Направление и величина выталкивающей силы. Выталкивающая сила

Причина возникновения архимедовой силы – разность давлений среды на разной глубине. Поэтому сила Архимеда возникает только в при наличии силы тяжести. На Луне она будет вшестеро, а на Марсе – в 2,5 раза меньше, чем на Земле.

В невесомости архимедовой силы нет. Если представить себе, что сила тяжести на Земле вдруг пропала, то все корабли в морях, океанах и реках от малейшего толчка уйдут на любую глубину. А вот подняться вверх им не даст не зависящее от силы тяжести поверхностное натяжение воды, так что взлететь они не смогут, все потонут.

Как проявляется сила Архимеда

Величина архимедовой силы зависит от объема погруженного тела и плотности среды, в которой оно находится. Его точная в современном представлении: на погруженное в жидкую или газовую среду тело в поле силы тяжести действует выталкивающая сила, в точности равная весу вытесненной телом среды, то есть F = ρgV, где F – сила Архимеда; ρ – плотность среды; g – ускорение свободного падения; V – объем вытесненной телом или погруженной его частью жидкости (газа).

Если в пресной воде на каждый литр объема погруженного тела действует выталкивающая сила в 1 кг (9,81 н), то в морской воде, плотность которой 1,025 кг*куб. дм, на тот же литр объема будет действовать сила Архимеда в 1 кг 25 г. Для человека средней комплекции разность силы поддержки морской и пресной водой составит почти 1,9 кг. Поэтому плавать в море легче: представьте себе, что вам нужно переплыть хотя бы пруд без течения с двухкилограммовой гантелью за поясом.

От формы погруженного тела архимедова сила не зависит. Возьмите железный цилиндр, измерьте силу его из воды. Затем раскатайте этот цилиндр в лист, погрузите в воду плашмя и ребром. Во всех трех случаях сила Архимеда окажется одинаковой.

На первый взгляд странно, но, если погружать лист плашмя, то уменьшение разности давлений для тонкого листа компенсируется увеличением его площади, перпендикулярной поверхности воды. А при погружении ребром - наоборот, малая площадь ребра компенсируется большей высотой листа.

Если вода очень сильно насыщена солями, отчего ее плотность стала выше плотности человеческого тела, то в ней не утонет и человек, не умеющий плавать. В Мертвом море в Израиле, например, туристы могут часами лежать на воде, не шевелясь. Правда, ходить по нему все равно нельзя – площадь опоры получается малой, человек проваливается в воду по горло, пока вес погруженной части тела не сравняется с весом вытесненной им воды. Однако при наличии некоторой доли фантазии сложить легенду о хождении по воде можно. А вот в керосине, плотность которого всего 0,815 кг*куб. дм, не сможет удержаться на поверхности и очень опытный пловец.

Архимедова сила в динамике

То, что суда плавают благодаря силе Архимеда, известно всем. Но рыбаки знают, что архимедову силу можно использовать и в динамике. Если на попалась большая и сильная рыбина (таймень, например), то медленно подтягивать ее к сачку (вываживать) нет: оборвет леску и уйдет. Нужно сначала дернуть слегка, когда она уходит. Почувствовав при этом крючок, рыба, стремясь освободиться от него, метнется в сторону рыбака. Тогда нужно дернуть очень сильно и резко, чтобы леска не успела порваться.

В воде тело рыбы почти ничего не весит, но его масса с инерцией сохраняются. При таком способе ловли архимедова сила как бы наддаст рыбе в хвост, и добыча сама плюхнется к ногам рыболова или к нему в лодку.

Архимедова сила в воздухе

Архимедова сила действует не только в жидкостях, но и в газах. Благодаря ей летают воздушные шары и дирижабли (цеппелины). 1 куб. м воздуха при нормальных условиях (20 градусов Цельсия на уровне моря) весит 1,29 кг, а 1 кг гелия – 0,21 кг. То есть 1 кубометр наполненной оболочки способен поднять груз в 1,08 кг. Если оболочка диаметром в 10 м, то ее объем будет 523 куб. м. Выполнив ее из легкого синтетического материала, получим подъемную силу около полутонны. Архимедову силу в воздухе аэронавты называют сплавной силой.

Если из аэростата откачать воздух, не дав ему сморщиться, то каждый его кубометр потянет вверх уже все 1,29 кг. Прибавка более 20% к подъемной силе технически весьма соблазнительна, да гелий дорог, а водород взрывоопасен. Поэтому проекты вакуумных дирижаблей время от времени появляются на свет. Но материалов, способных при этом выдержать большое (около 1 кг на кв. см) атмосферное давление снаружи на оболочку, современная технология создать пока не способна.

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной этим телом жидкости или газа.

В интегральной форме

Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой ) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Что касается тел, которые находятся в газе, например в воздухе, то для нахождения подъёмной силы (Силы Архимеда) нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

В отсутствие гравитационного поля (Сила тяготения), то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление конвекции (естественное перемещение воздуха в пространстве), поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами

В формуле мы использовали.

Цели урока: убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления, содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира.

Задачи урока: Работать над формированием умений анализировать свойства и явления на основе знаний, выделять главную причину, влияющую на результат. Развивать коммуникативные умения. На этапе выдвижения гипотез развивать устную речь. Проверить уровень самостоятельности мышления школьника по применению учащимися знаний в различных ситуациях.

Архимед – выдающийся ученый Древней Греции, родился в 287 году до н.э. в портовом и судостроительном г. Сиракузы на острове Сицилия. Архимед получил блестящее образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона, покровительствовавшего Архимеду. В юности провёл несколько лет в крупнейшем культурном центре в Александрии, где у него сложились дружеские отношения с астрономом Кононом и географом-математиком Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. В Сицилию вернулся уже зрелым ученым. Он прославился многочисленными научными трудами главным образом в области физики и геометрии.

Последние годы жизни Архимед был в Сиракузах, осажденных римским флотом и войском. Шла 2-я Пуническая война. И великий ученый, не жалея сил, организовывает инженерную оборону родного города. Он построил множество удивительных боевых машин, топивших вражеские корабли, разносивших их в щепы, уничтожавших солдат. Однако слишком маленьким было войско защитников города по сравнению с огромным римским войском. И в 212 г. до н.э. Сиракузы были взяты.

Гений Архимеда вызывал восхищение у римлян и римский полководец Марцелл приказал сохранить ему жизнь. Но солдат, не знавший в лицо Архимеда, убил его.

Одним из важнейших его открытий стал закон, впоследствии названный законом Архимеда. Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом “Эврика!” он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину. Суть этой истины и предстоит выяснить, нужно убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления.

Давление в жидкости или газе зависит от глубины погружения тела и приводит к появлению выталкивающей силы, действующей на тело и направленной вертикально вверх.

Если тело опустить в жидкость или газ, то под действием выталкивающей силы оно будет всплывать из более глубоких слоев в менее глубокие. Выведем формулу для определения силы Архимеда для прямоугольного параллелепипеда.

Давление жидкости на верхнюю грань равно

где: h1 – высота столба жидкости над верхней гранью.

Сила давления на верхнюю грань равна

F1= р1*S = ж*g*h1*S,

Где: S – площадь верхней грани.

Давление жидкости на нижнюю грань равно

где: h2 – высота столба жидкости над нижней гранью.

Сила давления на нижнюю грань равна

F2= p2*S = ж*g*h2*S,

Где: S – площадь нижней грани куба.

Поскольку h2 > h1, то р2 > р1 и F2 > F1.

Разность между силами F2 и F1 равна:

F2 – F1 = ж*g*h2*S – ж*g*h1*S = ж*g*S* (h2 – h1).

Так как h2 – h1 = V – объему тела или части тела, погруженной в жидкость или газ, то F2 – F1 = ж*g*S*H = g* ж*V

Произведение плотности на объем есть масса жидкости или газа. Следовательно, разность сил равна весу вытесненной телом жидкости:

F2 – F1= mж*g = Pж = Fвыт.

Выталкивающая сила есть сила Архимеда, определяющая закон Архимеда

Равнодействующая сил, действующих на боковые грани равна нулю, поэтому в расчетах не участвует.

Таким образом, на тело, погруженное в жидкость или газ, действует выталкивающая сила равная весу вытесненной им жидкости или газа.

Закон Архимеда, впервые был упомянут Архимедом в трактате "О плавающих телах". Архимед писал: "тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Рассмотрим, как зависит сила Архимеда и зависит ли от веса тела, объема тела, плотности тела и плотности жидкости.

Исходя из формулы силы Архимеда, она зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.
Определим теперь вес тела, погружённого в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости будет меньше веса тела в вакууме на архимедову силу:

P А = m т g – m ж g = g (m т – m ж)

Таким образам, если тело погружено в жидкость (или газ), то оно теряет в своём весе столько, сколько весит вытесненная им жидкость (или газ).

Следовательно:

Сила Архимеда зависит от плотности жидкости и объема тела или его погруженной части и не зависит от плотности тела, его веса и объема жидкости.

Определение силы Архимеда лабораторным методом.

Оборудование: стакан с чистой водой, стакан с соленой водой, цилиндр, динамометр.

Ход работы:

  • определяем вес тела в воздухе;
  • определяем вес тела в жидкости;
  • находим разницу между весом тела в воздухе и весом тела в жидкости.

4. Результаты измерений:

Сделать вывод как зависит сила Архимеда от плотности жидкости.

Выталкивающая сила действует на тела любых геометрических форм. В технике наиболее распространены тела цилиндрической и сферической форм, тела с развитой поверхностью, полые тела в форме шара, прямоугольного параллелепипеда, цилиндра.

Гравитационная сила приложена к центру масс погруженного в жидкость тела и направлена перпендикулярно к поверхности жидкости.

Подъемная сила действует на тело со стороны жидкости, направлена по вертикали вверх, приложена к центру тяжести вытесненного объема жидкости. Тело движется в направлении, перпендикулярном к поверхности жидкости.

Выясним условия плавания тел, которые основываются на законе Архимеда.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести F т и силы Архимеда F A , которые действуют на это тело. Возможны следующие три случая:

  • F т > F A - тело тонет;
  • F т = F A - тело плавает в жидкости или газе;
  • F т < F A - тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где P t - плотность тела, P s - плотность среды, в которую оно погружено):

  • P t > P s - тело тонет;
  • P t = P s - тело плавает в жидкости или газе;
  • P t < P s - тело всплывает до тех пор, пока не начнет плавать.

Плотность организмов живущих в воде почти не отличается от плотности воды, поэтому прочные скелеты им не нужны! Рыбы регулируют глубину погружения, меняя среднюю плотность своего тела. Для этого им необходимо лишь изменить объем плавательного пузыря, сокращая или расслабляя мышцы.

Если тело лежит на дне в жидкости или газе, то сила Архимеда равна нулю.

Закон Архимеда используется в судостроении и воздухоплавании.

Схема плавающего тела:

Линия действия силы тяжести тела G проходит через центр тяжести K (центр водоизмещения) вытесненного объема жидкости. В нормальном положении плавающего тела центр тяжести тела Т и центр водоизмещения K размещены по одной вертикали, называемой осью плаванья.

При качке центр водоизмещения К перемещается в точку К1, и сила тяжести тела и Архимедова сила FА образуют пару сил, которая стремится либо вернуть тело в исходное положение, либо увеличить крен.

В первом случае плавающее тело обладает статической устойчивостью, во втором случае устойчивость отсутствует. Устойчивость тела зависит от взаимного расположения центра тяжести тела Т и метацентра М (точки пересечения линии действия архимедовой силы при крене с осью плавания).

В 1783 году братья МОНГОЛЬФЬЕ изготовили огромный бумажный шар, под которым поместили чашку с горящим спиртом. Шар наполнился горячим воздухом и начал подниматься, достигнув высоты 2000 метров.

Наблюдая за полетом воздушных шаров и за движением кораблей по морской глади, многие люди задаются вопросом: что заставляет подниматься в небеса или держит на поверхности воды эти транспортные средства? Ответом на этот вопрос является выталкивающая сила. Рассмотрим подробнее ее в статье.

Текучие среды и статическое давление в них

Текучими называются два агрегатных состояния вещества: газ и жидкость. Воздействие любой касательной силы на них заставляет смещаться одни слои вещества относительно других, то есть материя начинает течь.

Жидкости и газы состоят из элементарных частиц (молекул, атомов), которые не имеют определенного положения в пространстве, как, например, у твердых тел. Они постоянно движутся в разных направлениях. В газах это хаотичное движение является более интенсивным, чем в жидкостях. Благодаря отмеченному факту текучие субстанции могут передавать оказываемое на них давление по всем направлениям одинаково

Поскольку все направления движения в пространстве являются равноправными, то суммарное давление на любой элементарный объем внутри текучего вещества равно нулю.

Ситуация в корне изменяется, если рассматриваемое вещество поместить в гравитационное поле, например, в поле тяжести Земли. В этом случае каждый слой жидкости или газа имеет некоторый вес, с которым он давит на лежащие ниже слои. Это давление называется статическим. Оно возрастает прямо пропорционально глубине h. Так, в случае жидкости с плотностью ρ l гидростатическое давление P определяется по формуле:

Здесь g = 9,81 м/с 2 - ускорение свободного падения вблизи поверхности нашей планеты.

Гидростатическое давление ощущал на себе каждый человек, который хотя бы один раз нырял на несколько метров под воду.

Гидростатическое давление и закон Архимеда

Поставим следующий простой опыт. Возьмем тело правильной геометрической формы, например, куб. Пусть длина стороны куба равна a. Погрузим этот куб в воду так, что его верхняя грань окажется на глубине h. Какое давление оказывает вода на куб?

Чтобы ответить на поставленный выше вопрос, необходимо рассмотреть величину гидростатического давления, которое действует на каждую грань фигуры. Очевидно, что суммарное давление, действующее на все боковые грани, будет равно нулю (давление на левую грань будет компенсироваться давлением на правую). Гидростатическое давление на верхнюю грань будет равно:

Это давление направлено вниз. Соответствующая ему сила равна:

F 1 = P 1 *S = ρ l *g*h*S.

Где S - площадь квадратной грани.

Сила, связанная с гидростатическим давлением, которая действует на нижнюю грань куба, будет равна:

F 2 = ρ l *g*(h+a)*S.

Сила F 2 направлена вверх. Тогда результирующая сила будет направлена также вверх. Ее значение равно:

F = F 2 - F 1 = ρ l *g*(h+a)*S - ρ l *g*h*S = ρ l *g*a*S.

Заметим, что произведение длины ребра на площадь грани S куба - это его объем V. Этот факт позволяет переписать формулу следующим образом:

Такая формула выталкивающей силы говорит о том, что значение F не зависит от глубины погружения тела. Так как объем тела V совпадает с объемом жидкости V l , которую оно вытеснило, то можно записать:

Формулу выталкивающей силы F A принято называть математическим выражением закона Архимеда. Его впервые установил древнегреческий философ в III веке до нашей эры. Закон Архимеда принято формулировать так: если тело погружено в текучую субстанцию, то на него действует направленная вертикально вверх сила, которая равна весу вытесненной телом рассматриваемой субстанции. Выталкивающую силу также называют силой Архимеда или подъемной силой.

Силы, оказывающие действие на твердое тело, погруженное в текучую субстанцию

Эти силы важно знать, чтобы ответить на вопрос, будет тело плавать или тонуть. В общем случае их всего две:

  • сила тяжести или вес тела F g ;
  • выталкивающая сила F A .

Если F g >F A , тогда с уверенностью можно сказать, что тело утонет. Наоборот, если F g

Подставляя формулы для названных сил в указанные неравенства, можно получить математическое условие плавания тел. Оно выглядит так:

Здесь ρ s - средняя плотность тела.

Демонстрацию действия записанного выше условия на практике провести несложно. Достаточно взять два металлических куба, один из которых сплошной, а другой - полый. Если бросить их в воду, то первый утонет, а второй будет плавать на поверхности воды.

Применение выталкивающей силы на практике

Все транспортные средства, которые движутся на поверхности воды или под водой, используют принцип Архимеда. Так, водоизмещение кораблей рассчитывается исходя из знания максимальной выталкивающей силы. Подводные лодки, изменяя свою среднюю плотность с помощью специальных балластных камер, могут всплывать или погружаться.

Ярким примером изменения средней плотности тела является использование человеком спасательных жилетов. Они значительно увеличивают общий объем и при этом практически не изменяют вес человека.

Подъем воздушного шара или накачанных гелием детских шариков в небе - это яркий пример действия выталкивающей архимедовой силы. Ее появление связано с разностью между плотностью горячего воздуха или газа и холодного воздуха.

Задача на вычисление архимедовой силы в воде

Полый шар полностью погружен в воду. Радиус шара равен 10 см. Необходимо вычислить выталкивающую силу воды.

Для решения этой задачи не требуется знать, из какого материала изготовлен шар. Необходимо лишь найти его объем. Последний вычисляется по формуле:

Тогда выражение для определения архимедовой силы воды запишется в виде:

F A = 4/3*pi*r 3 *ρ l *g .

Подставляем радиус шара и плотность воды (1000 кг/м 3), получаем, что выталкивающая сила равна 41,1 Н.

Задача на сравнение архимедовых сил

Имеется два тела. Объем первого равен 200 см 3 , а второго - 170 см 3 . Первое тело погрузили в чистый этиловый спирт, а второе - в воду. Необходимо определить, одинаковы ли выталкивающие силы, действующие на эти тела.

Соответствующие архимедовы силы зависят от объема тела и от плотности жидкости. Для воды плотность равна 1000 кг/м 3 , для этилового спирта - 789 кг/м 3 . Рассчитаем выталкивающую силу в каждой жидкости, используя эти данные:

для воды: F A = 1000*170*10 -6 *9,81 ≈ 1,67 Н;

для спирта: F A = 789*200*10 -6 *9,81 ≈ 1,55 Н.

Таким образом, в воде архимедова сила оказывается на 0,12 Н больше, чем в спирте.

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) . Сила называется силой Архимеда :

где - плотностьжидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

18. Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. P выт = ρ ж gV погр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρ m - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью . Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения . При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d" . Приложим к точке d" подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h называется метацентрической высотой . Будем считать h положительным, если точка m лежит выше точки C , и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h <0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.