и запаха. Она не радиоактивна .

Энциклопедичный YouTube

    1 / 5

    ✪ ПОЛУЧИЛ ДЕЙТЕРИЙ И ПОПРОБОВАЛ ТЯЖЕЛУЮ ВОДУ!

    ✪ Уникальные свойства воды. Химия – просто.

    ✪ Холодный ядерный синтез в стакане воды. Дешёвое отопление, малозатратное получение водорода.

    ✪ Осмий - Самый ТЯЖЕЛЫЙ МЕТАЛЛ НА ЗЕМЛЕ!

    ✪ Галилео. Сухая вода (ч.1)

    Субтитры

История открытия

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году , за что ученый был удостоен Нобелевской премии по химии в 1934 году. А уже в 1933 году Гилберт Льюис выделил чистую, тяжёловодородную воду. При электролизе обычной воды, содержащей наряду с обычными молекулами воды незначительное количество молекул тяжёлой (D 2 O) и полутяжёлой (НОD) воды, образованных тяжёлым изотопом водорода, остаток постепенно обогащается молекулами этих соединений. Из такого остатка после многократного повторения электролиза Льюису в 1933 г. впервые удалось выделить небольшое количество воды, состоящей почти на 100 % из молекул соединения кислорода с дейтерием и получившей название тяжёлой. Этот способ производства тяжёлой воды остаётся основным и сейчас, хотя используется в основном на окончательной стадии обогащения от 5-10 % до >99 % (см. ниже).

После открытия в конце 1938 года деления ядер и осознания возможности использования цепных ядерных реакций деления, индуцированных нейтронами, возникла необходимость в замедлителе нейтронов - веществе, позволяющем эффективно замедлять нейтроны, не теряя их в реакциях захвата. Наиболее эффективно нейтроны замедляются лёгкими ядрами, и самым эффективным замедлителем должны были бы быть ядра обычного водорода (протия), однако они обладают высоким сечением захвата нейтронов . Напротив, тяжёлый водород захватывает очень мало нейтронов (сечение захвата тепловых нейтронов у протия в более чем 100 тысяч раз выше, чем у дейтерия). Технически наиболее удобным соединением дейтерия является тяжёлая вода, причём она способна также служить теплоносителем, отводя выделяющееся тепло от области, где происходит цепная реакция деления. С самых ранних времён ядерной энергетики тяжёлая вода стала важным компонентом в некоторых реакторах, как энергетических, так и предназначенных для наработки изотопов плутония для ядерного оружия. Эти так называемые тяжеловодные реакторы имеют то преимущество, что могут работать на природном (необогащённом) уране без использования графитовых замедлителей, которые на этапе вывода из эксплуатации могут представлять опасность взрыва пыли и содержат наведённую радиоактивность (углерод-14 и ряд других радионуклидов) . Однако в большинстве современных реакторов используется обогащённый уран с нормальной «лёгкой водой» в качестве замедлителя, несмотря на частичную потерю замедленных нейтронов.

Производство тяжёлой воды в СССР

Промышленное производство и применение тяжёлой воды началось с развитием атомной энергетики. В СССР при организации Лаборатории № 3 АН СССР () перед руководителем проекта А. И. Алихановым была поставлена задача создания реактора на тяжёлой воде . Это обусловило потребность в тяжёлой воде, и техническим советом Специального комитета при СНК СССР был разработан проект Постановления СНК СССР «О строительстве полупромышленных установок по производству продукта 180», работы по созданию производительных установок тяжёлой воды в кратчайшие сроки были поручены руководителю атомного проекта Б. Л. Ванникову , народному комиссару химической промышленности М. Г. Первухину , представителю Госплана Н. А. Борисову , народному комиссару по делам строительства СССР С. З. Гинзбургу , народному комиссару машиностроения и приборостроения СССР П. И. Паршину и народному комиссару нефтяной промышленности СССР Н. К. Байбакову . Главным консультантом в вопросах тяжёлой воды стал Начальник сектора Лаборатории № 2 АН СССР М. О. Корнфельд.

Свойства

Сравнение свойств обычной и тяжёлой воды

Сравнение свойств D 2 O, HDO и H 2 O
Параметр D 2 O HDO H 2 O
Температура плавления (°C) 3,82 0,00
Температура кипения (°C) 101,42 100,7 100,00
Плотность (г/см³, при 20 °C) 1,1056 1,054 0,9982
Температура максимальной
плотности (°C)
11,6 4,0
Вязкость (сантипуаз , при 20 °C) 1,25 1,1248 1,005
Поверхностное натяжение
(дин ·см, при 25 °C)
71,87 71,93 71,98
Молярное уменьшение объёма при плавлении
(см³/моль)
1,567 1,634
Молярная теплота плавления (ккал /моль) 1,515 1,436
Молярная теплота парообразования (ккал/моль) 10,864 10,757 10,515
(при 25 °C) 7,41 7,266 7,00

Нахождение в природе

В природных водах один атом дейтерия приходится на 6400…7600 атомов протия . Почти весь он находится в составе молекул DHO, одна такая молекула приходится на 3200…3800 молекул лёгкой воды. Лишь очень незначительная часть атомов дейтерия формирует молекулы тяжёлой воды D 2 O, поскольку вероятность двух атомов дейтерия встретиться в составе одной молекулы в природе мала (примерно 0,5⋅10 −7). При искусственном повышении концентрации дейтерия в воде эта вероятность растёт.

Биологическая роль и физиологическое воздействие

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими (мыши, крысы, собаки) показали, что замещение 25 % водорода в тканях дейтерием приводит к стерильности, иногда необратимой . Более высокие концентрации приводят к быстрой гибели животного; так, млекопитающие , которые пили тяжёлую воду в течение недели, погибли, когда половина воды в их теле была дейтерирована; рыбы и беспозвоночные погибают лишь при 90 % дейтерировании воды в теле . Простейшие способны адаптироваться к 70 % раствору тяжёлой воды, а водоросли и бактерии способны жить даже в чистой тяжёлой воде . Человек может без видимого вреда для здоровья выпить несколько стаканов тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней.

Таким образом, тяжёлая вода гораздо менее токсична, чем, например, поваренная соль . Тяжёлая вода использовалась для лечения артериальной гипертензии у людей в суточных дозах от 10 до 675 г D 2 O в день .

В человеческом организме содержится в качестве естественной примеси столько же дейтерия, сколько в 5 граммах тяжёлой воды; этот дейтерий в основном входит в молекулы полутяжёлой воды HDO, а также во все прочие биологические соединения, в которых есть водород.

Некоторые сведения

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична . Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока. В 1935 году, сразу после открытия тяжёлой воды, её цена составляла ориентировочно 19 долларов за грамм ). В настоящее время тяжёлая вода с содержанием дейтерия 99 ат.% , продаваемая поставщиками химических реактивов, при покупке 1 кг сто́ит около 1 евро за грамм , однако эта цена относится к продукту с контролируемым и гарантированным качеством химического реактива; при снижении требований к качеству цена может быть на порядок ниже.

Применение

Важнейшим свойством тяжёловодородной воды является то, что она практически не поглощает нейтроны , поэтому используется в ядерных реакторах для замедления нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии , биологии и гидрологиифизиологии , агрохимии и др. (в том числе в опытах с живыми организмами и при диагностических исследованиях человека). В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино ; так, крупнейший детектор солнечных нейтрино SNO (Канада) содержит 1000 тонн тяжёлой воды.

Дейтерий - ядерное топливо для энергетики будущего, основанной на управляемом термоядерном синтезе. В первых энергетических реакторах такого типа предполагается осуществить реакцию D + T → 4 He + n + 17,6 МэВ .

В некоторых странах (например, в Австралии) коммерческий оборот тяжёлой воды поставлен под государственные ограничения, что связано с теоретической возможностью её использования для создания «несанкционированных» реакторов на природном уране, пригодных для наработки оружейного плутония .

Другие виды тяжёлых вод

Полутяжёлая вода

Выделяют также полутяжёлую воду (известную также под названиями дейтериевая вода , монодейтериевая вода , гидроксид дейтерия ), у которой только один атом водорода замещён дейтерием. Формулу такой воды записывают так: DHO или ²HHO. Следует отметить, что вода, имеющая формальный состав DHO, вследствие реакций изотопного обмена реально будет состоять из смеси молекул DHO, D 2 O и H 2 O (в пропорции примерно 2:1:1). Это замечание справедливо и для THO и TDO.

Сверхтяжёлая вода

Сверхтяжёлая вода содержит тритий , период полураспада которого более 12 лет. По своим свойствам сверхтяжёлая вода (T 2 O ) ещё заметнее отличается от обычной: кипит при 104 °C, замерзает при +9 °C и имеет плотность 1,21 г/см³. Известны (то есть получены в виде более или менее чистых макроскопических образцов) все девять вариантов сверхтяжёлой воды: THO, TDO и T 2 O с каждым из трёх стабильных изотопов кислорода (16 O, 17 O и 18 O). Иногда сверхтяжёлую воду называют просто тяжёлой водой, если это не может вызвать путаницы. Сверхтяжёлая вода имеет высокую радиотоксичность .

Тяжёлокислородные изотопные модификации воды

Термин тяжёлая вода применяют также по отношению к тяжёлокислородной воде, у которой обычный лёгкий кислород 16 O заменён одним из тяжёлых стабильных изотопов 17 O или 18 O. Тяжёлые изотопы кислорода существуют в природной смеси, поэтому в природной воде всегда есть примесь обеих тяжёлокислородных модификаций. Их физические свойства также несколько отличаются от свойств обычной воды; так, температура замерзания 1 H 2 18 O составляет +0,28 °C .

Тяжёлокислородная вода, в частности, 1 H 2 18 O, используется в диагностике онкологических заболеваний (из неё на циклотроне получают изотоп фтор-18, который используют для синтеза препаратов для диагностики онкозаболеваний, в частности 18-фдг).

Общее число изотопных модификаций воды

Если подсчитать все возможные нерадиоактивные соединения с общей формулой Н 2 О, то общее количество возможных изотопных модификаций воды всего девять (так как существует два стабильных изотопа водорода и три - кислорода).

Многие задаются вопросом о том, что именно легче в окружающей среде: вода или лед? Ведь лед – это замороженная вода, а если посмотреть с другой точки зрения, то жидкость – это растаявшие массы льда. Все в нашем мире можно перевернуть с ног на голову и представить в таком виде, что любой процесс идет в обе стороны. Но, продолжая разговор о тяжести и, следовательно, плотности, нельзя не отметить, что во многом обязан своему маленькому весу обыкновенному воздуху.

Секреты льда

Тут и догадываться не надо: причина кроется в небольших полостях, которые возникают при замерзании воды. Эти полости заполняются обычным воздухом и это придает льду меньший вес. Очень полезное явление, но не только по этой причине ледяные пласты легче. Не так давно мы рассказывали о том, что наибольшая плотность воды в нормальных условиях достигается при температуре в 4 градуса Цельсия. Это значит, что нулевая температура воды дает меньшую плотность, то есть, больший объем. Именно по этой причине (поскольку лед не может возникнуть при температуре, больше 0), куски льда плавают.

Все интересное просто

Как можно подробнее рассказать об этом интересном явлении? Итак, представим себе процесс, который протекает в воде. Этот процесс называется конвекцией: обмен энергией посредством струек. Течения и струйки есть даже в стоячей воде, от них никуда нельзя деться и даже современные ученые до сих пор не смогли выяснить, что же именно кроется за природой движения воды. Поэтому обмен энергий протекает постоянно. Если идет обмен энергией, то меняется и температура. Добавив к этому изменение плотности, получим, что вода, которая обладает большей плотностью, опускается на дно. Но она не может замерзнуть, ведь она слишком теплая для этого.

Таким образом, на освободившееся место выдвигается менее плотная, то есть, уже перешедшая точку в +4 градуса и приближающаяся к нулю. Эта вода имеет все шансы замерзнуть. Итак, основные характеристики, показывающие и доказывающие, что вода более плотная и тяжелая, а лед легче. Прежде всего, это наличие пузырьков воздуха или какого-либо газа (ведь вмерзнуть может как воздух, так и отдельно взятый газ). Во-вторых, низкая плотность и, как следствие, больший объем. Все вместе это дает лишь чуть меньшую плотность.

И если массы льда легче того же объема воды, то совершенно ненамного. Представьте себе разницу лишь в десять процентов. В куске льда может быть огромное количество полостей, но при этом общий их объем будет очень мал. Можно представить себе, что если айсберг плывет по воде, то под кромкой воды скрыто 90% общей массы айсберга. Невероятные объемы и веса, которые порой кажутся просто фантастическими. И все же эти объекты плавают.

Когда в воде есть соль

Все это касается пресной воды. Что же сказать о соленой? Она . Обычно указывают что-то от -3,2 до -3,5 градусов. Получается, что в этом случае, когда из-за соли становится больше, а при замерзании ледяные массы частично отторгают соль едва ли не на молекулярном уровне, то разница в плотностях становится куда более весомой. И составляет она уже не десять процентов, а доходит почти до двадцати. То есть, если взять тот же айсберг, то над водой будет находиться 20% его массы, а под водой – 80.

Поскольку очень многое зависит от состава воды, то не всегда можно быстро и объективно сказать, насколько легче объем льда. Но даже без тщательного исследования можно смело сказать, что влага всегда тяжелее, иначе бы сегодня в Арктике нередко попадались подводные айсберги.

Литр – это единица объема для жидких веществ. Литрами допустимо измерять также сыпучие вещества с достаточно мелкой фракцией. Для прочих твердых тел используют понятие кубический метр (дециметр, сантиметр). Определение термина и понятия литра было сформулировано Генеральной конференцией по мерам и весам в 1901 году. Определение звучит следующим образом: 1 литр – это объем одного килограмма чистой пресной воды при атмосферном давлении 760 мм ртутного столба и температуре +3,98оС. При этой температуре вода достигает наибольшей плотности.



Перейдя температурный порог в +3,98оС, плотность воды снова начинает уменьшаться, и при +8оС опять достигает тех же значений, что и при нуле.
Пар, вода и лед – это состояния одного и того же вещества, молекула которого содержит два атома водорода и один атом кислорода. Разница между водой в жидком состоянии и твердом заключается в особенностях межмолекулярных построений. В жидкой субстанции вода имеет большую плотность, чем в твердом.

Что тяжелее?

Если в какой-либо сосуд налить, к примеру, воды, она будет иметь объем, равный одному литру. Если вы подвергните эту воду заморозке, то при той же массе в 1 кг, вода, замерзая, будет стремиться занять больше места в сосуде. Закрытый сосуд, ограниченный емкостью 1 кв. дм (1 литр), лед разорвет. Получается, что при одинаковой массе жидкой и замороженной воды, лед будет иметь больший объем, что нарушит первоначальное условие.



Если поставить на заморозку литровую с 1 000 мл воды (1 литр), то в процессе отвердения из нее выльется примерно 80 мл воды. А чтобы получить 1 литр льда, достаточно заморозить 920 мл воды.
Если же изначально исходить из равенства объемов, и замороженную воду – кусок льда – ограничить размерами куба со стороной, равной 1 дм (1 л), то его масса станет меньше первоначального килограмма. Как может быть иначе, если вы обрежете и удалите часть льда, подгоняя кубик под заданный объем. Поэтому вода в объеме литра тяжелее льда в том же объеме.

Заморозить и восстановить

Сегодня все труднее встретить чистую природную воду. Особенно в условиях города, где она, прежде чем попасть в квартиру, фильтруется, хлорируется, подвергается другим видам физической и химической обработки. Чистая вода становится дефицитом, стоимость добываемой воды из артезианских скважин растет. Однако вода, оказывается, восстанавливает свою изначальную структуру и энергетику после заморозки – она очищается. Поэтому: пейте талую воду! Не зря на нее так хорошо реагируют весной все растения и с удовольствием пьют животные.

Удивительная способность льда всплывать и курсировать на поверхности воды объясняется ни чем иным, как элементарными физическими свойствами, который изучают в курсе средней и старшей школы. Доподлинно известен тот факт, что вещества при нагревании имеют свойство расширяться, как, например, ртуть в градуснике, также и вода при понижении температуры замерзает и увеличивается в объемах, образуя на поверхности водоемов корку льда.

Увеличение объема замерзшей воды нередко играет злую шутку с теми, кто забывает емкости с жидкостью на морозе. Вода буквально разрывает тару.

Мнение о том, что во вновь образованной толще льда появляются микроскопические поры, заполненные воздухом, не является ошибочным, но и не может объяснить факт всплывания должным образом. В соответствии с принципами, выведенными и сформулированными древнегреческим ученым, получившими впоследствии название закон Архимеда, тела, которые погружаются в жидкость, выталкиваются из нее с силой, которая равна весовым характеристикам жидкости, вытесняемой данным телом.

Физика воды

Доподлинно известно, что лед примерно на одну десятую легче воды, именно поэтому гигантские айсберги погружены в океан примерно на девять десятых своего общего объема и видны лишь на небольшую долю. Данные весовые объясняются свойствами кристаллической решетки, которая у воды, как известно, не обладает упорядоченной структурой и характеризуется постоянным перемещением и столкновением молекул. Это и объясняет более высокую плотность воды по сравнению со льдом, молекулы которого под воздействием низких температур показывают низкую подвижность и небольшую энергетическую составляющую и соответственно меньшую плотность.

Известно также, что максимальную плотность и вес вода имеет при температуре, равной 4оС, дальнейшее понижение ведет к расширению и снижению показателя плотности, что и объясняет свойства льда. Именно поэтому в водоемах тяжелая четырехградусная вода опускается на дно, давая возможность более прохладной подняться и превратиться в не тонущий лед.

Лед имеет специфические свойства, к примеру, он устойчив к инородным элементам, имеет низкую реактивную способность, отличается подвижностью атомов водорода, а потому имеет низкий предел текучести.

Понятно, что данное свойство является основополагающим для сохранения жизни на Земле, ведь если бы лед имел свойство погружаться под толщу воды, с течением времени все водоемы Земли после понижения температур могли заполниться слоями, постоянно образующимися на поверхности льда, что привело бы к природной катастрофе и полному исчезновению флоры и фауны водоемов от самого экватора до противоположных полюсов.

и чем она отличается от лёгкой.

Многие слышали про существование некой «тяжелой воды», но мало кто знает, почему она называется тяжелой, и где вообще эта сказочная субстанция находится. Цель этот материала - прояснить ситуацию, а так же пояснить, что ничего опасного и сказочного в тяжёлой воде нет , и что она присутствует в небольших количествах практически во всех обычных водах, в том числе которые мы каждый день пьём.

«Тяжелая вода» действительно является тяжелой по отношению к обычной воде. Ненамного, примерно на одну десятую по массе, но этого достаточно, чтобы изменить свойства оной воды. А «тяжесть» её заключается в том, что вместо «легкого водорода», или протия, 1H, в молекулах этой воды присутствует тяжелый изотоп водорода  2H, или дейтерий (D), в ядре атома которого кроме протона находится ещё и один нейтрон. С точки зрения химии, формула тяжёлой воды такая же, как у простой, Н2О, но физики внесли коррективы, и поэтому записывать формулу принято как - D2O или 2H2O. Есть ещё один вариант тяжёлой, или её ещё называют «сверхтяжёлой» воды - Т2О - это оксид трития, изотопа водорода с двумя нейтронами в ядре (а всего нуклонов три, отсюда «тритий»). Но три т ий радиоактивен, да и военные используют его в качестве сырья для водородных бомб (и, соответственно, секретят всё, что с ним связано - просто на всякий случай) , так что о сверхтяжёлой воде мы в этом материале говорить не будем.

Чем же так ценна тяжёлая вода, что её не только выделили из простой (а это, поверьте, целое дело), но и носятся, как с писаной торбой?

А всё дело в добавочных нейтронах, присоединившихся к ядрам протия. Если рассматривать не молекулу воды в целом, а атомы водорода по отдельности , то получается, что они стали в два раза тяжелее ! Не на одну десятую, а в два! То есть, « толше » они стали, т учнее. А раз они тучнее , то как всем тучным, им не хочется много двигаться. Они «ленивые», не особо активные по сравнению с протием, и именно эт им объясняются все отличия в свойствах между лёгкой и тяжёлой водой .

Для начала приведём перечень этих свойств.

    Тяжелая вода не имеет ни запаха, ни цвета; по этому параметру лёгкую и тяжёлую воду не различить.

    Температура её плавления выше, лёд тяжёлой воды начинает образовываться уже при температуре 3,813 °C

    Закипает же она при более высокой температуре - 101,43 °C

    Вязкость тяжелой воды на 20% выше вязкости обычной

    Плотность - 1, 1042 г/см3 при температуре 25°C, что тоже ненамного, но выше плотности обычной воды.

То есть, различить их можно даже на примитивном, бытовом уровне. Но есть у тяжёлой воды и свойства, которые трудно определить «дома на кухне». Например:

    Тяжёлая вода, в отличие от лёгкой, очень плохо поглощает нейтроны. И потому является идеальным замедлителем для ядерных реакциях на медленных, «тепловых» нейтронах.

Есть и другие специфические её свойства, но они выходят за рамки обывательского восприятия и интересны в основном узким специалистам , так что о них тоже не будем.

Хорошо, а где же она располагается, эта «тяжёлая вода»? Где этот волшебный источник с ценным содержимым? Ценным, ибо килограмм тяжёлой воды стоит более тысячи евро.

А нет его, волшебного источника ! Он расположен… Везде.

В среднем соотношение молекул тяжёлой и обычной воды в природе составляет 1:5500. Однако это значение «среднее по больнице»; в морской воде содержание тяжёлых изотопов выше, в речной и дождевой воде - заметно ниже. (1:3000-3500 против 1:7000-7500). Так же наблюдается сильное различие в концентрациях в зависимости от региона и местности. Существуют также отдельные источники (отдельные районы) где концентрация тяжёлой воды зашкаливает и сравнима с концентрацией обычной протиевой , но это исключительные случаи.

С одной стороны, распространённость тяжёлой воды - благо. Её можно найти буквально везде, в любом стакане. С другой - малая концентрация очень неспособствует выделению её в чистом виде, отдельно от протиевой . Отсюда и такая высокая стоимость её получения.

Интересн о, но факт: ученые, открывшие тяжелую воду, отнеслись к ней как к научному казусу , чему-то малозначимому, побочному и развлекательному. Н е увидели больших возможностей в ее применении (в прочем, будем объективны , такая ситуация, с научными открытиями на каждом шагу). И лишь спустя некоторое время, совершенно другими исследователями, был открыт ее научный и промышленный потенциал.

«Тяжелая вода» применяется:

    В ядерных технологиях;

    В ядерных реакторах, для торможения нейтронов и в качестве теплоносителя;

    В качестве изотопного индикатора в химии, физике, биологии и гидрологии;

    Как детектор некоторых элементарных частиц;

    Вполне вероятно, что в обозримом будущем тяжелая вода станет бесконечным источником э нергии - учёные всерьёз думают, как использовать дейтери й в качестве топлива для управляемого термоядерного синтеза. Но это пока из области фантастики, хотя успехи на данном поприще неоспоримы.

Химикам же тяжёлая вода интересна тем, что полученный из неё дейтерий легко определяем простыми лабораторными способами. И если синтезировать с его помощью заданные вещества, полностью заменив дейтерием протий, и соединить их с другими, «нормальными» веществами, можно отследить, какой именно атом водорода в процессе реакции вошел в состав той молекулы, а какой - иной. То есть с помощью дейтерия химики «метят» молекулы и смотрят, как протекает механизм той или иной реакции. И поверьте, этот метод стоит того, чтоб назвать его революционным - в своё время он перевернул знания множества теоретиков, знавших «как оно должно быть», заставив вновь и вновь пересматривать законы природы, находя новые и новые причинно- следственные связи , строить новые гипотезы и теории, что, конечно, сильно продвинуло химию, как науку .

Простому же далёкому от теоретической химии обывателю интереснее, а как тяжёлая вода действует на человека, и вообще на биологические системы, как таковые? И это очень правильный интерес. Ибо тяжёлая вода для живых организмов - ЯД!

Тяжелая вода, в отличие от лёгкой, угнетает жизненные процессы на всех уровнях . Биологи е ё так и называют - «мё ртв ая вода» . В ее присутствии химические реакции тормозятся, а биологические процессы … К ак минимум, замедляются. В том числе, например, замедляется и прекращается размножение микробов и бактерий.

Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Н екоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии), но это исключения. Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней, но при постоянном длительном воздействии начинается замещение воды в тканях, после чего проявляются негативные последствия.

В качестве эксперимента учёные попробовали поить тяжелой водой мышей со злокачественными опухолями. Ну, помните сказку о живо й и мёртвой воде, где мёртвая заживляет раны? И у них получилось - вода оказалась по настоящему мертвой, опухоли уничтожила ! Правда, вместе с мышами. Так же тяжелая вода действ ует отрицательно на раститения . Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой , ч ерез недолгое время у них начиналось расстройство обмена веществ, разрушались почки. При увеличении доли тяжелой воды животные погибали.

Но есть и обратная сторона медали: н аоборот, снижени е содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое. То есть, кроме «мёртвой воды» учёные обнаружили и «живую», и детская сказка стала реальностью.

Как избежать контакта с «мёртвой» водой и увеличить использование «живой»? Наверное, никак. И та и та получатся в промышленных масштабах и стоит сумасшедших денег. Однако в быту мы хоть и несильно, но можем влиять на качество употребляемой воды Например, дождевая вода содержит заметно больше тяжелой воды , чем снег. Так что в « мистическх » экспериментах с талой водой и её влиянием на организм не так уж много мистического. Так же выше содержание тяжёлой воды в море, и в процессе опреснения методом обратного осмоса она только накапливается, что следует учитывать при проектировании опреснительных установок. Известны случаи, когда целые регионы стали жертвами незнания этого факта. Люди, проживавшие в этих регионах, регулярно использовали опресненную морскую воду с повышенным содержанием дейтерия, вследствие чего многие жители заболели тяжелыми болезнями.

Однако в природе нет ничего лишнего, и не стоит так уж открещиваться от тяжёлой воды , клеймя её ядом или называя «бесполезной» . Она требует от нас особого адекватного отношения, внимания и дальнейшего изучения , и этим мало чем отлчается от великого множества веществ , которые требуют не меньшего внимания . Химия - это наука, вот и надо подходить и вопросу со всем арсеналом её возможностей .

М. АДЖИЕВ

Тяжелая вода очень дорога и дефицитна. Однако если удастся найти дешевый и практичный способ ее получения, то области применения этого редкого пока ресурса заметно расширятся. Могут открыться новые страницы в химии, биологии, а это новые материалы, неизвестные соединения, может быть, и неожиданные формы жизни.

Рис. 1.
Молекулы воды прочно связаны друг с другом и образуют устойчивую молекулярную конструкцию, которая сопротивляется любым внешним воздействиям, в частности тепловым. (Именно поэтому, чтобы превратить воду в пар, нужно подвести к ней много тепла). Молекулярная конструкция воды скреплена каркасом из особых квантово-механических связей, названных в 1920 году двумя американскими химиками Латимером и Родебушем водородными. Все аномальные свойства воды, включая необычное поведение при замерзании, объясняются с точки зрения концепции водородных связей.

Вода в природе бывает нескольких «сортов». Обычная, или протиевая (Н 2 О). Тяжелая, или дейтериевая (D 2 O). Сверхтяжелая, или тритиевая (Т 2 О), но ее в природе почти нет. Различается вода и по изотопному составу кислорода. Всего же насчитывается не менее 18 ее изотопных разновидностей.

Если мы откроем водопроводный кран и наберем чайник, то там будет не однородная вода, а ее смесь. При этом дейтериевых «вкраплений» окажется очень немного – примерно 150 граммов на тонну. Получается, что тяжелая вода есть повсюду – в каждой капле! Проблема в том, как ее взять. Ныне во всем мире ее добыча связана с огромными затратами энергии и очень сложным оборудованием.

Однако есть предположение, что на планете Земля возможны такие природные ситуации, когда тяжелая и обычная вода на какое-то время отделяются одна от другой – D 2 O из рассеянного, «растворенного» состояния переходит в концентрированное. Так, может быть, существуют месторождения тяжелой воды? Пока однозначного ответа нет: никто из исследователей этим вопросом прежде не занимался.

А вместе с тем известно, что физико-химические свойства D 2 O совсем иные, чем у Н 2 0 – ее постоянного спутника. Так, температура кипения тяжелой воды +101,4°С, а замерзает она при +3,81°С. Ее плотность на 10 процентов больше, чем у обычной.

Надо также заметить, что происхождение тяжелой воды, по-видимому, сугубо земное – в космосе ее следов не обнаружено. Дейтерий образуется из протия вследствие захвата им нейтрона космического излучения. Мировой океан, ледники, атмосферная влага – вот природные «фабрики» тяжелой воды.

Рис. 2. Зависимость плотности обычной и тяжелой воды от температуры. Разница в плотности одной и другой разновидностей воды превышает 10%, и поэтому возможны условия, когда переход в твердое состояние при охлаждении происходит вначале у тяжелой воды, а затем у обычной. Во всяком случае, физика не запрещает появления участков твердой фазы с повышенным содержанием дейтерия. Такому «тяжелому» льду на диаграмме соответствует заштрихованный участок. Если бы вода была «нормальной», а не аномальной жидкостью, то зависимость плотности от температуры имела бы вид, показанный пунктирной линией.

Итак, поскольку есть заметная разница в плотности между D 2 O и Н 2 О, то именно плотность, а также агрегатное состояние и могут служить наиболее чувствительными критериями в поисках возможных месторождений тяжелой воды – ведь эти критерии связаны с температурой окружающей среды. А как известно, окружающая среда наиболее «контрастна» в высоких широтах планеты.

Но к настоящему времени сложилось мнение, что воды высоких широт бедны дейтерием. Поводом к этому стали результаты исследований проб воды и льда из Большого Медвежьего озера в Канаде и из других северных водоемов. Обнаружились также колебания в содержании дейтерия по сезонам года – зимой, например, в реке Колумбия его меньше, чем летом. Эти отклонения от нормы связывались с особенностями распределения атмосферных осадков, которые, как принято предполагать, «разносят» дейтерий по планете.

Похоже, что никто из исследователей сразу не заметил скрытого противоречия в этом утверждении. Да, атмосферные осадки влияют на распределение дейтерия по водоемам планеты, однако они никак не влияют на глобальный процесс образования дейтерия!

Когда на Севере наступает осень, в реках начинается быстрое остывание водной массы, которое убыстряется под воздействием вечной мерзлоты, одновременно идет ассоциация молекул H 2 O. Наконец, наступает критический момент максимальной плотности – температура воды всюду чуть ниже +4°С. И тогда в придонной зоне на некоторых участках интенсивно намораживается рыхлый подводный лед.

В отличие от обычного льда он не имеет правильной кристаллической решетки, у него иная структура. Центры его кристаллизации различны: камни, коряги и разные неровности, причем не обязательно лежащие на дне и связанные с мерзлым грунтом. Появляется рыхлый лед на реках глубоких, со спокойным – ламинарным – течением.

Подводное ледообразование обычно заканчивается тем, что льдины всплывают на поверхность, хотя в это время никакого другого льда нет. Подводный лед иногда появляется и летом. Возникает вопрос: что это за «вода в воде», которая меняет свое агрегатное состояние, когда установившаяся температура в реке слишком высока для того, чтобы в лед превращалась обычная Н 2 О, чтобы, как говорят физики, произошел фазовый переход?

Можно допустить, что рыхлый лед представляет собой обогащенные концентрации тяжелой воды. Кстати, если это так, то нужно помнить, что тяжелая вода не отличима от обычной, однако потребление ее внутрь организма может вызвать тяжелые отравления. К слову сказать, местные жители высоких широт не употребляют речной лед для приготовления пищи – только озерный лед или снег.

«Механизм» фазового перехода D 2 O в реке очень напоминает тот, что используется химиками в так называемых кристаллизационных колоннах. Только в северной реке «колонна» растянута на сотни километров и не столь контрастна по температурному режиму.

Если же иметь в виду, что через центры кристаллизации в реке за короткое время проходят сотни и тысячи кубических метров воды, из которых превращается в лед – намораживается – пусть тысячная доля процента, то и этого достаточно, чтобы говорить о способности тяжелой воды концентрироваться, то есть образовывать месторождения.

Только присутствием таких концентраций можно объяснить тот доказанный факт, что зимой в северных водоемах процентное содержание дейтерия заметно уменьшается. Да и полярные воды, как показывают пробы, тоже бедны дейтерием, и в Арктике, вполне вероятно, есть районы, где плавают в основном только льдины, обогащенные дейтерием, – ведь рыхлый донный лед появляется первым и тает последним.

Больше того, как показали исследования, ледники и льды высоких широт в целом богаче тяжелыми изотопами, чем воды, омывающие льды. Например, в Южной Гренландии, в районе станции «Дай-3», выявлены изотопные аномалии на поверхности ледников, и происхождение таких аномалий пока не объяснено. Значит, могут встретиться и льдины, обогащенные дейтерием. Дело, как говорится, за малым – нужно найти эти пока еще гипотетические месторождения тяжелой воды.

М. АДЖИЕВ, географ.

Источники информации:

  1. Л. Кульский, В. Даль, Л. Ленчина. Вода знакомая и загадочная .
    – К.: «Радянська школа», 1982.
  2. Наука и жизнь №10, 1988.