Метод гармонической линеаризации. Метод непосредственной линеаризации Последовательность применения общего метода линеаризации

Общий метод линеаризации

В большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения ᴇᴦο обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X1 и X2, а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х1, которое обозначим Х10. В процессе регулирования (рис. 2.3) переменная Х1 будет иметь зна­чения где обозначает отклонение переменной X 1 от установившегося значения Х10.

Аналогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем˸ а также .

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х10, Х20 и F0. Тогда уравнение (2.1) должна быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где D – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных .

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в данном уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях˸

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют из себянекоторые постоянные коэффициенты в том случае, в случае если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Общий метод линеаризации - понятие и виды. Классификация и особенности категории "Общий метод линеаризации" 2015, 2017-2018.

Метод гармонической линеаризации (гармонического баланса ) позволяет определить условия существования и параметры возможных автоколебаний в нелинейных САУ. Автоколебания определяются предельными циклами в фазовом пространстве систем. Предельные циклы разделяют пространство (в общем случае - многомерное ) на области затухающих и расходящихся процессов. В результате расчета параметров автоколебаний можно сделать заключение о их допустимости для данной системы или о необходимости изменения параметров системы.

Метод позволяет:

Определить условия устойчивости нелинейной системы;

Найти частоту и амплитуду свободных колебаний системы;

Синтезировать корректирующие цепи, для обеспечения требуемых параметров автоколебаний;

Исследовать вынужденные колебания и оценивать качество переходных процессов в нелинейных САУ.

Условия применимости метода гармонической линеаризации.

1) При использовании метода предполагается, что линейная часть системы устойчива или нейтральна.

2) Сигнал на входе нелинейного звена близок по форме к гармоническому сигналу. Это положение требует пояснений.

На рис.1 представлены структурные схемы нелинейной САУ. Схема состоит из последовательно соединенных звеньев: нелинейного звена y=F(x) и линейно-

го, которое описывается дифференциальным уравнением

При y = F(g - x) = g - x получим уравнение движения линейной системы.

Рассмотрим свободное движение, т.е. при g(t) º 0. Тогда,

В случае, когда в системе существуют автоколебания, свободное движение системы является периодическим. Непериодическое движение с течением времени оканчивается остановкой системы к некотором конечном положении (обычно, на специально предусмотренном ограничителе).

При любой форме периодического сигнала на входе нелинейного элемента сигнал на его выходе будет содержать кроме основной частоты высшие гармоники. Предположение о том, что сигнал на входе нелинейной части системы можно считать гармоническим, т.е., что

x(t)@ a×sin(wt),

где w=1/T, T - период свободных колебаний системы, равносильно предположению о том, что линейная часть системы эффективно фильтрует высшие гармоники сигнала y(t) = F(x (t)).

В общем случае при действии на входе нелинейного элемента гармонического сигнала x(t) сигнал на выходе может быть преобразован по Фурье:

Коэффициенты ряда Фурье

Для упрощения выкладок положим C 0 =0, т.е., что функция F(x) симметрична относительно начала координат. Такое ограничение не обязательно и сделано анализа. Появление коэффициентов C k ¹ 0 означает, что, в общем случае нелинейное преобразование сигнала сопровождается и фазовыми сдвигами преобразуемого сигнала. В частности, это имеет место в нелинейностях с неоднозначными характеристиками (с различного рода гистерезисными петлями), причем как запаздывание так и, в некоторых случаях, опережение по фазе .



Предположение об эффективной фильтрации означает, что амплитуды высших гармоник на выходе линейной части системы малы, то есть

Выполнению этого условия способствует то, что во многих случаях амплитуды гармоник уже непосредственно на выходе нелинейности оказываются существенно меньше амплитуды первой гармоники. Например, на выходе идеального реле при гармоническом сигнале на входе

y(t)=F(с×sin(wt))=a×sign(sin(wt))

четные гармоники отсутствуют, а амплитуда третьей гармоники в три раза меньше амплитуды первой гармоники

Сделаем оценку степени подавления высших гармоник сигнала в линейной части САУ. Для этого сделаем ряд предположений.

1) Частота свободных колебаний САУ приблизительно равна частоте среза ее линейной части. Отметим, что частота свободных колебаний нелинейной САУ может существенно отличаться от частоты свободных колебаний линейной системы так, что это допущение не всегда корректно .

2) Показатель колебательности САУ примем равным M=1.1.

3) ЛАХ в окрестностях частоты среза (w с) имеет наклон -20 дБ/дек. Границы этого участка ЛАХ связаны с показателем колебательности соотношениями

4) Частота w max является сопрягающей с участком ЛФХ, так что при w > w max наклон ЛАХ не менее минус 40 дБ/дек.

5) Нелинейность - идеальное реле с характеристикой y = sign(x) так, что на ее выходе нелинейности будут присутствовать только нечетные гармоники.

Частоты третьей гармоники w 3 = 3w c , пятой w 5 = 5w с,

lgw 3 = 0.48+lgw c ,

lgw 5 = 0.7+lgw c .

Частота w max = 1.91w с, lgw max = 0.28+lgw c . Сопрягающая частота отстоит от частоты среза на 0.28 декады.

Уменьшение амплитуд высших гармоник сигнала при их прохождении через линейную часть системы составит для третьей гармоники

L 3 = -0.28×20-(0.48-0.28)×40 = -13.6 дБ, то есть в 4.8 раза,

для пятой - L 5 = -0.28×20-(0.7-0.28)×40 = -22.4 дБ, то есть в 13 раз.

Следовательно, сигнал на выходе линейной части окажется близким к гармоническому

Это эквивалентно предположению, что система является низкочастотным фильтром.

Применительно к функции Z = cp (X , Х 2 , ..., XJ, нелинейной относительно системы своих аргументов, решение задачи в сформулированной выше постановке может быть получено, как правило, лишь приближенно на основе метода линеаризации. Сущность метода линеаризации заключается в том, что нелинейную функцию заменяют некоторой линейной и затем по уже известным правилам находят числовые характеристики этой линейной функции, считая их приближенно равными числовым характеристикам нелинейной функции.

Сущность этого метода рассмотрим на примере функции одного случайного аргумента.

Если случайная величина Z является заданной функцией

случайного аргумента X, то ее возможные значения z связаны с возможными значениями аргумента х функцией того же вида, т. е.

(например, если Z = sin X, то z = sin X).

Разложим функцию (3.20) в ряд Тейлора в окрестности точки х = m , ограничиваясь только первыми двумя членами разложения, и будем считать, что

Значение производной функции (3.20) по аргументу х при х = т х.

Такое допущение равносильно замене заданной функции (3.19) линейной функцией

На основе теорем о математических ожиданиях и дисперсиях получим расчетные формулы для определения числовых характеристик m z ий в виде

Заметим, что в рассматриваемом случае стандартное отклонение а г следует вычислять по формуле

(Модуль производной здесь берется потому, что она

может быть и отрицательной.)

Применение метода линеаризации для нахождения числовых характеристик нелинейной функции

произвольного числа случайных аргументов приводит к расчетным формулам для определения ее математического ожидания, имеющим вид

х 2 , ..., х п) по аргументам х. и х. соответственно, вычисленные с учетом знаков в точке ш х, т^,т Хп, т. е. путем замены всех входящих в них аргументов x v х 2 , ..., х п их математическими ожиданиями.

Наряду с формулой (3.26) для определения дисперсии D ? можно использовать расчетную формулу вида

где г х х - коэффициент корреляции случайных аргументов х.

Применительно к нелинейной функции независимых (или хотя бы некоррелированных) случайных аргументов формулы (3.26) и (3.27) имеют вид

Формулы, основанные на линеаризации нелинейных функций случайных аргументов, позволяют определять их числовые характеристики лишь приближенно. Точность вычисления тем меньше, чем больше заданные функции отличаются от линейных и чем больше дисперсии аргументов. Оценить возможную ошибку в каждом конкретном случае не всегда удается.

Для уточнения результатов, полученных по данному методу, может быть использован прием, основанный на сохранении в разложении нелинейной функции не только линейных, но и некоторых последующих членов разложения (как правило, квадратичных).

Кроме того, числовые характеристики нелинейной функции случайных аргументов можно определять на основе предварительного отыскания закона ее распределения при заданном распределении системы аргументов. Однако нужно иметь в виду, что аналитическое решение такой задачи часто оказывается слишком сложным. Поэтому для нахождения числовых характеристик нелинейных функций случайных аргументов широко используется метод статистического моделирования.

Основой метода является имитация серии испытаний, в каждом из которых путем моделирования получается определенная совокупность х и, x 2i , ..., x ni значений случайных аргументов x v х 2 ,..., х п из множества, отвечающего их совместному распределению. Полученные значения с помощью заданного соотношения (3.24) преобразуются в соответствующие значения z. исследуемой функции Z. По результатам z v z 2 , ..., z., ..., z k всех к таких испытаний искомые числовые характеристики вычисляются методами математической статистики.

Пример 3.2. Определить на основе метода линеаризации математическое ожидание и стандартное отклонение случайной величины

1. По формуле (3.20) получаем

2. Используя таблицу производных элементарных функций, находим

и вычисляем значение этой производной в точке :

3. По формуле (3.23) получаем

Пример 3.3. Определить на основе метода линеаризации математическое ожидание и стандартное отклонение случайной величины

1. По формуле (3.25) получаем

2. Запишем формулу (3.27) для функции двух случайных аргументов

3. Находим частные производные от функции Z по аргументам Х 1 иХ 2:

и вычисляем их значения в точке (m Xi х2):

4. Подставив полученные данные в формулу для расчета дисперсии Z, получим D z = 1. Следовательно, и ст г = 1.

Дифференциальные уравнения можно линеаризовать следующими методами:

1. нелинейная функция рабочей области раскладывается в ряд Тейлора.

2. Заданные в виде графов нелинейные функции линеаризуются в рабочей плоскости прямыми.

3. Вместо непосредственного определения частных производных, вводятся переменные в исходные нелинейные уравнения.

,

. (33)

4. Данный метод основан на определении коэффициентов по методу наименьших квадратов.

, (34)

где - постоянное времени пневмопривода;

- передаточный коэффициент пневмопривода;

- коэффициент демпфирования пневмопривода.

Внутреннее строение элементов САР наиболее просто определяется с помощью структурных схем графов. В отличие от известных структурных схем в графах, переменные указываются в виде времени, а дуги обозначают или параметры, или передаточные функции типовых звеньев. Между ними существует четное соотношение.

Мм нелинейных элементов

Рассмотренные в первой главе методы линеаризации применимы, когда нелинейность, входящая в объект ЛСА, хотя бы один раз дифференцируема или аппроксимируется касательной с малой погрешностью некоторой окрестности близкой к рабочей точке. Существует целый класс нелинейностей, для которых оба условия не выполняются. Обычно это существенные нелинейности. К ним относятся: ступенчатые, кусочно-линейные и многозначные функции с точками разрыва первого рода, а также степенные и транстендентые функции. Использование УВМ, обеспечивающих выполнение логико-алгебраических операций в системах привело к новым типам линейностей, которые представляют через непрерывные переменные с помощью специальной логики.

Для математического описания таких нелинейностей применяют эквивалентные передаточные функции, зависящие от коэффициентов линеаризации, которые получают путем минимизации среднего квадрата ошибки воспроизведения заданного входного сигнала. Форма входных сигналов, поступающих на вход нелинейностей может быть произвольна. На практике наиболее распространение получили гармонические и случайные виды входных сигналов и их временные комбинации. Соответственно и методы линеаризации называются гармоническими и статическими.

Общий метод описания эквивалентных передаточных функций нэ

Весь класс существенных нелинейностей разделены на две группы. К первой группе относится однозначные нелинейности, у которых связь между входными и выходнымивекторными сигналами зависит только от формы статической характеристики нелинейности
.

.

В этом случае, при определенной форме входных сигналов:

.

С помощью матрицы линеаризации
можно найти приближенное значение выходных сигналов:

.

Из (42) следует, что матрица коэффициентов линеаризации однозначных нелинейностей, является действительными величинами и их эквивалентные передаточные функции:

.

Ко второй группе относят двузначные (многозначные) нелинейности, у которых связь между входными и выходными сигналами зависит не только от формы статической характеристики, но так же определяется предысторией входного сигнала. В этом случае выражение (42) запишется в виде:

.

Для учета влияния предыстории входного периодического сигнала будем учитывать не только сам сигнал , но и скорость его изменения, дифференциал.

При входных сигналах:

приближенное значение входного сигнала будет:

где
и
- коэффициенты гармонической линеаризации двухзначных нелинейностей;

- период колебания по правой гармонике;

- гармоническая функция.

Эквивалентная передаточная функция:

Существуют нелинейности более общего вида:

,

,

где
и
- коэффициенты гармонической линеаризации;

- номер гармоники.

Матрицы коэффициентов линеаризации периодической с периодом . Имея это ввиду, передаточную функцию двух двухзначной нелинейности можно представить по аналогии с передаточной функцией

Пользуясь определим обобщенную формулу для вычисления передаточной функции однозначных и двухзначных нелинейностей.

В случае однозначной нелинейности матрица коэффициентов линеаризации , зависящей от параметров вектора
, выберем, таким образом, чтобы линеаризовать среднее значение квадрата разности между точными приближенным
сигналами на входе:

После преобразований, упрощений, ухищрений и усиления бдительности, получим эквивалентную передаточную функцию в виде системы матриц:
,
.

,

при
,
.

.

Определить коэффициент линеаризации для однозначной нелинейности. Когда на ее вход поступает первая гармоника синусоидального сигнала:

где
.

.

Уравнение (56) представляет собой коэффициент линеаризации по первой гармонике для однозначной нелинейности, она определяет эквивалентную передаточную функцию
.

В дальнейшем сравнение формулы для определения коэффициентов линеаризации простейших нелинейностей при подаче на их вход периодических сигналов: синусоидального, треугольного, покажем целесообразность применения получаемых эквивалентных передаточных функций.

Коэффициент линеаризации определим
,
.

,

.

Пример. Определить коэффициент линеаризации двузначной нелинейности, когда на ее вход поступает первая гармоника синусоидального сигнала и имеет один вход. Из системы матриц (60), получим:

,

.

В данном примере входной сигнал запишем в виде:

,

.

Когда для двузначной нелинейности общая эквивалентная функция:

. .

В

Рис. 2.2. Звено САР

большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения его обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X 1 иX 2 , а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х 1 , которое обозначим Х 10 . В процессе регулирования (рис. 2.3) переменная Х 1 будет иметь зна­чениягде
обозначает отклонение переменнойX 1 от установившегося значения Х 10 .

А

Рис. 2.3. Процесс регулирования в звене

налогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем: а также
.

Далее можно записать:
;
и
, так как
и

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х 10 , Х 20 и F 0 . Тогда уравнение (2.1) может быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где  – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных
.

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в этом уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях:

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют собой некоторые постоянные коэффициенты в том случае, если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Получение уравнения (2.4) является целью проделанной линеаризации. В теории автоматического регулирования принято записывать уравнения всех звеньев так, чтобы в левой части уравнения была выходная величина, а все остальные члены переносятся в правую часть. При этом все члены уравнения делятся на коэффициент при выходной величине. В результате уравнение (2.4) принимает вид

где введены следующие обозначения

. (2.6)

Кроме того, для удобства принято все дифференциальные уравнения записывать в операторной форме с обозначениями

Тогда дифференциальное уравнение (2.5) запишется в виде

Эту запись будем называть стандартной формой записи уравнения динамики звена.

Коэффициенты Т 1 и Т 2 имеют размерность времени – секунды. Это вытекает из того, что все слагаемые в уравнении (2.8) должны иметь одинаковую размерность, а например, размерность(илиpx 2) отличается от размерности х 2 на секунду в минус первой степени (
). Поэтому коэффициенты Т 1 и Т 2 называютпостоянными времени .

Коэффициент k 1 имеет размерность выходной величины, деленную на размерность входной. Он называетсякоэффициентом передачи звена. Для звеньев, у которых выходная и входная величины имеют одинаковую размерность, используются также следующие термины: коэффициент усиления – для звена, представляющего собой усилитель или имеющего в своем составе усилитель; передаточное число – для редукторов, делителей напряжения, масштабирующих устройств и т. п.

Коэффициент передачи характеризует статические свойства звена, так как в установившемся состоянии
. Следовательно, он определяет крутизну статической характеристики при малых отклонениях. Если изобразить всю реальную статическую характеристику звена
, то линеаризация дает
или
. Коэффициент передачи k 1 будет представлять собой тангенс угла наклона касательной в той точкеC(см. рис. 2.3), от которой отсчитываются малые отклонения х 1 и х 2 .

Из рисунка видно, что проделанная выше линеаризация уравнения справедлива для процессов регулирования, захватывающих такой участок характеристики АВ, на котором касательная мало отличается от самой кривой.

Кроме того, отсюда вытекает другой, графический способ линеаризации. Если известна статическая характеристика и точка C, определяющая установившееся состояние, около которого происходит процесс регулирования, то коэффициент передачи в уравнении звена определяется графически из чертежа по зависимости k 1 = tgcучетом масштабов чертежа и размерностиx 2 . Во многих случаяхграфический метод линеаризации оказывается более удобным и быстрее приводит к цели.

Размерность коэффициента k 2 равна размерности коэффициента передачи k 1 , умноженной на время. Поэтому часто уравнение (2.8) записывают в виде

где
– постоянная времени.

П

Рис. 2.4. Двигатель независимого возбуждения

остоянные времени Т 1 , Т 2 и Т 3 определяют динамические свойства звена. Этот вопрос будет рассмотрен подробно ниже.

Коэффициент k 3 представляет собой коэффициент передачи по внешнему возмущению.

В качестве примера линеаризации рассмотрим электрический двигатель, управляемый со стороны цепи возбуждения (рис. 2.4).

Для нахождения дифференциального уравнения, связывающего приращение скорости с приращением напряжения на обмотке возбуждения, запишем закон равновесия электродвижущих сил (эдс) в цепи возбуждения, закон равновесия эдс в цепи якоря и закон равновесия моментов на валу двигателя:

;

.

Во втором уравнении для упрощения опущен член, соответствующий эдс самоиндукции в цепи якоря.

В этих формулах R В и R Я – сопротивления цепи возбуждения и цепи якоря; І В и І Я – токи в этих цепях; U В и U Я – напряжения, приложенные к этим цепям; В – число витков обмотки возбуждения; Ф – магнитный поток; Ω – угловая скорость вращения вала двигателя; М – момент сопротивления от внешних сил;J– приведенный момент инерции двигателя; С Е и С М – коэффициенты пропорциональности.

Допустим, что до появления приращения напряжения, приложенного к обмотке возбуждения, существовал установившийся режим, для которого уравнения (2.10) запишутся следующим образом:

(2.11)

Если теперь напряжение возбуждения получит приращение U В = U В0 + ΔU В, то все переменные, определяющие состояние системы, также получат приращения. В результате будем иметь: І В = І В0 + ΔІ В; Ф = Ф 0 + ΔФ; I Я = I Я0 + ΔІ Я; Ω = Ω 0 + ΔΩ.

Подставляем эти значения в (2.10), отбрасываем малые высшего порядка и получаем:

(2.12)

Вычитая из уравнений (2.12) уравнения (2.11), получим систему уравнений для отклонений:

(2.13)

В

Рис. 2.5. Кривая намагничивания

этих уравнениях введен коэффициент пропорциональности между приращением потока и приращением тока возбуждения
определяемый из кривой намагничивания электродвигателя (рис. 2.5).

Совместное решение системы (2.13) даёт

где коэффициент передачи, ,

; (2.15)

электромагнитная постоянная времени цепи возбуждения, с,

(2.16)

где L B = a B – динамический коэффициент самоиндукции цепи возбуждения; электромагнитная постоянная времени двигателя, с,

. (2.17)

Из выражений (2.15) – (2.17) видно, что рассматриваемая система является по существу нелинейной, так как коэффициент передачи и «постоянные» времени, на самом деле – не постоянны. Их можно считать постоянными только приближенно для какого-то определенного режима при условии малости отклонений всех переменных от установившихся значений.

Интересным является частный случай, когда в установившемся режиме U B0 = 0; І B0 = 0; Ф 0 = 0 и Ω 0 = 0. Тогда формула (2.14) приобретает вид

. (2.18)

В этом случае статическая характеристика будет связывать приращение ускорения двигателя
и приращение напряжения в цепи возбуждения.