Правила симметрии. симметричны

Человечество оперирует понятиями симметрии и асимметрии с древних времен, но на протяжении столетий эти понятия были в большей степени эстетическими критериями, чем научными определениями.

Термин «симметрия» впервые сформулирован философами Древней Греции как пропорциональность, подобие, согласованность частей целостной структуры, гармония. Из греческого языка пришло и слово συμμετρα (symmetria) , переводимое как соразмерность. Для древних греков симметрия была неотъемлемым атрибутом совершенства: утративши симметрию, предмет неизбежно лишается своей красоты. При этом следует заметить, что красота и совершенство, как и прочие эстетические критерии, не есть нечто абсолютное. Они родились под воздействием окружающей природы, большинство творений которой обычно обладает симметрией.

Симметрия вокруг нас

Терминология

Со временем понятие симметрии прибрело универсальный характер. Симметрия в современной трактовке предполагает неизменность объекта или его свойств при совершении над данным объектом тех или иных преобразований.

В некоторых случаях симметрия может быть достаточно очевидной. Например, для простых геометрических фигур ее легко увидеть и доказать путем нехитрых преобразований. Однако понятие симметрии значительно шире, и под объектом может подразумеваться не только физическое тело, но и явление, .

Идея симметрии часто использовалась учеными в качестве при рассмотрении тех или иных проблем мироздания. С развитием научного познания мира симметрия превратилась из инструмента для установления взаимосвязей между системами и понятиями в такой же фундаментальный атрибут, как пространство, время и движение.

Неразрывно с симметрией связано противоположное понятие – асимметрия – отражающее нарушение симметрии, разупорядоченность системы в результате ее движения, развития. Согласно такой трактовке можно сказать, что , а асимметрия – проявление движения. Да и сама суть движения заключается в нарушении симметрии пространства. Развивающаяся, движущаяся система всегда асимметрична.

Симметрия и асимметрия позволяют провести разграничение живой и неживой материи. Симметрия характерна для объектов неживой природы, для живой же материи в значительной степени преобладает асимметрия. Можно сказать, что принцип симметрии является, пожалуй, единственным надежным инструментом, с помощью которого возможно отличить объект биогенного происхождения от объекта неживого. Известный американский физик Фримен Дайсон сказал: «Жизнь – это тоже нарушение симметрии» .

Уже само определение симметрии и асимметрии подразумевает их неразрывную взаимосвязь . Ни одно из этих понятий нельзя анализировать в отрыве от его антипода. Их отношение можно рассматривать как проявление фундаментального закона единства и взаимного исключения противоположностей.

Наука 2.0. Симметрия и Асимметрия

Виды симметрии

Симметрию принято классифицировать по операциям симметрии, т.е. способам преобразования объекта. Можно выделить несколько ключевых операций симметрии:

  • Точечная симметрия (инверсия) . Основополагающий объект точечной симметрии – шар. Шаровые формы достаточно широко представлены как на земле, так и в космосе. Например, водные микроорганизмы, в малой степени подверженные воздействию гравитации, имеют выраженную шаровидную форму. В отсутствии гравитации к форме шара стремятся и капли воды. Звезды и планеты – шаровые структуры галактического масштаба. Наш Земной шар шаром назвать можно лишь условно: будучи слегка сплюснутой с полюсов, наша Земля шаром не является, а значит, не обладает точечной симметрией, хотя очень близка к этому.
  • Поворотная (вращательная, радиальная, лучевая, аксиальная) симметрия – вид симметрии, при которой объект совпадает с собой при повороте вокруг оси на определенный угол. Особое место среди подобных объектов занимает круг, совмещающийся с собой при повороте вокруг оси на любой угол, а значит, обладающий поворотной симметрией бесконечного порядка. Благодаря этому свойству именно кругу с древних времен приписывали мистические свойства, именно круг во все времена символизировал защиту от злых сил. Поворотную симметрию бесконечного порядка легко представить себе, вспомнив любимую всеми поколениями детей игрушку – юлу. Вращательную симметрию обнаруживают снежинки, цветы и плоды многих растений, годовые кольца на спилах деревьев и т.д.
  • Зеркальная симметрия . С явлением зеркальной симметрии все мы сталкиваемся ежедневно, разглядывая себя в зеркале. Зеркало, как и поверхность воды, являясь плоскостью симметрии, в точности воспроизводит все объекты материального мира, которые оно “видит”, но в обращенном порядке. Отражение чаще других разновидностей симметрии встречается в природе. Зеркальной симметрией обладают все предметы, которые можно мысленно разделить на одинаковые, зеркально равные половинки. Этот вид симметрии присутствует повсюду: в архитектуре, геометрических фигурах и орнаментах на их основе, в цветах и листьях растений. Тела почти всех животных, если говорить лишь о внешнем виде, обладают билатеральностью, хотя и не совсем строгой.
  • Перенос на расстояние (трансляция) – это любой бесконечно повторяющийся узор – паркет, узоры на обоях, вымощенные плиткой дорожки… Трансляция может быть не только одномерной или двумерной, но даже и трехмерной. Таким видом симметрии обладает и кристаллическая решетка. Особая разновидность трансляции – ритм, являющийся симметрией сдвига во времени.
  • Винтовые повороты являются комбинацией двух рассмотренных выше видов симметрии – поворота на некоторый угол с трансляцией вдоль оси поворота. Такую симметрию часто называют симметрией винтовой лестницы или симметрией спирали. Примеры винтовой симметрии везде и всюду – от вещей самых обыденных (улитка, шурупы и сверла, расположение листьев или ветвей на стебле растения) до объектов макро- и микромира (галактики и спирали ДНК).
  • Симметрия подобия (масштабная симметрия ) связана с одновременным изменением размера подобных объектов и расстояния между ними. Самым известным примером такого вида симметрии служит матрешка. Симметрия подобия – характерная особенность всех растущих организмов. Одна из разновидностей симметрии подобия – самоподобие , т.е. инвариантность относительно изменения масштаба. Самоподобным называется объект, части которого по форме совпадают или похожи на объект в целом. Самоподобие является типичным свойством фракталов.

Симметричная симметрия

Мы встречаемся с симметрией ежедневно и повсеместно, ее «сфера влияния» поистине безгранична. Природа, искусство, наука – повсюду мы видим проявление единства и противоборства симметрии и асимметрии, которые во многом и предопределяют гармонию природы, красоту искусства и мудрость науки.

Понимать, что такое симметрия в математике, необходимо, чтобы в дальнейшем освоить базовые и продвинутые темы алгебры, геометрии. Немаловажно это и для понимания черчения, архитектуры, правил построения рисунка. Несмотря на тесную связь с самой точной наукой - математикой, симметрия важна и для артистов, художников, творцов, и для тех, кто занимается научной деятельностью, причем в любой области.

Общая информация

Не только математика, но и естественные науки во многом основаны на понятии симметрии. Более того, оно встречается в повседневной жизни, является одним из базовых для природы нашей Вселенной. Разбираясь, что такое симметрия в математике, необходимо упомянуть, что существует несколько типов этого явления. Принято говорить о таких вариантах:

  • Двустороннем, то есть такой, когда симметрия зеркальная. Это явление в ученой среде принято именовать «билатеральным».
  • Эн-ном порядке. Для этого понятия ключевое явление - это угол поворота, вычисляемый разделением 360 градусов на некоторую заданную величину. Кроме того, заранее определяется ось, вокруг которой эти повороты совершаются.
  • Падиальная, когда явление симметрии наблюдают, если повороты совершатся произвольно на некоторый случайный по величине угол. Ось также выбирается независимым образом. Для описания такого явления применяют группу SO(2).
  • Сферическая. В этом случае речь идет о трех измерениях, в которых объект вращают, выбирая произвольные углы. Выделяют конкретный случай изотропии, когда явление становится локальным, свойственным среде либо пространству.
  • Вращательная, соединившая в себе две описанные ранее группы.
  • Лоренц-инвариативная, когда имеют место произвольные вращения. Для этого типа симметрии ключевым понятием становится «пространство-время Минковского».
  • Супер, определяемая как замена бозонов фермионами.
  • Высшая, выявляемая в ходе группового анализа.
  • Трансляционная, когда имеются сдвиги пространства, для которых ученые выявляют направление, расстояние. На основе полученных данных проводят сравнительный анализ, позволяющий выявить симметрию.
  • Калибровочная, наблюдаемая в случае независимости калибровочной теории при соответствующих преобразованиях. Здесь особенное внимание обращают на теорию поля, в том числе фокусируются на идеях Янга-Миллса.
  • Кайно, принадлежащая к классу электронных конфигураций. О том, что представляет собой такая симметрия, математика (6 класс) представления не имеет, ведь это наука высшего порядка. Явление обусловлено вторичной периодичностью. Было открыто в ходе научной работы Е. Бирона. Терминология введена С. Щукаревым.

Зеркальная

Во время обучения в школе учащихся практически всегда просят сделать работу «Симметрия вокруг нас» (проект по математике). Как правило, ее рекомендуют к выполнению в шестом классе обычной школы с общей программой преподавания предметов. Чтобы справиться с проектом, необходимо сперва ознакомиться с понятием симметрии, в частности, выявить, что представляет собой зеркальный тип как один из базовых и наиболее понятных для детей.

Для выявления явления симметрии рассматривают конкретную геометрическую фигуру, а также выбирают плоскость. Когда говорят о симметричности рассматриваемого объекта? Сперва на нем выбирают некоторую точку, а затем находят для нее отражение. Между ними двумя проводят отрезок и вычисляют, под каким углом к выбранной ранее плоскости он проходит.

Разбираясь, что такое симметрия в математике, помните, что выбранная для выявления этого явления плоскость будет называться именно плоскостью симметрии и никак иначе. Проведенный отрезок должен пересекаться с ней под прямым углом. Расстояние от точки до этой плоскости и от нее до второй точки отрезка должно быть равным.

Нюансы

О чем еще интересном можно узнать, разбирая такое явление, как симметрия? Математика (6 класс) рассказывает, что две фигуры, считающиеся симметричными, совсем не обязательно идентичны друг другу. Понятие равности существует в узком и широком смысле. Так вот, симметричные объекты в узком - не одно и то же.

Какой пример из жизни можно привести? Элеметарный! Что скажете насчет наших перчаток, варежек? Мы все привыкли их носить и знаем, что терять нельзя, ведь вторую такую в пару уже не подобрать, а значит, покупать придется обе заново. А все почему? Потому что парные изделия, хотя и симметричны, но рассчитаны на левую и правую руку. Это - типичный пример зеркальной симметрии. Что касается равности, то такие объекты признают «зеркально равными».

А что с центром?

Рассматривать центральную симметрию начинают с определения свойств тела, применительно к которому необходимо оценить явление. Чтобы назвать его симметричным, сперва выбирают некоторую точку, расположенную по центру. Далее выбирают точку (условно назовем ее А) и ищут для нее парную (условно обозначим Е).

При определении симметричности точки А и Е соединяют между собой прямой линией, захватывающей центральную точку тела. Далее измеряют получившуюся прямую. Если отрезок от точки А до центра объекта равен отрезку, отделяющему центр от точки Е, можно говорить о том, что найден центр симметрии. Центральная симметрия в математике - одно из ключевых понятий, позволяющих далее развивать теории геометрии.

А если вращаем?

Разбирая, что такое симметрия в математике, нельзя упустить из внимания понятие вращательного подтипа этого явления. Для того чтобы разобраться с терминами, берут тело, имеющее центральную точку, а также определяют целое число.

В ходе эксперимента заданное тело вращают на угол, равный результату деления 360 градусов на выбранный целый показатель. Для этого необходимо знать, что такое (2 класс, математика, школьная программа). Эта ось - прямая, соединяющая две выбранные точки. О симметрии вращения можно говорить, если при выбранном угле поворота тело будет находиться в том же положении, как и до проведения манипуляций.

В том случае, когда натуральным числом было выбрано 2, и обнаружено явление симметрии, говорят, что определена осевая симметрия в математике. Такая характерна для ряда фигур. Типичный пример: треугольник.

О примерах подробнее

Практика многолетнего преподавания математики и геометрии в средней школе показывает, что проще всего с явлением симметрии разобраться, объясняя его на конкретных примерах.

Для начала рассмотрим сферу. Для такого тела одновременно свойственны явления симметричности:

  • центральной;
  • зеркальной;
  • вращательной.

В качестве главной выбирают точку, расположенную точно по центру фигуры. Чтобы подобрать плоскость, определяют большой круг и словно бы «нарезают» его на пласты. О чем говорит математика? Поворот и центральная симметрия в случае шара - понятия взаимосвязанные, при этом диаметр фигуры будет служить осью для рассматриваемого явления.

Еще один наглядный пример - круглый конус. Для этой фигуры свойственна В математике и архитектуре это явление нашло широкое теоретическое и практическое применение. Обратите внимание: в качестве оси для явления выступает ось конуса.

Наглядно демонстрирует изучаемое явление Этой фигуре свойственна зеркальная симметрия. Плоскостью выбирают «срез», параллельный основаниям фигуры, удаленный от них на равные промежутки. Создавая геометрический, начертательный, архитектурный симметрия важна не меньше, чем точным и начертательным наукам), помните о применимости на практике и пользе при планировании несущих элементов явления зеркальности.

А если более интересные фигуры?

О чем нам может рассказать математика (6 класс)? Центральная симметрия есть не только в таком простом и понятном объекте, как шар. Она свойственна и более интересным и сложным фигурам. Например, таков параллелограмм. Для такого объекта центральной точкой становится та, в которой пересекаются его диагонали.

А вот если рассматривать равнобедренную трапецию, то это будет фигура с осевой симметрией. Выявить ее можно в том случае, если правильно выбрать ось. Тело симметрично относительно линии, перпендикулярной основанию и пересекающей его ровно посередине.

Симметрия в математике и архитектуре обязательно учитывает ромб. Эта фигура примечательна тем, что одновременно объединяет в себе два типа симметричности:

  • осевой;
  • центральный.

В качестве оси необходимо выбрать диагональ объекта. В том месте, где диагонали ромба пересекаются, расположен его центр симметрии.

О красоте и симметрии

Формируя проект математике, симметрия для которого была бы ключевой темой, обычно в первую очередь вспоминают мудрые слова великого ученого Вейля: «Симметрия - это идея, которую долгие века пытается понять обычный человек, ведь именно она создает совершенную красоту через уникальный порядок».

Как известно, иные предметы кажутся большинству прекрасными, в то время как другие отталкивают, даже если в них нет очевидных изъянов. Почему так происходит? Ответ на этот вопрос показывает взаимосвязь архитектуры и математики в симметрии, ведь именно это явление и становится основой оценки предмета как эстетически привлекательного.

Одна из самых красивых женщин на нашей планете - это супермодель Кисти Тарликтон. Она уверена, что к успеху пришла в первую очередь благодаря уникальному явлению: ее губы симметричны.

Как известно, природа и тяготеет к симметрии, и не может ее достичь. Это не общее правило, но взгляните на окружающих людей: в человеческих лицах практически не найти абсолютной симметрии, хотя очевидно стремление к ней. Чем более симметрично лицо собеседника, тем он кажется красивее.

Как симметрия стала идеей о прекрасном

Удивительно, что на симметричности основано восприятие человеком красоты окружающего его пространства и объектов в нем. Долгие века люди стремятся понять, что же кажется прекрасным, а что отталкивает нелицеприятностью.

Симметричность, пропорции - вот то, что помогает визуально воспринимать некоторый объект и оценивать его положительно. Все элементы, части должны быть сбалансированы и находиться в разумных пропорциях друг с другом. Уже давно выяснили, что асимметричные предметы нравятся людям гораздо меньше. Все это связывают с понятием «гармония». Над тем, почему это так важно для человека, с древних пор ломали головы мудрецы, артисты, художники.

Стоит приглядеться к геометрическим фигурам, и явление симметрии станет очевидным и доступным для понимания. Наиболее типичные симметричные явления в окружающем нас пространстве:

  • горные породы;
  • цветы и листья растений;
  • парные наружные органы, присущие живым организмам.

Описанные явления имеют источником саму природу. А вот что можно увидеть симметричного, приглядевшись к изделиям человеческих рук? Заметно, что люди тяготеют к созданию именно такового, если стремятся сделать нечто красивое или функциональное (или и такое, и такое одновременно):

  • узоры и орнаменты, популярные с древних времен;
  • строительные элементы;
  • элементы конструкций техники;
  • рукоделие.

О терминологии

«Симметрия» - слово, пришедшее в наш язык от древних греков, впервые обративших на это явление пристальное внимание и попытавшихся изучить его. Термин обозначает наличие некоторой системы, а также гармоничное сочетание частей объекта. Переводя слово «симметрия», можно подобрать в качестве синонимов:

  • пропорциональность;
  • одинаковость;
  • соразмерность.

С древних пор симметрия является важным понятием для развития человечества в разных областях и отраслях. Народы с древности имели общие представления об этом явлении, преимущественно рассматривая его в широком смысле. Симметрия обозначала гармоничность и уравновешенность. В наше время терминологию преподают в обычной школе. Например, что такое (2 класс, математика) детям рассказывает учительница на обычном занятии.

Как идея это явление зачастую становится начальным посылом научных гипотез и теорий. Особенно популярно это было в прежние столетия, когда по всему миру властвовала идея математической гармонии, присущей самой системе мироздания. Знатоки тех эпох были убеждены, что симметричность есть проявление божественной гармонии. А вот в Древней Греции философы уверяли, что симметрична вся Вселенная, и все это базировалось по постулате: «Симметрия прекрасна».

Великие греки и симметрия

Симметричность будоражила умы известнейших ученых Древней Греции. До наших дней дошли свидетельства того, что Платон призывал отдельно восхищаться По его мнению, такие фигуры - это олицетворения стихий нашего мира. Существовала следующая классификация:

Во многом именно из-за этой теории принято именовать правильные многогранники платоновыми телами.

А вот терминологию ввели еще раньше, и тут не последнюю роль сыграл скульптор Поликлет.

Пифагор и симметрия

В период жизни Пифагора и в последующем, когда его учение переживало свой расцвет, явление симметрии удалось четко оформить. Именно тогда симметричность подверглась научному анализу, давшему важные для практического применения результаты.

Согласно полученным выводам:

  • Симметрия базируется на понятиях пропорций, однообразности и равенства. При нарушении того или иного понятия фигура становится менее симметричной, постепенно переходя в полностью асимметричную.
  • Существует 10 противоположных пар. Согласно учению, симметрия представляет собой явление, сводящее в единое противоположности и тем самым формирующее вселенную в целом. Этот постулат долгие века оказывал сильное влияние на ряд наук как точных, так и философских, а также естественных.

Пифагор и его последователи выделяли «совершенно симметричные тела», к которым причисляли удовлетворяющие условиям:

  • каждая грань - многоугольник;
  • грани встречаются в углах;
  • фигура должна иметь равные стороны и углы.

Именно Пифагор первым сказал, что таковых тел существует всего лишь пять. Это великое открытие положило начало геометрии и исключительно важно для современной архитектуры.

А вы хотите своими глазами увидеть самое прекрасное явление симметрии? Поймайте зимой снежинку. Удивительно, но факт - это крошечный кусочек падающего с неба льда имеет не только крайне сложную кристаллическую структуру, но еще и идеально симметричен. Рассмотрите ее внимательно: снежинка действительно прекрасна, а ее сложные линии завораживают.

Симметрия I Симме́трия (от греч. symmetria - соразмерность)

в математике,

1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), - преобразование пространства (плоскости), при котором каждая точка М переходит в точку M" такую, что отрезок MM" перпендикулярен плоскости α (прямой а ) и делится ею пополам. Плоскость α (прямая а ) называется плоскостью (осью) С.

Отражение - пример ортогонального преобразования (См. Ортогональное преобразование), изменяющего ориентацию (См. Ориентация) (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.

2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф , характеризующее некоторую правильность формы Ф , неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой (См. Группа), называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).

Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. (рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n , n - целое число ≥ 2, переводят её в себя, то Ф обладает С. n -го порядка относительно точки О - центра С. Примером таких фигур являются правильные многоугольники (рис. 2 ); группа С. здесь - т. н. циклическая группа n -го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.

а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф (рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n -го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n . Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD - осью С. четвёртого порядка (рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB , называется зеркально-поворотной осью С. порядка 2k , является осью С. порядка k (рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток (См. Кристаллическая решётка).

В искусстве С. получила распространение как один из видов гармоничной композиции (См. Композиция). Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и Орнамент ов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6 , 7 ).

Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).

3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований (См. Лоренца преобразования). Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.

Поскольку такой объект можно представить элементами некоторого пространства Р , наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р . Т. о. получается представление группы G в группе преобразований Р (или просто в Р ), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р , определяется действием G на такие уравнения.

Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G , то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.

Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

М. И. Войцеховский.

Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD - осью симметрии четвёртого порядка, точку О - центром симметрии. Точки М и M" куба симметричны как относительно осей AB и CD, так и относительно центра О.

II Симметри́я

в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу (См. Группа).

Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

Непрерывные преобразования

1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование - реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование - параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (См. Инерциальная система отсчёта) (см. Относительности теория).

5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом (См. Электрический заряд), барионным зарядом (См. Барионный заряд), лептонным зарядом (См. Лептонный заряд), Гиперзаряд ом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции (См. Волновая функция) всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

где ψ j - волновая функция частицы j , z j - соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е ), β - произвольный числовой множитель.

А А + grad f, , (2)

где f (x , у , z, t ) - произвольная функция координат (х , у , z ) и времени (t ), с - скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной β, являющейся произвольной функцией координат и времени: η - Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой - он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины β являются произвольными функциями координат и времени (и даже операторами (См. Операторы), преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга - Милса теория).

Дискретные преобразования

Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот - тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.

Симметрия и законы сохранения

Согласно Нётер теореме (См. Нётер теорема), каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода - законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности - сохранение изотопического спина (См. Изотопический спин) в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип , из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности (См. Чётность), сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть ψ 1 - волновая функция, описывающая какое-либо состояние системы, а ψ 2 - волновая функция системы, получающаяся в результате пространств. инверсии (символически: ψ 2 = Р ψ 1 , где Р - оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии, ψ 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции ψ 1 и ψ 2: симметричная комбинация ψ s = ψ 1 + ψ 2 и антисимметричная ψ а = ψ 1 - ψ 2 . При преобразованиях инверсии состояние ψ 2 не меняется (т. к. P ψ s = P ψ 1 + P ψ 2 = ψ 2 + ψ 1 = ψ s), а состояние ψ a меняет знак (P ψ a = P ψ 1 - P ψ 2 = ψ 2 - ψ 1 = - ψ a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором - отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).

Симметрия квантово-механических систем и стационарные состояния. Вырождение

Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика , Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (См. Стационарное состояние) (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению (См. Вырождение). Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг через друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятор а.

Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, «включающего» возмущающее поле.

Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C . сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

С. С. Герштейн.

III Симметри́я

в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций (См. Волновая функция) различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре (См. Молекулярные спектры), либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спин ом этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g -фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс), тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс).

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (σ) и антисимметричные (π) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются π-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.

Н. Ф. Степанов.

IV Симметри́я

в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные С. растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий - Э. Геккель), биогенных молекул (французские - А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории С. (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о С. - биосимметрики.

Наиболее интенсивно изучалась структурная С. биообъектов. Исследование С. биоструктур - молекулярных и надмолекулярных - с позиций структурной С. позволяет заранее выявить возможные для них виды С., а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной С. в зоологии, ботанике, молекулярной биологии. Структурная С. проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной С., развитой немецким учёным И. Ф. Гесселем, Е. С. Федоровым (См. Фёдоров) и другими, вид С. объекта может быть описан совокупностью элементов его С., т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта (см. Симметрия в математике). Например, вид С. цветка флокса (рис. 1 , в) - одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции - 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид С. фигуры бабочки (рис. 2 , б) - одна плоскость, делящая её на 2 половины - левую и правую; производимая посредством плоскости операция - зеркальное отражение, «делающее» левую половинку правой, правую - левой, а фигуру бабочки совмещающей с самой собой. Вид С. радиолярии Lithocubus geometricus (рис. 3 , б), помимо осей вращения и плоскостей отражения содержит ещё и центр С. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра С., - отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов С., чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной С. - вплоть до организмов, характеризующихся С. правильных многогранников и шара (см. рис. 3 ). Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n ) и актиноморфной (вида n (m ) С . (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной С. (см. рис. 1 ) характеризуются лишь осью С. порядка n . Биообъекты сактиноморфной С. (см. рис. 2 ) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m . В живой природе наиболее распространены С. вида n = 1 и 1․m = m , называется соответственно асимметрией (См. Асимметрия) и двусторонней, или билатеральной, С. Асимметрия характерна для листьев большинства видов растений, двусторонняя С. - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая С., по-видимому, связана с различиями их движении вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной С. неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (рис. 4 ). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (см. также рис. 5 ); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (См. Изомерия) (разных биообъектов одного состава; на рис. 5 изображены 16 изомеров листа липы).

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Сов. учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.

Что такое симметрия

Фундаментальным понятием науки, которое наряду с понятием "гармонии" имеет отношение практически ко всем структурам природы, науки и искусства, является "симметрия". Слово «симметрия» в переводе с греческого означает «соразмерность». Выдающийся математик Герман Вейль высоко оценил роль симметрии в современной науке: «Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".

Рассмотрим понятие симметрии с геометрической точки зрения. В учебнике по геометрии это понятие вводится следующим образом.

Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1 (рис. 1,а). Точка О считается симметричной самой себе.

Точки А и А 1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку (рис. 1, б). Каждая точка прямой а считается симметричной самой себе.

Точки А и А 1 называются симметричными относительно плоскости (плоскость симметрии), если плоскость проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку (рис.1,в). Каждая точка плоскости считается симметричной самой себе.

Т
очка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры.
Если фигура имеет Рис. 1 центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

В книге Шафрановского И.И. «Симметрия в природе» определение симметрии дается следующим образом. Плоскостью симметрии P Рис.2 называется такая плоскость, которая делит фигуру на две зеркально равные части, расположенные друг относительно друга так, как предмет и его зеркальное отражение. Например, изображенный на рис.2 слева равнобедренный треугольник ABC с высотой BD разделяется на две зеркально равные половины ABD и BCD ; при этом высота BD является "следом" плоскости симметрии P , перпендикулярной плоскости треугольника. На рис. 2 справа изображен также прямоугольный параллелепипед (кирпичик, спичечный коробок), который имеет три взаимно перпендикулярные плоскости симметрии 3P . Нетрудно установить, что куб обладает девятью плоскостями симметрии - 9P .

Второй тип элементов симметрии: ось симметрии. Осью симметрии называется такая прямая линия, вокруг которой несколько раз повторяются равные части симметричной фигуры. Эти равные части расположены так, что после поворота вокруг оси на некоторый угол фигура занимает в пространстве то же положение, которое она занимала и до поворота, только на месте одних ее частей оказались другие равные им части. Число самосовмещений фигуры при ее повороте вокруг оси на 360º называется «порядком оси». Доказано, что порядок оси может быть только целым числом. Обозначим ось симметрии L n , где n ее порядок.

Например, равносторонний треугольник имеет ось симметрии L 3 , то есть существуют три способа поворота треугольника вокруг оси, при котором происходит его "самосовмещение". Ясно, что квадрат имеет ось симметрии L 4 , а пентагон - L 5 . Конус также имеет ось симметрии, причем, поскольку число поворотов конуса вокруг своей оси симметрии, приводящих к "самосовмещению" бесконечно, то говорят, что конус имеет ось симметрии типа.

Наконец, центром симметрии C называется такая особая точка внутри фигуры, характеризующаяся тем, что любая проведенная через точку прямая по обе стороны от нее и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. "Идеальным" примером фигуры, имеющей центр симметрии является шар. Центр шара и является его центром симметрии.

Симметрия широко встречается в объектах живой и неживой природы. На явление симметрии в живой природе обратили внимание еще пифагорейцы в связи с развитием ими учения о гармонии. Установлено, что в природе наиболее распространены два вида симметрии - "зеркальная" и "лучевая" (или "радиальная") симметрии. "Зеркальной" симметрией обладает бабочка, листок или жук (Рис.3-а) и часто такой вид симметрии называется "симметрией листка" или "билатеральной симметрией". К формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево (Рис.3-б) и часто такой вид симметрии называется "ромашково-грибной" симметрией.


Рис. 3. Природные формы с "билатеральной" (а)

и "радиальной" (b) симметрией.

Еще в 19-м веке исследования в этой области привели к заключению, что симметрия природных форм в значительной степени зависит от влияния сил земного тяготения, которое в каждой точке имеет симметрию конуса. В результате был найден следующий закон, которому подчиняются формы природных тел: "Все то, что растет или движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой ("ромашково-грибной") симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии - "симметрии листка" (одна плоскость симметрии)".

Сбалансированная композиция кажется правильной. Она смотрится устойчиво и эстетически привлекательно. Хотя какие-то из ее элементов могут особенно выделяться, являясь фокальными точками — ни одна часть не притягивает взгляд настолько, чтобы подавлять остальные. Все элементы сочетаются друг с другом, плавно соединяясь между собой и образуя единое целое.

Несбалансированная композиция вызывает напряжение. Когда дизайн дисгармоничен, отдельные его элементы доминируют над целым, и композиция становится меньше, чем сумма ее частей. Иногда подобная дисгармония может иметь смысл, но чаще всего баланс, упорядоченность и ритм — это лучшее решение.

Несложно понять, что такое баланс с точки зрения физики — мы ощущаем его постоянно: если что-то не сбалансировано, оно неустойчиво. Наверняка в детстве вы качались на качелях-доске — вы на одном конце, ваш друг — на другом. Если вы весили примерно одинаково, вам было легко на них балансировать.

Нижеследующая картинка иллюстрирует баланс: два человека одинакового веса находятся на равном расстоянии от точки опоры, на которой балансируют качели.

Качели в симметричном равновесии

Человек на правом конце доски раскачивает ее по часовой стрелке, а человек на левом — против. Они прикладывают одинаковую силу в противоположных направлениях, так что сумма равна нулю.

Но если бы один человек был намного тяжелее, равновесие бы исчезло.

Отсутствие равновесия

Эта картинка кажется неправильной, потому что мы знаем, что фигура слева слишком мала, чтобы уравновесить фигуру справа, и правый конец доски должен касаться земли.

Но если передвинуть более крупную фигуру в центр доски, картинка приобретет более правдоподобный вид:

Качели в асимметричном равновесии

Вес более крупной фигуры нивелируется тем, что она расположена ближе к точке опоры, на которой балансируют качели. Если вы когда-нибудь качались на таких качелях или, по крайней мере, видели, как это делают другие, то понимаете, что происходит.

Композиционное равновесие в дизайне основано на тех же принципах. Физическая масса заменяется визуальной, и направление, в котором на нее действует сила притяжения, заменяется визуальным направлением:

1. Визуальная масса — это воспринимаемая масса визуального элемента, мера того, насколько данный элемент страницы привлекает внимание.

2. Визуальное направление — это воспринимаемое направление визуальной силы, в котором, как нам кажется, двигался бы объект, если бы он мог двигаться под влиянием физических сил, действующих на него.

Для измерения этих сил нет инструментов и для расчета зрительного баланса нет формул: чтобы определить, сбалансирована ли композиция, вы ориентируетесь только на свои глаза.

Почему визуальное равновесие важно?

Визуальное равновесие так же значимо, как и физическое: несбалансированная композиция вызывает у зрителя дискомфорт. Посмотрите на вторую иллюстрацию с качелями: она кажется неправильной, потому что мы знаем, что качели должны касаться земли.

С точки зрения маркетинга, визуальная масса — это мера визуального интереса, который вызывает какая-либо область или элемент страницы. Когда лендинг визуально сбалансирован, каждая его часть вызывает некоторый интерес, а сбалансированный дизайн удерживает внимание зрителя.

При отсутствии визуального равновесия посетитель может не увидеть некоторые элементы дизайна — скорее всего, он не станет рассматривать области, уступающие другим по визуальному интересу, так что информация, связанная с ними, останется незамеченной.

Если вы хотите, чтобы пользователи узнали все, что вы намерены им сообщить — подумайте о разработке сбалансированного дизайна.

Четыре типа равновесия

Есть несколько способов добиться композиционного равновесия. Картинки из раздела выше иллюстрируют два из них: первая — пример симметричного баланса, а вторая — асимметричного. Два других типа — радиальный и мозаичный.

Симметричное равновесие достигается, когда объекты, равные по визуальной массе, размещаются на равном расстоянии от точки опоры или оси в центре. Симметричное равновесие вызывает ощущение формальности (поэтому иногда оно называется формальным равновесием) и элегантности. Приглашение на свадьбу — пример композиции, которую вы, скорее всего, захотите сделать симметричной.

Недостаток симметричного равновесия в том, что оно статично и иногда кажется скучным: если половина композиции — это зеркальное отражение другой половины, то как минимум одна половина будет достаточно предсказуема.

2. Асимметричное равновесие

Асимметричное равновесие достигается, когда объекты по разные стороны от центра имеют одинаковую визуальную массу. При этом на одной половине может находиться доминирующий элемент, уравновешенный несколькими менее важными фокальными точками на другой половине. Так, визуально тяжелый элемент (красный круг) на одной стороне уравновешен рядом более легких элементов на другой (синие полосы).

Асимметричное равновесие более динамично и интересно. Оно вызывает ощущение современности, движения, жизни и энергии. Асимметричного равновесия сложнее достичь, потому что отношения между элементами более сложны, но, с другой стороны, оно оставляет больше простора для творчества.

Радиальное равновесие достигается, когда элементы расходятся лучами из общего центра. Лучи солнца или круги на воде после того, как в нее упал камень — это примеры радиального равновесия. Удерживать фокальную точку (точка опоры) легко, поскольку она всегда в центре.

Лучи расходятся из центра и ведут к нему же, делая его самой заметной частью композиции.

Мозаичное равновесие (или кристаллографический баланс) — это сбалансированный хаос, как на картинах Джексона Поллока. У такой композиции нет выраженных фокальных точек, и все элементы одинаково важны. Отсутствие иерархии, на первый взгляд, создает визуальный шум, но, тем не менее, каким-то образом все элементы сочетаются и образуют единое целое.

Симметрия и асимметрия

И симметрия, и асимметрия может применяться в композиции вне зависимости от того, каков тип ее равновесия: вы можете использовать объекты симметричной формы для создания асимметричной композиции, и наоборот.

Симметрия, как правило, считается красивой и гармоничной. Впрочем, она также может показаться статичной и скучной. Асимметрия обычно представляется более интересной и динамичной, хотя и не всегда красивой.

Симметрия

Зеркальная симметрия (или двусторонняя симметрия) возникает, когда две половины композиции, расположенные по разные стороны от центральной оси, являются зеркальными отражениями друг друга. Скорее всего, услышав слово «симметрия», вы представляете себе именно это.

Направление и ориентация оси могут быть какими угодно, хотя зачастую она или вертикальная, или горизонтальная. Многие естественные формы, растущие или движущиеся параллельно поверхности земли, отличаются зеркальной симметрией. Ее примеры — крылья бабочки и человеческие лица.

Если две половины композиции отражают друг друга абсолютно точно, такая симметрия называется чистой. В большинстве случаев отражения не полностью идентичны, и половины немного отличаются друг от друга. Это неполная симметрия — в жизни она встречается гораздо чаще, чем чистая симметрия.

Круговая симметрия (или радиальная симметрия) возникает, когда объекты располагаются вокруг общего центра. Их количество и угол, под которым они расположены относительно центра, могут быть любыми — симметрия сохраняется, пока присутствует общий центр. Естественные формы, растущие или движущиеся перпендикулярно поверхности земли, отличаются круговой симметрией — например, лепестки подсолнуха. Чередование без отражения может быть использовано, чтобы продемонстрировать мотивацию, скорость или динамичное действие: представьте крутящиеся колеса движущегося автомобиля.

Трансляционная симметрия (или кристаллографическая симметрия) возникает, когда элементы повторяются через определенные промежутки. Пример такой симметрии — повторяющиеся планки забора. Трансляционная симметрия может возникнуть в любом направлении и на любом расстоянии, если направление совпадает. Естественные формы обретают такую симметрию через репродукцию. При помощи трансляционной симметрии вы можете создать ритм, движение, скорость или динамичное действие.

Бабочка — пример зеркальной симметрии, планки забора — трансляционной, подсолнух — круговой.

Симметричные формы чаще всего воспринимаются как фигуры на фоне. Визуальная масса симметричной фигуры будет больше, чем масса асимметричной фигуры подобного размера и формы. Симметрия создает баланс сама по себе, но она может оказаться слишком стабильной и слишком спокойной, неинтересной.

У асимметричных форм нет такой сбалансированности, как у симметричных, но вы можете и асимметрично уравновесить всю композицию. Асимметрия часто встречается в естественных формах: вы правша или левша, ветки деревьев растут в разных направлениях, облака принимают случайные формы.

Асимметрия приводит к более сложным отношениям между элементами пространства и поэтому считается более интересной, чем симметрия, а значит — ее можно использовать, чтобы привлечь внимание.

Пространство вокруг асимметричных форм более активно: узоры часто непредсказуемы, и в целом у вас больше свободы самовыражения. Обратная сторона асимметрии в том, что ее сложнее сделать сбалансированной.

Вы можете совмещать симметрию и асимметрию и добиваться хороших результатов — создавайте симметричное равновесие асимметричных форм и наоборот, разбивайте симметричную форму случайной меткой, чтобы сделать ее интереснее. Сталкивайте симметрию и асимметрию в композиции, чтобы ее элементы привлекали больше внимания.

Принципы гештальт-психологии

Принципы дизайна не возникают из ничего: они следуют из психологии нашего восприятия визуальной среды. Многие принципы дизайна вырастают из принципов гештальт-психологии, а также основываются друг на друге.

Так, один из принципов гештальт-психологии касается именно симметрии и порядка и может применяться к композиционному равновесию. Впрочем, это едва ли не единственный принцип, применимый к нему.

Другие принципы гештальт-психологии, такие как фокальные точки и простота — складываются в визуальную массу, а фактор хорошего продолжения, фактор общей судьбы и параллелизм, задают визуальное направление. Симметричные формы чаще всего воспринимаются как фигуры на фоне.

Примеры различных подходов к веб-дизайну

Настало время реальных примеров. Лендинги, представленные ниже, сгруппированы по четырем типам равновесия. Возможно, вы воспримите дизайн этих страниц по-другому, и это хорошо: критическое мышление важнее, чем безоговорочное принятие.

Примеры симметричного равновесия

Дизайн сайта Helen & Hard симметричен. Страница «О нас» на скриншоте снизу и все остальные страницы этого сайта сбалансированы похожим образом:

Скриншот страницы «О нас» сайта Helen & Hard

Все элементы, находящиеся по разные стороны вертикальной оси, расположенной в центре страницы, зеркально отражают друг друга. Логотип, навигационная панель, круглые фотографии, заголовок, три колонки текста — центрированы.

Впрочем, симметрия не идеальна: например, колонки содержат разное количество текста. Кстати, обратите внимание на верх страницы. И логотип, и навигационная панель расположены по центру, но визуально они не кажутся центрированными. Возможно, логотип стоило центрировать по амперсанду или, по крайней мере, по области рядом с ним.

В трех текстовых ссылках меню, расположенных в правой части навигационной панели, больше букв, чем в ссылках левой части — кажется, что центр должен располагаться между About и People. Может быть, если расположить эти элементы в действительности не по центру, но так, чтобы визуально они казались центрированными, композиция в целом выглядела бы более сбалансированной.

Домашняя страница Tilde — еще один пример дизайна с симметричным равновесием. Как и на Helen & Hard, все располагается вокруг вертикальной оси, проходящей по центру страницы: навигация, текст, люди на фотографиях.

Скриншот домашней страницы Tilde

Как и в случае с Helen & Hard, симметрия не идеальна: во-первых, центрированные строчки текста не могут быть отражением фотографии снизу, а во-вторых, пара элементов выбивается из общего ряда — стрелка «Meet the Team» указывает вправо, и текст внизу страницы заканчивается еще одной стрелкой вправо. Обе стрелки являются призывами к действию и обе нарушают симметрию, привлекая к себе дополнительное внимание. Кроме того, по цвету обе стрелки контрастируют с фоном, что тоже притягивает взгляд.

Примеры асимметричного равновесия

Домашняя страница Carrie Voldengen демонстрирует асимметричное равновесие вокруг доминирующей симметричной формы. Глядя на композицию в целом, можно увидеть несколько отдельных друг от друга форм:

Скриншот веб-сайта Carrie Voldengen

Большую часть страницы занимает прямоугольник, состоящий из решетки меньших прямоугольных изображений. Сама по себе решетка симметрична и по вертикальной, и по горизонтальной оси и выглядит очень прочной и стабильной — можно даже сказать, что она слишком сбалансирована и выглядит неподвижной.

Блок текста справа нарушает симметрию. Решетке противопоставлен текст и круглый логотип в левом верхнем углу страницы. Эти два элемента имеют примерно равную визуальную массу, воздействующую на решетку с разных сторон. Расстояние до воображаемой точки опоры примерно такое же, как и масса. Блок текста справа больше и темнее, но круглый голубой логотип добавляет веса своей области и даже совпадает с верхним левым углом решетки по цвету. Текст внизу решетки, кажется, свисает с нее, но он достаточно легкий, чтобы не нарушать композиционного равновесия.

Обратите внимание, что пустое пространство тоже кажется сбалансированным. Пустоты слева, сверху и снизу, а также справа под текстом — уравновешивают друг друга. В левой части страницы больше пустого пространства, чем справа, но в правой части есть дополнительное пространство вверху и внизу.

Изображения в шапке страницы Hirondelle USA сменяют друг друга. Скриншот, представленный ниже, был сделан специально для того, чтобы продемонстрировать асимметричное композиционное равновесие.

Скриншот Hirondelle USA

Колонна на фотографии смещена чуть вправо от центра и создает заметную вертикальную линию, поскольку мы знаем, что колонна — это очень тяжелый объект. Перила слева создают прочную связь с левым краем экрана и тоже представляются достаточно надежными.

Текст над перилами как будто опирается на них; к тому же, справа он визуально сбалансирован фотографией мальчика. Может показаться, что перила как бы свисают с колонны, нарушая баланс, но наличие мальчика и более темный фон за ним уравновешивают композицию, а светлый текст восстанавливает баланс в целом.

Примеры радиального равновесия

Домашняя страница Vlog.it демонстрирует радиальное равновесие, что заметно на скриншоте. Все, кроме объекта в правом верхнем углу, организовано вокруг центра, и три кольца изображений вращаются вокруг центрального круга.

Скриншот домашней страницы Vlog.it

Впрочем, на скриншоте не видно, как страница загружается: линия рисуется из нижнего левого угла экрана к его центру — и с этого момента все, что появляется на странице, вращается вокруг центра или расходится из него лучами, как круги по воде.

Маленький круг в правом верхнем углу добавляет трансляционной симметрии и асимметрии, повышая визуальный интерес к композиции.

На домашней странице Opera’s Shiny Demos нет кругов, но все текстовые ссылки расходятся из общего центра, и легко представить, как вся эта конструкция вращается вокруг одного из центральных квадратов или, может быть, одного из углов:

Скриншот домашней страницы Opera’s Shiny Demos

Название Shiny Demos в левом верхнем углу и логотип Opera в правом нижнем — уравновешивают друг друга и тоже как будто исходят из того же центра, что и текстовые ссылки.

Это хороший пример того, что для достижения радиального равновесия не обязательно использовать круги.

Примеры мозаичного равновесия

Вы можете подумать, что мозаичный баланс используется на сайтах реже всего, особенно после того, как в качестве примера были названы картины Джексона Поллока. Но мозаичное равновесие встречается гораздо чаще, чем кажется.

Яркий пример — домашняя страница Rabbit’s Tale. Разбросанные по экрану буквы определенно создают ощущение хаоса, но композиционное равновесие присутствует.

Скриншот домашней страницы Rabbit’s Tale

Почти равные по величине области цвета и пространства, расположенные с двух сторон, справа и слева — уравновешивают друг друга. Кролик в центре служит точкой опоры. Каждый элемент не привлекает внимания сам по себе.

Сложно разобраться, какие конкретные элементы уравновешивают друг друга, но в целом баланс присутствует. Может быть, визуальная масса правой стороны немного больше, но не настолько, чтобы нарушить равновесие.

Сайты с большим количеством контента, например, новостные порталы или сайты журналов, тоже демонстрируют мозаичное равновесие. Вот скриншот домашней страницы The Onion:

Скриншот домашней страницы The Onion

Здесь множество элементов, их расположение не симметрично, размер текстовых колонок не одинаков, и сложно понять, что уравновешивает что. Блоки содержат разное количество контента, и, следовательно, их размеры различаются. Объекты не располагаются вокруг какого-нибудь общего центра.

Блоки разных размеров и плотности создают некоторое ощущение беспорядка. Поскольку сайт обновляется каждый день, структура этого хаоса постоянно меняется. Но в целом равновесие сохраняется.

Заключение

Принципы дизайна во многом берут начало из гештальт-психологии и теории восприятия и опираются на то, как мы воспринимаем и интерпретируем окружающую визуальную среду. Например, одна из причин, по которым мы замечаем фокальные точки, заключается в том, что они контрастируют с элементами вокруг них.