Основы общей теории измерений. Основные свойства, определяющие качество измерений

САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СЕРВИСА И ЭКОНОМИКИ

по дисциплине: «Метрология, стандартизация, сертификация»

на тему: «Погрешность измерений. Точность и достоверность результатов измерений»

Выполнила:

Курс: 3, заочное отделение

Специальность: Экономика и управление на предприятии (здравоохранения)

Санкт-Петербург, 2008

Введение 3

Погрешность измерений 4

Точность и достоверность результатов измерений 9

Заключение 11

Список использованной литературы 12

Введение

Метрология как наука и область практической деятельности человека зародилась в глубокой древности. На всем пути развития человеческого общества измерения были основой взаимоотношений людей между собой, с окружающими предметами, с природой. При этом вырабатывались определенные представления о размерах, формах, свойствах предметов и явлений, а также правила и способы их сопоставления.

С течением времени и развитием производства ужесточились требования к качеству метрологической информации, что привело в итоге к созданию системы метрологического обеспечения деятельности человека.
В данной работе мы рассмотрим одно из направлений метрологического обеспечения - метрологическое обеспечение деятельности по сертификации и стандартизации продукции в Российской Федерации.

Погрешность измерений

Метрология – наука об измерениях, методах средствах обеспечения их единства и способах достижения требуемой точности.

Измерение – нахождение значения физической величины опытным путем с помощью спец тех средств.

Значение физической величины это - количественная оценка, т.е. число, выраженное в определенных единицах, принятых для данной величины. Отклонение результата измерения от истинного значения физической величины называют погрешностью измерения:

где А – измеренное значение, А0 – истинное.

Так как истинное значение неизвестно, то погрешность измерения оценивают исходя из свойств прибора, условий эксперимента, анализа полученных результатов.

Обычно объекты исследования обладают бесконечным множеством свойств. Такие свойства называют существенными или основными. Выделение существенных свойств называют выбором модели объекта. Выбрать модель - значит установить измеряемые величины, в качестве которых принимают параметры модели.

Идеализация, присутствующая при построении модели, обуславливает несоответствие между параметром модели и реальным свойством объекта. Это приводит к погрешности. Для измерений необходимо, чтобы погрешность была меньше допустимых норм.

Виды, методы и методики измерений.

В зависимости от способа обработки экспериментальных данных различают прямые, косвенные, совокупные и совместные измерения.

Прямые - измерение, при котором искомое значение величины находят непосредственно из опытных данных (измерение напряжения вольтметром).

Косвенные - измерение, при котором искомое значение величины вычисляется по результатам прямых измерений других величин (коэффициент усиления усилителя вычисляют по измеренным значениям входного и выходного напряжений).

Результат, полученный в процессе измерения физической величины на некотором временном интервале - наблюдением. В зависимости от свойств исследуемого объекта, свойств среды, измерительного прибора и других причин измерения выполняют с однократным или многократным наблюдениями. В последнем случае для получения результата измерения требуется статистическая обработка наблюдений, а измерения называют статистическими.

В зависимости от точности оценки погрешности различают измерения с точным или с приближенным оцениванием погрешности. В последнем случае учитывают нормированные данные о средствах и приближенно оценивают условия измерений. Таких измерений большинство. Метод измерения – совокупность средств и способов их применения.

Числовое значение измеряемой величины определяют путем её сравнения с известной величиной - мерой.

Методика измерений - установленная совокупность операций и правил, выполнение которых обеспечивает получение результата измерений в соответствии с выбранным методом.

Измерение – единственный источник информации о свойствах физических объектов и явлений. Подготовка к измерениям включает:

· анализ поставленной задачи;

· создание условий для измерений;

· выбор средств и методов измерений;

· подготовку оператора;

· опробование средств измерений.

Достоверность результатов измерений зависит от условий, в которых выполнялись измерения.

Условия – это совокупность величин, влияющих на значение результатов измерения. Влияющие величины разделяются на следующие группы: климатические, электрические и магнитные (колебания электрического тока, напряжения в сети), внешние нагрузки (вибрации, ударные нагрузки, внешние контакты приборов). Для конкретных областей измерений устанавливают единые нормальные условия. Значение физической величины, соответствующее нормальному, называют номинальным. При выполнении точных измерений применяют специальные средства защиты, обеспечивающие нормальные условия.

Организация измерений имеет большое значение для получения достоверного результата. Это в значительной мере зависит от квалификации оператора, его технической и практической подготовки, проверки средств измерений до начала измерительного процесса, а также выбранной методики проведения измерений. Во время выполнения измерений оператору необходимо:

· соблюдать правила по технике безопасности при работе с измерительными приборами;

· следить за условиями измерений и поддерживать их в заданном режиме;

· тщательно фиксировать отсчеты в той форме, в которой они получены;

· вести запись показаний с числом цифр после запятой на две больше, чем требуется в окончательном результате;

· определять возможный источник систематических погрешностей.

Принято считать, что погрешность округления при снятии отсчета оператором не должна изменять последнюю значащую цифру погрешности окончательного результата измерений. Обычно ее принимают равной 10 % от допускаемой погрешности окончательного результата измерений. В противном случае число измерений увеличивают настолько, чтобы погрешность округления удовлетворяла указанному условию. Единство одних и тех же измерений обеспечивается едиными правилами и способами их выполнения.

Выполнение измерений.

Слагаемые делят на погрешность меры, погрешность преобразования, погрешность сравнения, погрешность фиксации результата. В зависимости от источника возникновения могут быть:

· погрешности метода (из-за неполного соответствия принятого алгоритма математическому определению параметра);

· инструментальные погрешности (из-за того, что принятый алгоритм не может быть точно реализован практически);

· внешние ошибки - обусловлены условиями, в которых проводятся измерения;

· субъективные ошибки - вносятся оператором (неправильный выбор модели, ошибки отсчитывания, интерполяции и т.д.).

В зависимости от условий применения средств выделяют:

· основную погрешность средства, которая имеет место при нормальных условиях (температура, влажность, атмосферное давление, напряжение питания и т.д.), оговоренных ГОСТ;

· дополнительную погрешность, которая возникает при отклонении условий от нормальных.

В зависимости от характера поведения измеряемой величины различают:

· статическую погрешность - погрешность средства при измерении постоянной величины;

· погрешность средства измерения в динамическом режиме. Она возникает при измерении переменной во времени величины, из-за того, что время установления переходных процессов в приборе больше интервала измерения измеряемой величины. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и статической погрешностью.

По закономерности проявления различают:

· систематическую погрешность - постоянную по величине и знаку, проявляющуюся при повторных измерениях (погрешность шкалы, температурная погрешность и т.д.);

· случайную погрешность - изменяющуюся по случайному закону при повторных измерениях одной и той же величины;

· грубые погрешности (промахи) следствие небрежности или низкой квалификации оператора, неожиданных внешних воздействий.

По способу выражения различают:

· абсолютную погрешность измерения, определяемую в единицах измеряемой величины, как разность между результатом измерения А и истинным значением А 0:

· относительную погрешность - как отношение абсолютной погрешности измерения к истинному значению:

Так как А 0 =А n , то на практике в вместо А 0 подставляют А п.

Абсолютную погрешность измерительного прибора

Δ n =A n -A 0 ,

где А п - показания прибора;

Относительную погрешность прибора:

Приведенную погрешность измерительного прибора

где L - нормирующее значение, равное конечному значению рабочей части шкалы, если нулевая отметка находится на краю шкалы; арифметической сумме конечных значений шкалы (без учета знака), если нулевая отметка находится внутри рабочей части шкалы; всей длине логарифмической или гиперболической шкалы.

Точность и достоверность результатов измерений

Точность измерений - степень приближения измерения к действительному значению величины.

Достоверность – это характеристика знаний как обоснованных, доказанных, истинных. В экспериментальном естествознании достоверными знаниями считаются те, которые получили документальное подтверждение в ходе наблюдений и экспериментов. Наиболее полным и глубоким критерием достоверности знаний является общественно-историческая практика. Достоверные знания следует отличать от вероятностных знаний, соответствие которых действительности утверждается только в качестве возможной характеристики.

Достоверность измерений – это показатель степени доверия к результатам измерения, то есть вероятность отклонений измерения от действительных значений. Точность и достоверность измерений определяются погрешностью из-за несовершенства методов и средств измерений, тщательности проведения опыта, субъективных особенностей и квалификации экспериментаторов и других факторов.

Государственная система приборов.

Повышение требований к количеству и качеству средств измерений для нужд народного хозяйства привело к созданию Государственной системы промышленных приборов и средств автоматизации (ГСП). ГСП – это совокупность изделий, предназначенных для использования в промышленности в качестве технических средств автоматических и автоматизированных систем контроля, измерения, регулирования и управления технологическими процессами (АСУТП). С помощью средств ГСП измеряются и регулируются величины: пространства и времени, механические, электрические, магнитные, тепловые и световые.

Развитие науки и техники обуславливает повышение роли измерений. Количество средств и методов измерения непрерывно возрастает, при этом важно, чтобы количественное и качественное развитие метрологии происходило в рамках единства измерении, под которым понимают представление результатов в узаконенных единицах с указанием значения и характеристик погрешностей.

Заключение

В деятельности по метрологическому обеспечению участвуют не только метрологи, т.е. лица или организации, ответственные за единство измерений, но и каждый специалист: или как потребитель количественной информации, в достоверности которой он заинтересован, или как участник процесса её получения и обеспечения измерений.

Современной состояние системы метрологического обеспечения требует высокой квалификации специалистов. Механическое перенесение зарубежного опыта в отечественные условия невозможно, и специалистам необходимо иметь достаточно широкий кругозор, чтобы творчески подходить к выработке и принятию творческих решений на основе измерительной информации. Это касается не только работников производственной сферы. Знания в области метрологии важны и для специалистов по сбыту, менеджеров, экономистов, которые должны использовать достоверную измерительную информацию в своей деятельности.

Список использованной литературы

1. Под ред. В. А. Швандара, Стандартизация и управление качеством продукции: Учебник для ВУЗов, В. Пейджер, Е. М. Купряков и др.; - М.: Юнити-Дана, 2000;

2. http://sa.sibsiu.ru/include/logos/metr/1_2.htm;

3. www.sura.ru/t2000/docs/pdf/СВИ_Методы_и_средства_1_2.pdf;

4. http://www.nntu.sci-nnov.ru/RUS/fakyl/VECH/metod/metrology/literat.htm;

5. http://users.kpi.kharkov.ua/fmp/biblio/BOOK1/1-4.html;

6. http://www.itsu.ru/book/certification/vibor.htm.

Действительно, термин "достоверность измерений" законодательно не определён. Да, наверное. и не имеет смысла.

Вместе с тем определение достоверности измерений даётся в некоторых учебниках. Например, в "Справочном пособии для работников метрологических служб" уважаемых Артемьева Б.Г., Лукашова Ю.Е. (М.: изд-во стандартов, 2004 - С. 99) приводится такое определение "Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики ".

Отсюда следует, что термин достоверность применяется не к точечному значению результата измерений (числовому значению измеряемой величины), а к оценке погрешности этого результата (или, кому нравится, неопределённости интервала, в котором находится истинное значение измеряемой величины). Вполне достаточно доверительной вероятности и доверительного интервала.

В своё время меня учили, что достоверность целесообразно применять лишь для контроля по альтернативному признаку "годен/ не годен"

Контроль погрешности выполняется вне измерения как такового. Он является измерительным контролем, и, как всякий контроль, естественно, характеризуется достоверностью. В свою очередь, измерение, выполняемое в целях ведения этого контроля, характеризуется погрешностью.

Что касается любых оценок (погрешности или неопределенности), то они характеризуются не достоверностью, а неопределенностью, поскольку являются результатами измерений. Таким образом, как только мы переходим в концепцию неопределенности, разговор о каких-либо достоверностях прекращается сам собой. В философские причины такого положения я, при желании, могу углубиться отдельно, однако сомневаюсь, что рамки форума позволят сделать это.

Из сказанного можно сделать следующий вывод: достоверность являющаяся характеристикой контроля погрешности, имеет к измерению лишь опосредованное отношение и то, только в концепции погрешности. Следовательно, термины "достоверность измерений" и "достоверность результата измерений" не имеют права на существование и применять их в какой либо связи некорректно.

Ставить в один ряд понятия "доверительная вероятность" и "доверительный интервал" при обсуждении данного вопроса, по моему мнению, не следует, поскольку "доверительный интервал" в данном контексте характеризует точность измерений, а доверительная вероятность - достоверность контроля погрешности.

И еще, если позволите, одно замечание. Полуширина интервала, в котором находится истинное значение измеряемой величины, при некоторых допущениях может рассматриваться как неопределенность. Тогда неопределенность значения полуширины этого интервала - это уже неопределенность второго рода.

Изменено 6 Ноября 2009 пользователем Lavr

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относится математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью . Эта вероятность называется доверительной или надежностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности , равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Смысл интервальной оценки погрешности иллюстрируется рис. 4.3 . Здесь использованы следующие обозначения: - погрешность измерения; - плотность распределения погрешностей ; - функция распределения погрешностей, . Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины описывается функцией , где - среднеквадратическая погрешность.

Если погрешность измерения находится внутри интервала , то вероятность этого события вычисляется как

Здесь использовано свойство симметрии функции распределения для закона Гаусса.

Таким образом, если задан интервал , который содержит в себе погрешность измеряемого параметра , то вероятность того, что погрешность не выходит за границы интервала, можно найти по формуле (4.36) для нормального закона распределения. Вероятность называют также надежностью оценки погрешности и обозначают символом :

.

Для вычисления функции распределения удобно использовать пакеты MathCAD, Matlab. С их помощью из формулы (4.37) несложно найти величину доверительного интервала , если задана величина надежности .

Для доверительная вероятность =68,3%; для =95,3%; для =99,7% и для = 99,994%.

Для увеличения надежности оценки погрешности измерений или для сужения доверительного интервала при заданной надежности можно использовать усреднение результатов многократных измерений . Поскольку оценка среднеквадратической погрешности результата усреднения равна (см. (3.2)), где - среднеквадратическая погрешность средства измерений, - количество однократных измерений, то, подставив в (4.37) вместо величину , получим

.

Эта формула позволяет найти количество однократных измерений , которое необходимо усреднить для получения требуемого доверительного интервала при заданной надежности или требуемой надежности при заданном доверительном интервале . Поскольку формула (4.38) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

Следует иметь в виду, что повышение точности путем усреднения результатов многократных измерений имеет множество ограничений (см. п. "Многократные измерения").

Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге . Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учете факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

4.1.6. Погрешность метода измерений

Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

  • сопротивление кабелей;
  • соотношение между входным импедансом средства измерений и выходным импедансом датчика;
  • качество экранирования и заземления, мощность источников помех;
  • погрешность метода косвенных, совместных или совокупных измерений;
  • наличие внешних влияющих факторов, если они не учтены в дополнительной погрешности средства измерений;
  • погрешность обработки результатов измерений программным обеспечением.

Все погрешности, которые не могут быть учтены в процессе сертификационных испытаний и внесены в паспорт средства измерений, а появляются в конкретных условиях применения, относятся к методическим. В отличие от них, инструментальные погрешности нормируются в процессе производства измерительного прибора и заносятся в его эксплуатационную документацию. Таким образом, если в состав смонтированной автоматизированной измерительной системы входят средства измерений с нормированными погрешностями, то погрешность, вызванная перечисленными выше факторами, является методической. Если же выполняется сертификация всей измерительной системы, то методические погрешности могут быть учтены в погрешности всей системы и тогда они переходят в разряд инструментальных.

Для расчета или измерения методической погрешности трудно дать общие рекомендации. Каждый конкретный случай требует отдельного рассмотрения.

4.1.7. Погрешность программного обеспечения

Погрешность программного обеспечения (ПО) [МИ , МИ ] оценивается как разность между результатами измерений, полученных данным ПО и эталонным ПО. Под эталонным понимается программное обеспечение, высокая точность которого доказана многократными испытаниями и тестированием. Понятие эталонного ПО является условным и определяется соглашением между заказчиком аттестации и исполнителем. В качестве эталонного может быть использовано ранее аттестованное ПО.

К основным источниками погрешностей ПО относятся:

  • ошибки записи исходного текста программы и ошибки трансляции программы в объектный код;
  • ошибки в алгоритме решения измерительной задачи;
  • ошибки в таблицах для линеаризации нелинейных характеристик преобразования;
  • применение неустойчивых или медленно сходящихся алгоритмов при решении плохо обусловленных измерительных задач;
  • ошибки преобразования форматов данных;
  • ошибки округления и др.

Надежность (достоверность) ПО обеспечивается средствами защиты от несанкционированных изменений, которые могут явиться причиной появления не учтенных при аттестации погрешностей.

4.1.8. Достоверность измерений

В процессе выполнения измерений могут появиться грубые ошибки (промахи), которые делают измерения недостоверными несмотря на применение очень точных измерительных приборов. Здесь под достоверностью понимается степень доверия к полученным результатам. Достоверность может быть низкая при наличии погрешностей, о существовании которых экспериментатор не догадывается. Достоверность при использовании автоматизированных измерительных систем снижается с ростом их сложности и существенно зависит от квалификации персонала проектирующей и монтажной организации.

Главным методом обеспечения достоверности является сопоставление результатов измерения одной и той же величины разными, не связанными друг с другом способами. Например, после монтажа системы измерения температуры в силосе элеваторе следует сравнить показания автоматизированной системы и автономного контрольного термометра, чтобы убедиться в правильности показаний автоматизированной системы.

Приведем несколько примеров, иллюстрирующих случаи, когда, несмотря на применение точных средств измерений, получаются совершенно ошибочные данные, вводящие человека в заблуждение.

Пример 1. Для измерения температуры воздуха в теплице использован датчик температуры с погрешностью ±0,5 ºС. Однако датчик установлен таким образом, что в некоторые часы на него падают прямые лучи солнца, которые нагревают датчик, но не изменяют температуру воздуха. При этом погрешность измерения температуры воздуха может составить +5 ºС, что позволяет квалифицировать результат измерения как недостоверный.

Пример 2. Для измерения температуры в силосах элеватора установлены точные датчики и сделан тщательный монтаж, но расположенный на крыше элеватора ретранслятор сотовой связи оказался незамеченным и не было принято достаточных мер для защиты от помех. При этом погрешность измерения температуры может составить ±10 ºС вследствие помех, наведенных передатчиком на сигнальных кабелях системы.

Пример 3. В автоматизированной системе для измерения параметров продукции использован модуль ввода с погрешностью ±0,05%, однако при наладке системы программист по ошибке установил частоту помехоподавляющего режекторного фильтра не 50, а 60 Гц. Объем проведенных приемо-сдаточных испытаний системы не позволил выявить эту ошибку. В результате погрешность измерений вследствие наведенной помехи с частотой 50 Гц может повыситься до ±10% вместо ожидаемых ±0,05%.

Пример 4. Во время выполнения измерений ваш коллега разговаривал по сотовому телефону. Наводка сигнала от передатчика сотового телефона может повысить погрешность измерений в несколько раз.

Пример 5. При монтаже системы заземлили экран сигнального кабеля с двух сторон. Объем проведенных приемо-сдаточных испытаний не позволил выявить эту ошибку. Погрешность может увеличиться в несколько раз по сравнению с ожидаемой.

Пример 6. В процессе эксплуатации системы нарушился контакт в цепи заземления, что привело к эпизодическому повышению уровня помех в измерительной цепи. В статье [Burleson ] приводится пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которого искали несколько лет.

Пример 7. При расчете погрешности средств измерений была проигнорирована динамическая погрешность, поскольку исходные данные для ее расчета не были указаны в эксплуатационной документации на средство измерения и не были выявлены в процесс приемосдаточных испытаний ввиду сложности постановки эксперимента, отсутствия времени и приборов для контроля величины погрешности. Во время эксплуатации системы фактическая погрешность в несколько раз превышает расчетную.

В приведенных примерах сложно обнаружить наличие погрешности в процессе сдачи системы в эксплуатацию или она появляется в процессе эксплуатации. Это приводит к снижению достоверности измерений несмотря на высокую инструментальную точность использованных технических средств.

Общий подход к решению проблемы заключается в применении второй, независимой системы или методики измерений для обнаружения ошибок. Можно использовать также целый комплекс мер, включая подбор персонала, соблюдение графика поверки, тщательность выполнения типовых и сертификационных испытаний системы, соблюдение методики измерений и обслуживания измерительной системы.

Термин "достоверность " иногда используется во втором его значении - для указания вероятности того, что измеренное значение находится в заданном доверительном интервале [Новицкий ] при условии, что все промахи и ошибки измерительной системы и методики измерений исключены. Количественным выражением достоверности в данном случае является доверительная вероятность . Следует различать эти два значения одного и того же термина.

Выделяют следующие основные характеристики измерений:

  • 1) метод, которым проводятся измерения;
  • 2) принцип измерений;
  • 3) погрешность измерений;
  • 4) точность измерений;
  • 5) правильность измерений;
  • 6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т.е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

По способам получения искомого значения измеряемой величины выделяют: прямой (осуществляется при помощи прямых, непосредственных измерений) и косвенный методы.

По приемам измерения выделяют контактный и бесконтактный методы измерения. Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом. При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

По приемам сравнения величины с ее мерой выделяют метод непосредственной оценки и метод сравнения с ее единицей. Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины. Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или комплекс таких явлений, на которых базируется измерение.

Погрешность измерений – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Правильность измерений – это качественная характеристика измерения, которая определяется гем, насколько близка к нулю величина постоянной или фиксированно изменяющейся при многократных измерениях погрешности (систематическая погрешность).

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.

Погрешности измерений

Эффективность использования измерительной информации зависит от точности измерений – свойства, отражающего близость результатов измерений к истинным значениям измеренных величин. Точность измерений может быть большей или меньшей в зависимости от выделенных ресурсов (затрат на средства измерений, проведение измерений, стабилизацию внешних условий и т.д.). Она должна быть оптимальной, т.е. достаточной для выполнения поставленной задачи, но не более, ибо дальнейшее повышение точности приведет к неоправданным финансовым затратам. Поэтому наряду с точностью часто употребляют понятие достоверность результатов измерений, под которым понимают то, что результаты измерений имеют точность, достаточную для решения поставленной задачи (погрешность измерений).

Классический подход к оцениванию точности измерений, впервые примененный великим математиком Карлом Гауссом и затем развитый многими поколениями математиков и метрологов, может быть представлен в виде следующей последовательности утверждений.

Целью измерения является нахождение истинного значения величины – значения, которое идеальным образом характеризовало бы в качественном и количественном отношении измеряемую величину. Однако истинное значение величины найти в принципе невозможно. Любая физическая величина, присущая конкретному объекту материального мира, имеет определенный размер, отношение которого к единице является истинным значением этой величины. Это означает непознаваемость истинного значения величины, в гносеологическом смысле являющегося аналогом абсолютной истины. Примером, подтверждающим это положение, являются фундаментальные физические константы (ФФК). Они измеряются наиболее авторитетными научными лабораториями мира с наивысшей точностью, а затем результаты, полученные разными лабораториями, согласуются между собой. При этом согласованные значения ФФК устанавливают с таким количеством значащих цифр, чтобы при следующем уточнении изменение произошло в последней значащей цифре. Таким образом, истинные значения ФФК неизвестны, но каждое следующее уточнение приближает значение этой константы, принятое мировым сообществом, к ее истинному значению. На практике вместо истинного значения используют действительное значение величины – значение величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Отклонение результата измерения (X) от истинного значения (Хи) (действительного значения – ХД) величины называется погрешностью измерений:

Вследствие несовершенства применяемых методов и средств измерений, нестабильности условий измерений и других причин результат каждого измерения отягощен погрешностью. Но, так как Хи и Хд неизвестны, погрешность АХ также остается неизвестной. Она является случайной величиной и поэтому может быть только оценена по правилам математической статистики. Это должно быть сделано обязательно, поскольку результат измерения без указания оценки его погрешности не имеет практической ценности.

Используя различные процедуры оценивания, находят интервальную оценку погрешности АХ, в виде которой чаще всего выступают доверительные границы -ΔР, +ΔР погрешности измерений при заданной вероятности Р. Под ними понимают верхнюю и нижнюю границы интервала, в котором с заданной вероятностью Р находится погрешность измерений ΔХ. Отсюда следует, что

истинное значение измеряемой величины находится с вероятностью Р в интервале . Границы этого интервала называются доверительными границами результата измерений.

Таким образом, в результате измерения находят не истинное (или действительное) значение измеряемой величины, а оценку этого значения в виде границ интервала, в котором оно находится с заданной вероятностью.

Погрешности измерений могут быть классифицированы по различным признакам.

По способу выражения их делят на абсолютные и относительные погрешности измерений.

Абсолютная погрешность измерения – погрешность, выраженная в единицах измеряемой величины. Так, погрешность ΔХ в формуле (3.1) является абсолютной погрешностью. Недостатком такого способа выражения этих величин является то, что их нельзя использовать для сравнительной оценки точности разных измерительных технологий. Действительно, ΔХ = 0,05 мм при X = 100 мм соответствует достаточно высокой точности измерений, а при X = 1 мм – низкой. Этого недостатка лишено понятие "относительная погрешность", определяемое следующим выражением:

Таким образом, относительная погрешность измерения – отношение абсолютной погрешности измерения к истинному значению измеряемой величины или результату измерений.

Для характеристики точности средства измерения (СИ) часто применяют понятие "приведенная погрешность", определяемое формулой

где Х н значение измеряемой величины, условно принятое за нормирующее значение диапазона СИ.

Чаще всего в качестве Х н принимают разность между верхним и нижним пределами этого диапазона. Таким образом, приведенная погрешность средства измерения – отношение абсолютной погрешности средства измерения в данной точке диапазона СИ к нормирующему значению этого диапазона.

По источнику возникновения погрешности измерений делят на инструментальные, методические и субъективные.

Инструментальная погрешность измерения – составляющая погрешности измерения, обусловленная несовершенством применяемого СИ, а именно, отличием реальной функции преобразования прибора от его калибровочной зависимости, неустранимыми шумами в измерительной цепи, запаздыванием измерительного сигнала при его прохождении в СИ, внутренним сопротивлением СИ и др. Инструментальная погрешность измерений разделяется на основную (погрешность измерений при применении СИ в нормальных условиях) и дополнительную (составляющая погрешности измерений, возникающая вследствие отклонения какой-либо из влияющих величин от ее номинального значения или ее выхода за пределы нормальной области значений).

Методическая погрешность измерений – составляющая погрешности измерений, возникающая из-за несовершенства разработки теории явлений, положенных в основу метода измерений, неточности соотношений, используемых для нахождения оценки измеряемой величины, а также из-за несоответствия измеряемой величины и других факторов, не связанных со свойствами СИ. Примерами, иллюстрирующими методическую погрешность измерений, являются:

  • погрешности изготовления цилиндрического тела (отличие от идеального круга) при измерении его диаметра;
  • несовершенство определения диаметра круглого тела как среднего из значений диаметра в двух его заранее выбранных перпендикулярных плоскостях;
  • погрешность измерений вследствие кусочно-линейной аппроксимации нелинейной калибровочной зависимости СИ при вычислении результата измерений;
  • погрешность статического косвенного метода измерений массы нефтепродукта в резервуаре вследствие неравномерной плотности нефтепродукта по высоте резервуара.

Субъективная (личная) погрешность измерения – составляющая погрешности измерения, обусловленная индивидуальными особенностями оператора, т.е. погрешность отсчета оператором показаний по шкалам СИ. Они вызываются состоянием оператора, несовершенством органов чувств, эргономическими свойствами СИ. Характеристики субъективной погрешности измерений определяют с учетом способности "среднего оператора" к интерполяции в пределах цены деления шкалы измерительного прибора. Наиболее известная и простая оценка этой погрешности – ее максимальное возможное значение в виде половины цены деления шкалы.

По характеру проявления разделяют грубые, систематические, и случайные погрешности.

Грубой погрешностью измерений {промахом) называют погрешность измерения, существенно превышающую ожидаемую при данных условиях погрешность. Такие погрешности возникают, как правило, из-за ошибок или неправильных действий оператора (неверный отсчет, ошибка в записях или вычислениях, неправильное включение СИ и др.). Возможной причиной промаха могут быть сбои в работе технических средств, а также кратковременные резкие изменения условий измерений. Естественно, что грубые погрешности должны быть обнаружены и исключены из ряда измерений.

Систематическая погрешность измерения – это составляющая погрешности измерения, остающаяся постоянной или же закономерно изменяющаяся при повторных измерениях одной и той же величины. Систематические погрешности подлежат исключению, насколько возможно, тем или иным способом. Наиболее известный способ – введение поправок на известные систематические погрешности. Однако полностью исключить систематическую погрешность практически невозможно, и какая-то ее небольшая часть остается в исправленном (введение поправок) результате измерений. Эти остатки называются неисключенной систематической погрешностью (НСП). Неисключенная систематическая погрешность – это погрешность измерений, обусловленная погрешностями вычисления и введения поправок или же систематической погрешностью, на действие которой поправка не введена. Например, с целью исключения систематической погрешности измерения, обусловленной нестабильностью функции преобразования аналитического прибора, периодически проводят его калибровку по эталонным мерам (поверочным газовым смесям или стандартным образцам). Однако в момент измерения все равно будет некоторое отклонение действительной функции преобразования прибора от калибровочной зависимости, обусловленное погрешностью калибровки и дрейфом функции преобразования прибора за время, прошедшее после калибровки. Погрешность измерения, обусловленная этим отклонением, является НСП.

Случайной погрешностью измерения называется составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины. Причины случайных погрешностей многообразны – шумы измерительного прибора, вариация его показаний, случайные колебания параметров электрической сети и условий измерений, погрешности округления отсчетов и многое другое. В появлении таких погрешностей не наблюдается какой-либо закономерности, они проявляются при повторных измерениях одной и той же величины в виде разброса результатов измерений. Поэтому оценивание случайных погрешностей измерений возможно только на основе математической статистики (эта математическая дисциплина родилась как наука о методах обработки рядов измерений, отягощенных случайными погрешностями).

В отличие от систематических, случайные погрешности нельзя исключить из результатов измерений путем введения поправок, однако их влияние можно существенно уменьшить проведением многократных измерений.

Введение …………………………………………………………………………3

Погрешность измерений……………………………………………………….. 4

Точность и достоверность результатов измерений ……………………………8

Заключение ……………………………………………………………………….9

Список использованной литературы …………………………………………..11

Введение

Метрология как наука и область практической деятельности человека зародилась в глубокой древности. На всем пути развития человеческого общества измерения были основой взаимоотношений людей между собой, с окружающими предметами, с природой. При этом вырабатывались определенные представления о размерах, формах, свойствах предметов и явлений, а также правила и способы их сопоставления.

С течением времени и развитием производства ужесточились требования к качеству метрологической информации, что привело в итоге к созданию системы метрологического обеспечения деятельности человека.
В данной работе мы рассмотрим одно из направлений метрологического обеспечения - метрологическое обеспечение деятельности по сертификации и стандартизации продукции в Российской Федерации.

Погрешность измерений

Метрология – наука об измерениях, методах средствах обеспечения их единства и способах достижения требуемой точности.

Измерение – нахождение значения физической величины опытным путем с помощью спец тех средств.

Значение физической величины это - количественная оценка, т.е. число, выраженное в определенных единицах, принятых для данной величины. Отклонение результата измерения от истинного значения физической величины называют погрешностью измерения:

где А – измеренное значение, А0 – истинное.

Так как истинное значение неизвестно, то погрешность измерения оценивают исходя из свойств прибора, условий эксперимента, анализа полученных результатов.

Обычно объекты исследования обладают бесконечным множеством свойств. Такие свойства называют существенными или основными. Выделение существенных свойств называют выбором модели объекта. Выбрать модель - значит установить измеряемые величины, в качестве которых принимают параметры модели.

Идеализация, присутствующая при построении модели, обуславливает несоответствие между параметром модели и реальным свойством объекта. Это приводит к погрешности. Для измерений необходимо, чтобы погрешность была меньше допустимых норм.

Виды, методы и методики измерений.

В зависимости от способа обработки экспериментальных данных различают прямые, косвенные, совокупные и совместные измерения.

Прямые - измерение, при котором искомое значение величины находят непосредственно из опытных данных (измерение напряжения вольтметром).

Косвенные - измерение, при котором искомое значение величины вычисляется по результатам прямых измерений других величин (коэффициент усиления усилителя вычисляют по измеренным значениям входного и выходного напряжений).

Результат, полученный в процессе измерения физической величины на некотором временном интервале - наблюдением. В зависимости от свойств исследуемого объекта, свойств среды, измерительного прибора и других причин измерения выполняют с однократным или многократным наблюдениями. В последнем случае для получения результата измерения требуется статистическая обработка наблюдений, а измерения называют статистическими.

В зависимости от точности оценки погрешности различают измерения с точным или с приближенным оцениванием погрешности. В последнем случае учитывают нормированные данные о средствах и приближенно оценивают условия измерений. Таких измерений большинство. Метод измерения – совокупность средств и способов их применения.

Числовое значение измеряемой величины определяют путем её сравнения с известной величиной - мерой.

Методика измерений - установленная совокупность операций и правил, выполнение которых обеспечивает получение результата измерений в соответствии с выбранным методом.

Измерение – единственный источник информации о свойствах физических объектов и явлений. Подготовка к измерениям включает:

· анализ поставленной задачи;

· создание условий для измерений;

· выбор средств и методов измерений;

· подготовку оператора;

· опробование средств измерений.

Достоверность результатов измерений зависит от условий, в которых выполнялись измерения.

Условия – это совокупность величин, влияющих на значение результатов измерения. Влияющие величины разделяются на следующие группы: климатические, электрические и магнитные (колебания электрического тока, напряжения в сети), внешние нагрузки (вибрации, ударные нагрузки, внешние контакты приборов). Для конкретных областей измерений устанавливают единые нормальные условия. Значение физической величины, соответствующее нормальному, называют номинальным. При выполнении точных измерений применяют специальные средства защиты, обеспечивающие нормальные условия.

Организация измерений имеет большое значение для получения достоверного результата. Это в значительной мере зависит от квалификации оператора, его технической и практической подготовки, проверки средств измерений до начала измерительного процесса, а также выбранной методики проведения измерений. Во время выполнения измерений оператору необходимо:

· соблюдать правила по технике безопасности при работе с измерительными приборами;

· следить за условиями измерений и поддерживать их в заданном режиме;

· тщательно фиксировать отсчеты в той форме, в которой они получены;

· вести запись показаний с числом цифр после запятой на две больше, чем требуется в окончательном результате;

· определять возможный источник систематических погрешностей.

Принято считать, что погрешность округления при снятии отсчета оператором не должна изменять последнюю значащую цифру погрешности окончательного результата измерений. Обычно ее принимают равной 10 % от допускаемой погрешности окончательного результата измерений. В противном случае число измерений увеличивают настолько, чтобы погрешность округления удовлетворяла указанному условию. Единство одних и тех же измерений обеспечивается едиными правилами и способами их выполнения.

Выполнение измерений.

Слагаемые делят на погрешность меры, погрешность преобразования, погрешность сравнения, погрешность фиксации результата. В зависимости от источника возникновения могут быть:

· погрешности метода (из-за неполного соответствия принятого алгоритма математическому определению параметра);

· инструментальные погрешности (из-за того, что принятый алгоритм не может быть точно реализован практически);

· внешние ошибки - обусловлены условиями, в которых проводятся измерения;

· субъективные ошибки - вносятся оператором (неправильный выбор модели, ошибки отсчитывания, интерполяции и т.д.).

В зависимости от условий применения средств выделяют:

· основную погрешность средства, которая имеет место при нормальных условиях (температура, влажность, атмосферное давление, напряжение питания и т.д.), оговоренных ГОСТ;

· дополнительную погрешность, которая возникает при отклонении условий от нормальных.

В зависимости от характера поведения измеряемой величины различают:

· статическую погрешность - погрешность средства при измерении постоянной величины;

· погрешность средства измерения в динамическом режиме. Она возникает при измерении переменной во времени величины, из-за того, что время установления переходных процессов в приборе больше интервала измерения измеряемой величины. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и статической погрешностью.

По закономерности проявления различают:

· систематическую погрешность - постоянную по величине и знаку, проявляющуюся при повторных измерениях (погрешность шкалы, температурная погрешность и т.д.);

· случайную погрешность - изменяющуюся по случайному закону при повторных измерениях одной и той же величины;

· грубые погрешности (промахи) следствие небрежности или низкой квалификации оператора, неожиданных внешних воздействий.

По способу выражения различают:

· абсолютную погрешность измерения, определяемую в единицах измеряемой величины, как разность между результатом измерения А и истинным значением А 0:

· относительную погрешность - как отношение абсолютной погрешности измерения к истинному значению:

Так как А 0 =А n , то на практике в вместо А 0 подставляют А п.

Абсолютную погрешность измерительного прибора

Δ n =A n -A 0 ,

где А п - показания прибора;

Относительную погрешность прибора:

Приведенную погрешность измерительного прибора

где L - нормирующее значение, равное конечному значению рабочей части шкалы, если нулевая отметка находится на краю шкалы; арифметической сумме конечных значений шкалы (без учета знака), если нулевая отметка находится внутри рабочей части шкалы; всей длине логарифмической или гиперболической шкалы.

Точность и достоверность результатов измерений

Точность измерений - степень приближения измерения к действительному значению величины.

Достоверность – это характеристика знаний как обоснованных, доказанных, истинных. В экспериментальном естествознании достоверными знаниями считаются те, которые получили документальное подтверждение в ходе наблюдений и экспериментов. Наиболее полным и глубоким критерием достоверности знаний является общественно-историческая практика. Достоверные знания следует отличать от вероятностных знаний, соответствие которых действительности утверждается только в качестве возможной характеристики.

Достоверность измерений – это показатель степени доверия к результатам измерения, то есть вероятность отклонений измерения от действительных значений. Точность и достоверность измерений определяются погрешностью из-за несовершенства методов и средств измерений, тщательности проведения опыта, субъективных особенностей и квалификации экспериментаторов и других факторов.

Государственная система приборов.

Повышение требований к количеству и качеству средств измерений для нужд народного хозяйства привело к созданию Государственной системы промышленных приборов и средств автоматизации (ГСП). ГСП – это совокупность изделий, предназначенных для использования в промышленности в качестве технических средств автоматических и автоматизированных систем контроля, измерения, регулирования и управления технологическими процессами (АСУТП). С помощью средств ГСП измеряются и регулируются величины: пространства и времени, механические, электрические, магнитные, тепловые и световые.

Развитие науки и техники обуславливает повышение роли измерений. Количество средств и методов измерения непрерывно возрастает, при этом важно, чтобы количественное и качественное развитие метрологии происходило в рамках единства измерении, под которым понимают представление результатов в узаконенных единицах с указанием значения и характеристик погрешностей.

Заключение

В деятельности по метрологическому обеспечению участвуют не только метрологи, т.е. лица или организации, ответственные за единство измерений, но и каждый специалист: или как потребитель количественной информации, в достоверности которой он заинтересован, или как участник процесса её получения и обеспечения измерений.

Современной состояние системы метрологического обеспечения требует высокой квалификации специалистов. Механическое перенесение зарубежного опыта в отечественные условия невозможно, и специалистам необходимо иметь достаточно широкий кругозор, чтобы творчески подходить к выработке и принятию творческих решений на основе измерительной информации. Это касается не только работников производственной сферы. Знания в области метрологии важны и для специалистов по сбыту, менеджеров, экономистов, которые должны использовать достоверную измерительную информацию в своей деятельности.