Написать алгоритм решения квадратного уравнения. Какие методы решения уравнений квадратных существуют

Квадратным уравнением называют уравнение вида a*x^2 +b*x+c=0, где a,b,c некоторые произвольные вещественные (действительные) числа, а x - переменная. Причем число а=0.

Числа a,b,c называются коэффициентами. Число а - называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Решение квадратных уравнений

Решить квадратное уравнение - это значит найти все его корни либо же установить тот факт, что квадратное уравнение корней не имеет. Корнем квадратного уравнения a*x^2 +b*x+c=0 называют любое значение переменной х, такое, что квадратный трехчлен a*x^2 +b*x+c обращается в нуль. Иногда такого значение х называют корнем квадратного трехчлена.

Существует несколько способов решения квадратных уравнений. Рассмотри один из них - самый универсальный. С его помощью можно решить любое квадратное уравнение.

Формулы решения квадратных уравнений

Формула корней квадратного уравнения a*x^2 +b*x+c=0.

x=(-b±√D)/(2*a), где D =b^2-4*a*c.

Данная формула получается, если решить уравнение a*x^2 +b*x+c=0 в общем виде, с помощью выделения квадрата двучлена.

В формуле корней квадратного уравнения выражение D (b^2-4*a*c) называется дискриминантом квадратного уравнения a*x^2 +b*x+c=0. Такое название пришло из латинского языка, в переводе «различитель». В зависимости от того, какое значение имеет дискриминант, квадратное уравнение будет иметь два или один корень, либо не иметь корней вообще.

Если дискриминант больше нуля, то квадратное уравнение имеет два корня. (x=(-b±√D)/(2*a))

Если дискриминант равен нулю, то квадратное уравнение имеет один корень. (x=(-b/(2*a))

Если дискриминант отрицателен, то квадратное уравнение не имеет корней.

Общий алгоритм решения квадратного уравнения

Исходя из вышесказанного, сформулируем общий алгоритм решения квадратного уравнения a*x^2 +b*x+c=0 по формуле:

1. Найти значение дискриминанта по формуле D =b^2-4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

D<0, корней нет.

D=0, x=(-b/(2*a)

D>0, x=(-b+√D)/(2*a), x=(-b-√D)/(2*a)

Данный алгоритм универсален и подходит для решения любых квадратных уравнений. Полных и не полных, приведенных и неприведенных.

Библиографическое описание: Гасанов А. Р., Курамшин А. А., Ельков А. А., Шильненков Н. В., Уланов Д. Д., Шмелева О. В. Способы решения квадратных уравнений // Юный ученый. — 2016. — №6.1. — С. 17-20..04.2019).





Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать самим и познакомить одноклассников с этими способами.

Что же такое «квадратные уравнения»?

Квадратное уравнение - уравнение вида ax 2 + bx + c = 0 , где a , b , c - некоторые числа (a ≠ 0 ), x - неизвестное.

Числа a, b,c называются коэффициентами квадратного уравнения.

  • a называется первым коэффициентом;
  • b называется вторым коэффициентом;
  • c - свободным членом.

А кто же первый "изобрёл" квадратные уравнения?

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Вавилонские математики примерно с IV века до н.э. использовали метод дополнения квадрата для решения уравнений с положительными корнями. Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения. Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы, был индийский ученый Брахмагупта (Индия, VII столетие нашей эры).

Брахмагупта изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax2 + bх = с, а>0

В этом уравнении коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах2 = bх.

2) «Квадраты равны числу», т. е. ах2 = с.

3) «Корни равны числу», т. е. ах2 = с.

4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах2.

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи . Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья,Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Рассмотрим несколько способов решения квадратных уравнений.

Стандартные способы решения квадратных уравнений из школьной программы:

  1. Разложение левой части уравнения на множители.
  2. Метод выделения полного квадрата.
  3. Решение квадратных уравнений по формуле.
  4. Графическое решение квадратного уравнения.
  5. Решение уравнений с использованием теоремы Виета.

Остановимся подробнее на решение приведенных и не приведенных квадратных уравнений по теореме Виета.

Напомним, что для решения приведенных квадратных уравнений достаточно найти два числа такие, произведение которых равно свободному члену, а сумма - второму коэффициенту с противоположным знаком.

Пример. x 2 -5x+6=0

Нужно найти числа, произведение которых равно 6, а сумма 5. Такими числами будут 3 и 2.

Ответ: x 1 =2, x 2 =3.

Но можно использовать этот способ и для уравнений с первым коэффициентом не равным единице.

Пример. 3x 2 +2x-5=0

Берём первый коэффициент и умножаем его на свободный член: x 2 +2x-15=0

Корнями этого уравнения будут числа, произведение которых равно - 15, а сумма равна - 2. Эти числа - 5 и 3. Чтобы найти корни исходного уравнения, полученные корни делим на первый коэффициент.

Ответ: x 1 =-5/3, x 2 =1

6. Решение уравнений способом "переброски".

Рассмотрим квадратное уравнение ах 2 + bх + с = 0, где а≠0.

Умножая обе его части на а, получаем уравнение а 2 х 2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у 2 + by + ас = 0, равносильному данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета.

Окончательно получаем х 1 = у 1 /а и х 2 = у 2 /а.

При этом способе коэффициент a умножается на свободный член, как бы "перебрасывается" к нему, поэтому его называют способом "переброски". Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Пример. 2 - 11х + 15 = 0.

"Перебросим" коэффициент 2 к свободному члену и сделав замену получим уравнение у 2 - 11у + 30 = 0.

Согласно обратной теореме Виета

у 1 = 5, х 1 = 5/2, х 1 =2,5 ;у 2 = 6, x 2 = 6/2, x 2 = 3.

Ответ: х 1 =2,5; х 2 = 3.

7. Свойства коэффициентов квадратного уравнения.

Пусть дано квадратное уравнение ах 2 + bх + с = 0, а ≠ 0.

1. Если a+ b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х 1 = 1.

2. Если а - b + с = 0, или b = а + с, то х 1 = - 1.

Пример. 345х 2 - 137х - 208 = 0.

Так как а + b + с = 0 (345 - 137 - 208 = 0), то х 1 = 1, х 2 = -208/345.

Ответ: х 1 =1; х 2 = -208/345 .

Пример. 132х 2 + 247х + 115 = 0

Т.к. a-b+с = 0 (132 - 247 +115=0), то х 1 = - 1, х 2 = - 115/132

Ответ: х 1 = - 1; х 2 =- 115/132

Существуют и другие свойства коэффициентов квадратного уравнения. но ихиспользование более сложное.

8. Решение квадратных уравнений с помощью номограммы.

Рис 1. Номограмма

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. - М., Просвещение, 1990.

Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам (рис. 1):

Полагая ОС = р, ED = q, ОЕ = а (все в см), из рис.1 подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Рис. 2 Решение квадратных уравнения с помощью номограммы

Примеры.

1) Для уравнения z 2 - 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0

Ответ:8,0; 1,0.

2) Решим с помощью номограммы уравнение

2z 2 - 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 - 4,5z + 1 = 0.

Номограмма дает корни z 1 = 4 и z 2 = 0,5.

Ответ: 4; 0,5.

9. Геометрический способ решения квадратных уравнений.

Пример. х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом: "Квадрат и десять корней равны 39".

Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5x. Полученную фигуру дополняют затем до нового квадрата АВСD, достраивая в углах четыре равных квадрата, сторона каждого из них 2,5, а площадь 6,25

Рис. 3 Графический способ решения уравнения х 2 + 10х = 39

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4∙2,5x = 10х) и четырех пристроенных квадратов (6,25∙ 4 = 25) , т.е. S = х 2 + 10х = 25. Заменяя х 2 + 10х числом 39, получим что S = 39+ 25 = 64, откуда следует, что сторона квадрата АВСD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

10. Решение уравнений с использованием теоремы Безу.

Теорема Безу. Остаток от деления многочлена P(x) на двучлен x - α равен P(α) (т.е. значению P(x) при x = α).

Если число α является корнем многочлена P(x), то этот многочлен делится на x -α без остатка.

Пример. х²-4х+3=0

Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Разделим Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3

х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0

х-1=0; х=1, или х-3=0, х=3; Ответ: х 1 =2, х 2 =3.

Вывод: Умение быстро и рационально решать квадратные уравнения просто необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений. Изучив все найденные способы решения квадратных уравнений, мы можем посоветовать одноклассникам, кроме стандартных способов, решение способом переброски (6) и решение уравнений по свойству коэффициентов (7), так как они являются более доступными для понимания.

Литература:

  1. Брадис В.М. Четырехзначные математические таблицы. - М., Просвещение, 1990.
  2. Алгебра 8 класс: учебник для 8 кл. общеобразоват. учреждений Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. под ред. С. А. Теляковского 15-е изд., дораб. - М.: Просвещение, 2015
  3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Глейзер Г.И. История математики в школе. Пособие для учителей. / Под ред. В.Н. Молодшего. - М.: Просвещение, 1964.

1.Найти дискриминант D по формуле D= -4ac .

2.Если D<0, то квадратное уравнение не имеет корней.

3.Если D=0, то уравнение имеет один корень:

4.Если D>0, то уравнение имеет два корня:

Теперь приступим к решению нашего уравнения 3 -10х+3=0,

где =3, b=-10 а с=3.

Находим дискриминант:

D= -4*3*3=64

Поскольку D>0, то у данного уравнения два корня. Находим их:

; .

Таким образом, корнями многочлена f(x)=3 -10+3 будут являться числа 3 и .

Схема Горнера

Схема Горнера (или правило Горнера, метод Горнера) - алгоритм вычисления значения многочлена, записанного в виде суммы полиномов (одночленов), при заданном значении переменной. Она, в свою очередь, и помогает нам выяснить, является ли число корнем данного многочлена или нет.

Для начала рассмотрим как делится многочлен f(x )на двучлен g(x) .

Это можно записать следующим образом: f(x):g(x)=n(x), где f(x)- делимое, g(x)- делитель а n(x)- частное.

Но в случае, когда f(x) не делится нацело на g(x) имеет место общая запись выражения

При это степень r(x)< deg s(x), в таком случае можно сказать, что делится на с остатком .

Рассмотрим деление многочлена на двучлен. Пусть

,

Получаем

Где r- число т.к. степень r должна быть меньше степени (x-c).

Умножим s(x) на и получим

Таким образом, при делении на двучлен можно определять коэффициенты частного по полученным формулам. Подобный способ определения коэффициентов и называется схемой Горнера.

...
+ ...
c ... r

Теперь рассмотрим несколько примеров применения схемы Горнера.

Пример . Выполнить деление многочлена f(x)= на x+3.

Решение. В начале необходимо записать (x+3) в виде (x- (-3)), поскольку в самой схеме будет участвовать именно -3.В верхней строке мы будем записывать коэффициенты, в нижней- результат действий.


f(x )=(x-2)(1 )+16.

Нахождение корней по схеме Горнера. Виды корней

По схеме Горнера можно находить целочисленные корни многочлена f(x ). Рассмотрим это на примере.

Пример . Найти все целочисленные корни многочлена f(x )= , при помощи схемы Горнера.

Решение. Коэффициенты данного многочлена- целые числа. Коэффициент перед старшей степенью(в нашем случае перед ) равен одному. Поэтому, целочисленные корни многочлена мы будем искать среди делителей свободного члена (у нас это 15), это числа:

Начнем проверку с числа 1.

Таблица №1

-21 -20
+ -18 -38
-18 -38

Из полученной таблицы видно, что при =1 многочлен многочлена f(x )= , мы получили остаток r=192, а не 0, из этого следует, что единица не является корнем. Поэтому продолжим проверку при =-1. Для этого мы не будем создавать новую таблицу, а продолжим в старой, а уже не нужные данные зачеркнем.

Таблица №2

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22

Как мы видим из таблицы, в последней ячейке получился нуль, а это значит, что r=0. Следовательно? число -1 является корнем данного многочлена. Поделив наш многочлен многочлена f(x )= на ()=x+1 мы получили многочлен

f(x )=(x+1)(),

коэффициенты для которого мы взяли из третей стоки таблицы № 2.

Также мы можем сделать равносильную запись

(x+1)(). Пометим его (1)

Теперь необходимо продолжить поиск целочисленных корней, но только сейчас мы уже будем искать корни многочлена . Искать эти корни мы будем среди свободного члена многочлена, числа 45.

Еще раз проверим число -1.

Таблица №3

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22

Таким образом, число -1 является корнем многочлена , его можно записать в виде

С учетом равенства (2) мы можем записать равенство (1) в следующем виде

Теперь ищем корни для многочлена , опять же среди делителей свободного члена. Вновь проверим число -1.

Таблица №4

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21

По таблице мы видим, что число -1 является корнем многочлена .

С учетом (3*) мы можем переписать равенство (2*) как:

Теперь будем искать корень для . Вновь смотрим делители свободного члена. Начнем проверку вновь с числа -1.

Таблица №5

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19

У нас получился остаток не равный нулю, а это значит, что число -1 не является корнем для многочлена . Проверим следующее число 1.

Таблица №6

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21

И мы видим, что опять не подходит, остаток r(x)= 24.Берем новое число.

Проверим число 3.

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21
+ -45
-15

Таблица №7

r(x)= 0, это значит, что число 3 является корнем многочлена , этот многочлен мы можем записать как:

=(x-3)()

Учитывая получившееся выражение, мы можем записать равенство (5) в следующем виде:

(x-3)() (6)

Проверим теперь для многочлена

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21
+ -45
-15
+

Таблица №8

Исходя из таблицы, мы видим, что число 3 это корень многочлена . Теперь запишем следующее:

Запишем равенство (5*), с учетом получившегося выражения, следующим образом:

(x-3)()= = .

Найдем корень для двучлена среди делителей свободного члена.

Возьмем число 5

Таблица №9

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21
+ -45
-15
+
+ -5
-5

r(x)=0, следовательно, 5 является корнем двучлена .

Таким образом, мы можем записать

Решением данного примера будет являться таблица№8.

Как видно из таблицы, числа -1;3;5 – корни многочлена.

Теперь перейдем непосредственно к видам корней .

1- корень третьей степени, поскольку скобка (x+1) находится в третьей степени;

3- корень второй степени, скобка(x-3) во второй степени;

5- корень первой степени или, другими словами, простой.

Квадратные уравнения часто появляются в ряде задач по математике и физике, поэтому уметь их решать должен каждый школьник. В этой статье подробно рассматриваются основные методы решения уравнений квадратных, а также приводятся примеры их использования.

Какое уравнение называется квадратным

В первую очередь ответим на вопрос этого пункта, чтобы лучше понимать, о чем пойдет речь в статье. Итак, уравнение квадратное имеет следующий общий вид: c + b*x+a*x 2 =0, где a, b, c - некоторые числа, которые называются коэффициентами. Здесь a≠0 - это обязательное условие, в противном случае указанное уравнение вырождается в линейное. Остальные коэффициенты (b, c) могут принимать абсолютно любые значения, включая ноль. Так, выражения типа a*x 2 =0, где b=0 и c=0 или c+a*x 2 =0,где b=0, или b*x+a*x 2 =0, где c=0 - это тоже уравнения квадратные, которые называют неполными, поскольку в них либо линейный коэффициент b равен нулю, либо нулевым является свободный член c, либо они оба зануляются.

Уравнение, в котором a=1, называют приведенным, то есть оно вид имеет: x 2 + с/a + (b/a)*x =0.

Решение квадратного уравнения заключается в нахождении таких значений x, которые удовлетворяют его равенству. Эти значения называются корнями. Поскольку рассматриваемое уравнение - это выражение второй степени, то это означает, что максимальное число его корней не может превышать двух.

Какие методы решения уравнений квадратных существуют

В общем случае существует 4 метода решения. Ниже перечисляются их названия:

  1. Разложение на множители.
  2. Дополнение до квадрата.
  3. Использование известной формулы (через дискриминант).
  4. Способ решения геометрический.

Как понятно из приведенного списка, первые три метода являются алгебраическими, поэтому они используются чаще, чем последний, который предполагает построение графика функции.

Существует еще один способ решения по теореме Виета уравнений квадратных. Его можно было бы включить 5-м в список выше, однако, это не сделано, поскольку теорема Виета является простым следствием 3-го метода.

Метод №1. Разложение на множители

Для этого метода в математике квадратных уравнений существует красивое название: факторизация. Суть этого способа заключается в следующем: необходимо квадратное уравнение представить в виде произведения двух членов (выражений), которое должно равняться нулю. После такого представления можно воспользоваться свойством произведения, которое будет равно нулю только тогда, когда один или несколько (все) его членов являются нулевыми.

Теперь рассмотрим последовательность конкретных действий, которые нужно выполнить, чтобы найти корни уравнения:

  1. Перебросить все члены в одну часть выражения (например, в левую) так, чтобы в другой его части (правой) остался только 0.
  2. Представить сумму членов в одной части равенства в виде произведения двух линейных уравнений.
  3. Приравнять каждое из линейных выражений к нулю и решить их.

Как видно, алгоритм факторизации является достаточно простым, тем не менее, у большинства школьников возникают трудности во время реализации 2-го пункта, поэтому поясним его подробнее.

Чтобы догадаться, какие 2-а линейных выражения при умножении их друг на друга дадут искомое квадратное уравнение, необходимо запомнить два простых правила:

  • Линейные коэффициенты двух линейных выражений при умножении их друг на друга должны давать первый коэффициент квадратного уравнения, то есть число a.
  • Свободные члены линейных выражений при их произведении должны давать число c искомого уравнения.

После того, как подобраны все числа множителей, следует выполнить их перемножение, и если они дают искомое уравнение, тогда переходить к пункту 3 в изложенном выше алгоритме, в противном случае следует изменить множители, но делать это нужно так, чтобы приведенные правила всегда выполнялись.

Пример решения методом факторизации

Покажем наглядно, как алгоритм решения уравнения квадратного составить и найти неизвестные корни. Пусть дано произвольное выражение, например, 2*x-5+5*x 2 -2*x 2 = x 2 +2+x 2 +1. Перейдем к его решению, соблюдая последовательность пунктов от 1-го до 3-х, которые изложены в предыдущем пункте статьи.

Пункт 1. Перенесем все члены в левую часть и выстроим их в классической последовательности для квадратного уравнения. Имеем следующее равенство: 2*x+(-8)+x 2 =0.

Пункт 2. Разбиваем на произведение линейных уравнений. Поскольку a=1, а с=-8, то подберем, например, такое произведение (x-2)*(x+4). Оно удовлетворяет изложенным в пункте выше правилам поиска предполагаемых множителей. Если раскрыть скобки, то получим: -8+2*x+x 2 , то есть получается точно такое же выражение, как в левой части уравнения. Это означает, что мы правильно угадали множители, и можно переходить к 3-му пункту алгоритма.

Пункт 3. Приравниваем каждый множитель нулю, получаем: x=-4 и x=2.

Если возникают какие-либо сомнения в полученном результате, то рекомендуется выполнить проверку, подставляя найденные корни в исходное уравнение. В данном случае имеем: 2*2+2 2 -8=0 и 2*(-4)+(-4) 2 -8=0. Корни найдены правильно.

Таким образом, методом факторизации мы нашли, что заданное уравнение два корня различных имеет: 2 и -4.

Метод №2. Дополнение до полного квадрата

В алгебре уравнений квадратных метод множителей не всегда может использоваться, поскольку в случае дробных значений коэффициентов квадратного уравнения возникают сложности в реализации пункта 2 алгоритма.

Метод полного квадрата, в свою очередь, является универсальным и может применяться для квадратных уравнений любого типа. Суть его заключается в выполнении следующих операций:

  1. Члены уравнения, содержащие коэффициенты a и b, необходимо перебросить в одну часть равенства, а свободный член c - в другую.
  2. Далее, следует части равенства (правую и левую) разделить на коэффициент a, то есть представить уравнение в приведенном виде (a=1).
  3. Сумму членов с коэффициентами a и b представить в виде квадрата линейного уравнения. Поскольку a=1, то линейный коэффициент будет равен 1, что касается свободного члена уравнения линейного, то он равен должен быть половине линейного коэффициента приведенного уравнения квадратного. После того, как составлен квадрат линейного выражения, необходимо в правую часть равенства, где находится свободный член, добавить соответствующее число, которое получается при раскрытии квадрата.
  4. Взять квадратный корень со знаками "+" и "-" и решить полученное уже уравнение линейное.

Описанный алгоритм может на первый взгляд быть воспринят, как достаточно сложный, однако, на практике его реализовать проще, чем метод факторизации.

Пример решения с помощью дополнения до полного квадрата

Приведем пример уравнения квадратного для тренировки его решения методом изложенным в предыдущем пункте. Пусть дано уравнение квадратное -10 - 6*x+5*x 2 = 0. Начинаем решать его, следуя описанному выше алгоритму.

Пункт 1. Используем метод переброски при решении уравнений квадратных, получаем: - 6*x+5*x 2 = 10.

Пункт 2. Приведенный вид этого уравнения получается путем деления на число 5 каждого его члена (если равенства обе части поделить или умножить на одинаковое число, то равенство сохранится). В результате преобразований получим: x 2 - 6/5*x = 2.

Пункт 3. Половина от коэффициента - 6/5 равна -6/10 = -3/5, используем это число для составления полного квадрата, получаем: (-3/5+x) 2 . Раскроем его и полученный свободный член следует вычесть из части равенства левой, чтобы удовлетворить исходному виду квадратного уравнения, что эквивалентно его добавлению в правую часть. В итоге получаем: (-3/5+x) 2 = 59/25.

Пункт 4. Вычисляем квадратный корень с положительным и отрицательным знаками и находим корни: x = 3/5±√59/5 = (3±√59)/5. Два найденных корня имеют значения: x 1 = (√59+3)/5 и x 1 = (3-√59)/5.

Поскольку проведенные вычисления связаны с корнями, то велика вероятность допустить ошибку. Поэтому рекомендуется проверить правильность корней x 2 и x 1 . Получаем для x 1: 5*((3+√59)/5) 2 -6*(3+√59)/5 - 10 = (9+59+6*√59)/5 - 18/5 - 6*√59/5-10 = 68/5-68/5 = 0. Подставляем теперь x 2: 5*((3-√59)/5) 2 -6*(3-√59)/5 - 10 = (9+59-6*√59)/5 - 18/5 + 6*√59/5-10 = 68/5-68/5 = 0.

Таким образом, мы показали, что найденные корни уравнения являются истинными.

Метод №3. Применение известной формулы

Этот метод решения уравнений квадратных является, пожалуй, самым простым, поскольку он заключается в подставлении коэффициентов в известную формулу. Для его использования не нужно задумываться о составлении алгоритмов решения, достаточно запомнить только одну формулу. Она приведена на рисунке выше.

В этой формуле подкоренное выражение (b 2 -4*a*c) называется дискриминантом (D). От его значения зависит то, какие корни получатся. Возможны 3-и случая:

  • D>0, тогда уравнение корня два имеет действительных и разных.
  • D=0, тогда получается корень один, который можно вычислить из выражения x = -b/(a*2).
  • D<0, тогда получается два различных мнимых корня, которые представляются в виде комплексных чисел. Например, число 3-5*i является комплексным, при этом мнимая единица i удовлетворяет свойству: i 2 =-1.

Пример решения через вычисление дискриминанта

Приведем пример уравнения квадратного для тренировки использования приведенной выше формулы. Найдем корни для -3*x 2 -6+3*x+4*x = 0. Для начала вычислим значение дискриминанта, получаем: D = b 2 -4*a*c = 7 2 -4*(-3)*(-6) = -23.

Поскольку получен D<0, значит, корни рассматриваемого уравнения являются числами комплексными. Найдем их, подставив найденное значение D в приведенную в предыдущем пункте формулу (она также представлена на фото выше). Получим: x = 7/6±√(-23)/(-6) = (7±i*√23)/6.

Метод №4. Использование графика функции

Он также называется графическим методом решения уравнений квадратных. Следует сказать, что применяется он, как правило, не для количественного, а для качественного анализа рассматриваемого уравнения.

Суть метода заключается в построении графика функции квадратичной y = f(x), который представляет собой параболу. Затем, необходимо определить, в каких точках пересекает ось абсцисс (X) парабола, они и будут корнями соответствующего уравнения.

Чтобы сказать, будет ли парабола пересекать ось X, достаточно знать положение ее минимума (максимума) и направление ее ветвей (они могут либо возрастать, либо убывать). Следует запомнить два свойства этой кривой:

  • Если a>0 - параболы ветви направлены вверх, наоборот, если a<0, то они идут вниз.
  • Координата минимума (максимума) параболы всегда равна x = -b/(2*a).

Например, необходимо определить, имеет ли корни уравнение -4*x+5*x 2 +10 = 0. Соответствующая парабола будет направлена вверх, поскольку a=5>0. Ее экстремум имеет координаты: x=4/10=2/5, y=-4*2/5+5*(2/5) 2 +10 = 9,2. Поскольку минимум кривой лежит над осью абсцисс (y=9,2), то она не пересекает последнюю ни при каких значениях x. То есть действительных корней приведенное уравнение не имеет.

Теорема Виета

Как выше было отмечено, эта теорема является следствием метода №3, который основан на применении формулы с дискриминантом. Суть теоремы Виета заключается в том, что она позволяет связать в равенство коэффициенты уравнения и его корни. Получим соответствующие равенства.

Воспользуемся формулой для вычисления корней через дискриминант. Сложим два корня, получаем: x 1 +x 2 = -b/a. Теперь умножим корни друг на друга: x 1* x 2 , после ряда упрощений получается число c/a.

Таким образом, для решения уравнений квадратных по теореме Виета можно использовать полученных два равенства. Если все три коэффициента уравнения известны, тогда корни можно найти путем решения соответствующей системы из этих двух уравнений.

Пример использования теоремы Виета

Необходимо составить квадратное уравнение, если известно, что оно имеет вид x 2 +c = -b*x и корни его равны 3 и -4.

Поскольку в рассматриваемом уравнении a=1, то формулы Виета будут иметь вид: x 2 +x 1 =-b и x 2 *x 1 = с. Подставляя известные значения корней, получаем: b = 1 и c = -12. В итоге восстановленное уравнение квадратное приведенное будет вид иметь: x 2 -12 = -1*x. Можно подставить в него значение корней и убедиться, что равенство выполняется.

Обратное применение Виета теоремы, то есть вычисление корней по известному виду уравнения, позволяет для небольших целых чисел a, b и c быстро (интуитивно) находить решения.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.