Основная причина самовозгорания. Самовозгорание - это самопроизвольное возникновение горения

Нередки случаи возникновения пожаров от электрокипятильников, ламп накаливания, люминесцентных и ртутных ламп высокого давления. Температура на наружной поверхности ламп накаливания достигает в зависимости от мощности: 40 Вт – 145 0 С, 75 Вт – 250 0 С, 100 Вт – 290 0 С, 200 Вт – 330 0 С. Кроме того фактором определяющим возможность загорания горючего материала под влиянием теплоты, является расстояние от его поверхности до источника излучения.

Люминесцентные светильники являются источником загорания из-за неисправности пуско-регулирующей аппаратуры, перегрева работающих элементов светильника (дроссель, стартер) вследствие нарушения требований монтажа светильников.

Причины пожаров связанные с самовозгоранием
веществ и материалов

Самовозгорание – достаточно распространенная причина пожаров, несмотря на то, что только некоторые материалы и вещества склонны к самовозгоранию и при этом в разной степени.

Самовозгорание – резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения.

Наиболее известны случаи самовозгорания растительных масел, рыбьего жира, торфа, свежеизготовленных древесного угля и сажи, некоторых сортов ископаемого угля, сульфидов железа, недосушенных продуктов растительного происхождения.

Самовозгорание происходит при их хранении и использовании, во время транспортировки, а также в тех случаях, когда материалы склонны к этому (например, торф и уголь), находятся в конструкциях сооружений.

Исследование пожара в результате самовозгорания требует определенных познаний в теории самовозгорания, а также криминалистических навыков в проведении соответствующих экспериментов. Типы самовозгораний принято классифицировать по виду первоначального импульса (тепловое, микробиологическое и химическое). По причине пожары от самовозгорания подразделяются на основные группы:

1. Химическое самовозгорание веществ и материалов.

2. Микробиологическое самовозгорание веществ и материалов.

3. Тепловое самовозгорание веществ и материалов:

Тепловое самовозгорание элементов конструкций зданий при отсутствии или недостаточности разделок, отступок, расстояний между отопительными устройствами;

Тепловое самовозгорание веществ и материалов, находящихся в помещении и оказавшихся в непосредственной близости к нагретым отопительным устройствам и деталям технологического оборудования.

Химическое самовозгорание возникает в результате действия на вещества кислорода воздуха, воды или непосредственного взаимодействия других веществ.

Микробиологическое самовозгорание возникает, когда при соответствующей влажности и температуре в растительных продуктах, активизируется жизнедеятельность микроорганизмов, при этом повышается температура и меняются формы микроорганизмов. При 75 0 С микроорганизмы погибают, но уже при 60-70 0 С происходит окисление и обугливание некоторых легковоспламеняющихся органических соединений с образованием мелкопористых углей. За счет адсорбции кислорода воздуха эти угли нагреваются до температуры распада и активного окисления органических соединений, что приводит к воспламенению.

Тепловое самовозгорание возникает в результате продолжительного действия источника тепла на вещества и материалы, в которых происходят изменения, которые вследствие разложения, адсорбции или окислительных процессов вызывают самонагревание. Поэтому самовозгорание происходит при наличии условий, благоприятных для окислительного процесса и аккумуляции теплоты. Это возможно только на отдельных участках, вследствие чего самовозгорание имеет очаговый характер.

Пожары от фокусирования солнечных лучей

С увеличением длинны углеводородной цепи в гомологических рядах температура самовоспламенения уменьшается.

В связи с этим, возникает проблема: с одной стороны температура самовоспламенения сильно зависит от множества факторов, с другой – необходимо все-таки как-то анализировать пожарную опасность процессов, аппаратов или технологий с обращением ГГ или ГЖ и предусматривать меры профилактики.

Чтобы исключить этот отрицательный момент, в нашей стране и за рубежом законодательным путем установлены одинаковые для всех лабораторий условия испытаний, зафиксированные в ГОСТе 12.1.044. Следует отметить, что методика эта универсальна и применяется для определения температуры самовоспламенения газов, жидкостей и твердых горючих веществ.

Сущность метода определения температуры самовоспламенения заключается во введении определенной массы вещества в нагретый объем и оценке результатов испытания. Изменяя температуру испытания, находят ее минимальное значение, при котором происходит самовоспламенение вещества.

4. Механизм процесса теплового самовозгорания веществ

Всем известно, что большие проблемы доставляют пожары торфянников, взрывы в угольных шахтах и т.п. Сложность их предотвращения заключается в том, что часто возгорания происходят без внешних источников зажигания. Сюда же можно отнести возгорание стогов сена, зернохранилищ и многое - многое другое.

В некоторых случаях горение твердых горючих материалов может возникнуть за счет самонагревания, которое обусловлено происходящими в веществах физическими, химическими и биологическими процессами при низких (до 70 °С) температурах (окисление, разложение, адсорбция, конденсация, жизнедеятельность микроорганизмов и т.д.). Этот процесс называетсясамовозгоранием.

Самовозгорание -резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения.

Самовозгорание веществ и материалов часто становится причиной пожара на промышленных объектах.

Выделение из всех горючих веществ, группы самовозгорающихся объясняется их повышенной опасностью по сравнению с другими горючими веществами и необходимостью проведения дополнительных профилактических мероприятий, в связи с чем уделяется особое внимание изучению этих процессов.

Все горючие вещества, находящиеся в соприкосновении с воздухом, при определенных температурах начинают окисляться. Этот процесс сопровождается выделением тепла. В некоторых случаях отвод выделяющегося тепла сильно ограничен, и при определенном соотношении скоростей выделения и отвода тепла, возможно самонагревание горючего материала.

Самонагревание некоторых веществ может происходить не только в результате окисления, но и от других экзотермических реакций (разложение), а также от ряда физических и биологических явлений.



Саморазогрев веществ может происходить по следующим причинам:

а) протекание химических экзотермических реакций

б) биологические процессы жизнедеятельности микроорганизмов (бактерии, растительные клетки и др.)

в) физические процессы с выделением тепла адсорбции и конденсация.

При определенных условиях, процесс самонагревания может привести к возникновению горения, аналогично как при явлении самовоспламенения.

Отличие самовозгорания от самовоспламенения заключается в следующем:

1. Самовозгорание происходит в твердых и конденсированных веществах, в то время как самовоспламенение в – газо- паро-воздушных системах.

2. Процессы самонагревания при самовозгорании начинаются при «низких» температурах (до 70°С), а самовоспламенение происходит при относительно высоких (более 150°С)

3. Самовозгорание проходит через стадию тления.

4. При самовозгорании период индукции может проходить очень длительное время, при самовоспламенении же - секунды

К самовозгоранию склонно большое количество веществ и материалов. Их делят на три группы:

1. вещества, самовозгорающиеся на воздухе. К этой группе относятся вещества: масла, жиры, белый фосфор, порошки металлов, сульфиды железа, ископаемое топливо, растительные продукты.

2. вещества, самовозгорающиеся при действии на них воды. К этой группе относятся вещества: щелочные металлы, гидриды щелочных металлов, карбиды щелочных металлов, карбид кальция, окись кальция, перекиси, силициды и гидросульфит натрия.

3. самовозгорающиеся смеси. В составе таких смесей обязательными компонентами являются окислитель и горючее вещество. Окислители: кислород сжатый, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцево-кислый калий, хромовый ангидрид, селитры, хлораты, перхлораты и хлорная известь. Горючие вещества: сахар, сера, глицерин, спирты и др.

Современная теория теплового самовозгорания веществ и материалов базируется на представлении о блуждающих "горячих точках", которые формируются по определенным закономерностям. Представим дисперсную систему ограниченных размеров (кипы ваты, хлопка, мешки с рыбной мукой и т.п.). Система и окружающая среда имеют температуру Т о, а внутри ее образовалась небольшая зона, в которой начались окислительные процессы.

Схема возникновения "горячей точки"

В результате окисления стала выделяться теплота, которая распространяется во все стороны (конвекцию учитывать не будем). Температура в реакционной зоне будет постепенно расти и достигнет значений, при которых начнутся процессы термической деструкции твердого материала с выделением продуктов разложения. Последние будут конденсироваться и адсорбироваться на поверхности вещества. Обязательным условием такого процесса является наличие кислорода и развитой поверхности горючего вещества. Чем больше дисперсность материала, тем больше его удельная поверхность, а значит и выше скорость процессов окисления, разложения, конденсации и адсорбции, в результате которых выделяется и накапливается внутри материала теплота:

q + = q р + q дестр + q конд + q адс,

где q + - тепловой эффект реакций окисления;

q дестр - тепловой эффект реакций термической деструкции;

q конд - теплота конденсации продуктов разложения;

q ад c - теплота адсорбции продуктов реакций.

Если скорость теплоотвода будет ниже скорости тепловыделения в зоне реакций, то начнется процесс самонагревания внутри объема вещества. С увеличением температуры данный процесс будет ускоряться за счет увеличения скорости реакций и интенсивности тепловыделения. Если кислорода в зоне реакций достаточно, а отвод теплоты в окружающую среду затруднен, то непрерывный процесс самонагревания может перейти в качественно новую стадию - самовозгорание. Процессы самонагревания и самовозгорания развиваются, как правило, в диффузионной области, и скорость их зависит от скорости поступления (диффузии) кислорода снаружи в зону реакции. Самовозгоранию подвержены легкоокисляющиеся пористые и волокнистые вещества и материалы, имеющие в себе большой запас молекулярного кислорода.

Структура горючих материалов по объему неоднородна: разная плотность упаковки, плотность, влажность и т.д. Это приводит к тому, что в большом объеме материала зона реакции будет перемещаться с разной скоростью, в разных направлениях. В той части, где теплоты отводится меньше, температура будет выше. Этот участок будет как бы подвижным тепловым центром реакционной зоны, ееблуждающей "горячей точкой". Максимальная температура будет наблюдаться в наиболее заглубленной части материала.

Первоначальный период самовозгорания часто бывает незаметен снаружи, так как продукты термоокислительной деструкции полностью адсорбируются внутри вещества. В объеме материала, как правило, возникают одновременно несколько "горячих точек", которые по мере развития процесса сливаются друг с другом с образованием глухих, не сообщающихся с поверхностью вещества прогаров.Обнаружение таких прогаров при исследовании пожара является однозначным признаком его возникновения в результате самовозгорания.

Причиной возникновения "горячих точек" в некоторых материалах растительного происхождения являютсямикробиологические процессы. В органических веществах, подобных зерну, шерсти, рыбной муке, сену, торфу и т.п.,вследствие жизнедеятельности микроорганизмов выделяется теплота, которая аккумулируется в объеме материала. При достижении температуры 60-70 °С микроорганизмы погибают. Однако к этому времени уже формируются блуждающие "горячие точки", и начинается процесс теплового самовозгорания.

Анализ приведенного выше выражения показывает, что условия самовозгорания зависят от химической природы материала, его формы и массы, начальных и граничных условий теплообмена с окружающей средой. Для каждого сыпучего или волокнистого материала существуют свои критические условия самовозгорания. Расчетные методы их определения отсутствуют, хотя и накоплен большой экспериментальный материал, на базе которого разрабатываются мероприятия по предотвращению пожаров от самовозгорания. Для этого, прежде всего, необходимы знания параметров пожарной опасности веществ и материалов в конкретных условиях их переработки, хранения и транспортировки. К этим параметрам относятся температура самонагревания, температура тления и условия теплового самовозгорания. Указанные параметры определяются по специальным экспериментальным методикам, изложенным в ГОСТе 12.1.044.

Температура самонагревания - это температура, начиная с которой в веществе или материале, находящемся в атмосфере воздуха, возникают практически различимые процессы окисления, разложения и т.п. Температура самонагревания является самой низкой температурой вещества, нагревание при которой может потенциально привести к самовозгоранию. Безопасной температурой длительного нагрева вещества считается температура не выше 90% от температуры самонагревания.

Температура тления при самовозгорании - это температура твердого вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления твердых продуктов разложения, приводящее к возникновению очага тления.

Условия теплового самовозгорания - это экспериментально выявленная зависимость между температурой окружающей среды, массой вещества и временем до момента его самовозгорания. Методика испытаний позволяет на малых образцах получить достаточно надежные и пригодные для практики аналитические выражения для критических условий теплового самовозгорания t c = f(S) и t c = f(r) (С.Н.Таубкин и В.Т.Монахов). Образец помещают в сетчатые корзиночки кубической формы с длиной ребра от 35 до 200 мм (всего шесть размеров), нагревают в воздушном термостате в изотермических условиях и для каждого размера определяют минимальную температуру, при которой образец самовозгорается. По результатам испытаний строят графики зависимости логарифма температуры самовозгорания от логарифма удельной поверхности корзиночки, а также от логарифма времени до самовозгорания (рис.2.2). Полученные на графиках прямые аппроксимируют в виде уравнений:

lg Т c = А р + n р ×lg S (1) условия теплового

lg Т c = A s + n s ×lg t (2) самовозгорания,

где А р, A s , n р, n s - коэффициенты, определяемые из графиков на рис.2.2. Эти уравнения позволяют легко рассчитать время и температуру самовозгорания для веществ, находящихся в таре, ссыпанных в кучи, сложенных в штабель и т.п.

Графики зависимости температуры Т с от удельной

поверхности S и от времени t до самовозгорания образца

Однако существует процесс возгорания ма­териалов без источника зажигания, т.е. само­ возгорание, которое может быть следующих ви­дов: тепловое, химическое и микробиологическое.

Тепловое самовозгорание выражается в ак­кумуляции материалом тепла, в процессе кото­рого происходит самонагревание материала. Температура самонагревания вещества или ма­териала является показателем его пожароопас­ное™. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С. Продолжительное тление до начала пламенно-

го горения является отличительной характери­ стикой процессов теплового самовозгорания, ко­торые обнаруживаются по длительному и устой­чивому запаху тлеющего материала.

Химическое самовозгорание сразу проявля­ется в пламенном горении, что характерно при соединении органических веществ с кислотами, растительными и техническими маслами. Мас­ла и жиры, в свою очередь, способны к самовоз­горанию в среде кислорода.

На практике чаще всего проявляются комбини­рованные процессы самовозгорания: тепловые и химические.

Динамика пожара

Оценивая динамику развития пожара, можно выделить несколько его основных фаз:

1-я фаза (до 10 минЛ - начальная стадия, включает переход возгорания в пожар за время примерно в 1-3 мин. и рост зоны горения в тече­ние 5-6 мин. При этом происходит преимуще­ственно линейное распространение огня вдоль горючих веществ и материалов, что сопровожда­ется обильным дымовыделением. На этой фазе очень важно обеспечить изоляцию помещения от поступления наружного воздуха, т.к. в некото­рых случаях в герметичном помещении наступа­ет самозатухание пожара.

2-я фаза - стадия объемного развития пожа­ ра, занимает по времени 30^40 мин. Характеризу­ется бурным процессом горения с переходом в объемное горение, процесс распространения пла­мени происходит дистанционно за счет передачи энергии горения на другие материалы.

Через 15-20 мин. происходит разрушение остек­ления, резко увеличивается приток кислорода, мак­симальных значений достигают температура (до 800-900°С) и скорость выгорания. Стабилизация пожара при максимальных его значениях происходит на 20-25 мин. и продолжается еще 20-30 мин. При этом выгорает основная масса горючих материалов.

3-я фаза - стадия затухания пожара, т.е. дого­рание в виде медленного тления, после чего по­жар прекращается.

Анализируя динамику развития пожара, воз­ можно сделать определенные выводы:

1. Технические системы пожарной безопас­ности (сигнализации и автоматического тушения пожара) должны сработать до достижения мак­симальной интенсивности горения, а лучше -

в начальной стадии пожара. Это позволит руково­дителю образовательного учреждения иметь запас времени для того, чтобы организовать мероприя­тия по защите людей.

2. Пожарные подразделения прибывают, как правило, через 10-15 мин. после вызова, т.е. через 15-20 мин. после возникновения пожара, когда он принимает объемную форму и максимальную ин­тенсивность.

Огнетушащие вещества

Существует классификация пожаров по харак­теристикам горючей среды, и она имеет важное практическое значение при выборе типов первич­ных средств пожаротушения:

Класс А - горение твердых веществ (древеси­на, бумага, текстиль, пластмассы);

Класс В - горение жидких веществ;

Класс С - горение газов;

Класс Д - горение металлов и металлосодер-жащих веществ;

Класс Е - горение электроустановок.

Обозначенные классы пожаров предполагают целесообразные способы их тушения. Так, на­пример, в зданиях и сооружениях применяются огнетушащие вещества.

Прекращение горения (способ тушения) осуще­ствляется на основе следующих известных прин­ципов:

"- охлаждение реагирующих веществ;

»-» изоляция реагирующих веществ от зоны го­рения;

»-* разбавление реагирующих веществ до него­рючих концентраций;

»-» химическое торможение реакции горения.

На практике обозначенные принципы пре­кращения горения обычно реализуются комп­лексно.

При тушении пожара условно можно выделить периоды его локализации и ликвидации.

Пожар считается локализованным, когда :

    Нет угрозы людям и животным;

    Нет угрозы взрывов и обрушения;

    Развитие пожара ограничено;

    Обеспечена возможность его ликвидации имеющимися силами и средствами.

Пожар считается ликвидированным, когда :

    Горение прекращено;

    Обеспечено предотвращение его возникновения.

Указанные признаки локализации и ликвидации пожара необходимо знать должностным лицам учреждений образования для принятия при пожа­ре правильных решений.

К основным огнетушащим веществам относятся:

    Вода и ее растворы;

    Химические и воздушно-механические пены;

Вода и ее растворы получила наибольшее применение из-за доступности, дешевизны и эффективности при доминирующем принци­пе охлаждения для прекращения горения. Но необходимо иметь в виду, что нельзя:

■* тушить водой электроустановки под напря­жением;

■» применять воду при тушении горящих неф­тепродуктов;

** использовать воду при тушении химических веществ, вступающих с ней в реакции.

Однако вода обладает высоким поверхностным натяжением, поэтому плохо смачивает твердые ве­щества, особенно волокнистые. Это свойство воды должно быть учтено при использовании на пожаре в образовательных учреждениях внутрен­него пожарного водопровода. Для снижения не­достатков воды как основного огнетушащего средства в нее добавляют различные присадки.

Порошковые огнетушащие составы имеют разнообразный механизм прекращения горения, высокую эффективность и способны прекращать горение практически любого класса. Это опре­деляет их широкое использование в огнетуши­телях. Но они имеют склонность к слёживанию, поэтому требуют в составе огнетушителей пе­риодического встряхивания. Могут использо­ваться и для тушения электроустановок под на­пряжением.

Диоксид углерода (СО 2) - твердая его фрак­ция при использовании в огнетушителях сразу переходит в газ минуя жидкую фазу. Реализует несколько механизмов прекращения горения, очень эффективен. Рекомендуется использовать для ту­шения электроустановок под напряжением, хотя способен прекратить горение почти всех горючих материалов, за исключением металлического на­трия и калия, магния и его сплавов.

Перечисленные огнетушащие вещества явля­ются основными при использовании в учрежде­ниях образования, хотя пожарные подразделения широко применяют и различные пены, обладаю­щие уникальными свойствами.

Проблема определения необходимого коли­ чества первичных средств пожаротушения про­ ста, но необходимо иметь в виду некоторые об­ стоятельства.

    Комплектование технологического оборудования огнетушителями осуществляется согласно требованиям паспортов на это оборудование или соответствующим правилам пожарной безопасности.

    Выбор типа и расчет необходимого количества огнетушителей рекомендуется производить в зависимости от их огнетушащей способности, предельной площади помещений, класса пожара горючих веществ.

    В общественных зданиях и сооружениях на каждом этаже должно размещаться не менее двух ручных огнетушителей.

    При наличии нескольких небольших помещений одной категории пожарной опасности количество необходимых огнетушителей определяется с учетом суммарной площади этих помещений.

Так «Правила пожарной безопасности в РФ» ППБ 01-03 рекомендуют для общественных зданий площадью 800 м 2 использовать или четыре порош­ковых огнетушителя марки ОП-5 или два ОП-10, или четыре ОУ-2, или два ОУ-5. Предпочтительнее, на наш взгляд, использовать огнетушители ОП-5 как наиболее эффективные по защищаемым площадям, с дополнительным размещением огнетушителей ОУ-2 (ОУ-5) в компьютерных классах, т.е. там, где. есть электроустановки под напряжением. Этот под­ход не снижает рекомендации «Правил пожарной безопасности в РФ», а лишь усиливает их, исходя из особенностей учреждений образования.


Самовозгорание : 1) резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага пожара; 2)загорание без внешнего , происходящее в результате самоинициируемых экзотермических процессов. Особенностью самовозгорания является то, что оно возникает в результате окисления при относительно низких температурах (см. Температура самовозгорания ) в средах, представляющих собой мелкодисперсные вещества и материалы. Важнейшими условиями самовозгорания являются способность веществ к указанным процессам и аккумуляция выделяемой энергии, что наиболее свойственно сыпучим материалам при скопления в больших объёмах (см. Склонность к самовозгоранию ). Процессу возникновения горения при самовозгорании предшествует медленная стадия самонагревания . Самовозгорание происходит там, где процесс самонагревания обеспечивает повышение температуры до определенной критической величины. Существенная разница в процессе загорания и самовозгорания заключается в различных периодах индукции: при загорании этот период исчисляется секундами и минутами, а при самовозгорании - часами и даже днями и месяцами. В зависимости от источника самонагревания процессы самовозгорания подразделяются на микробиологические, тепловые и химические. Микробиологическое самовозгорание характерно для органических дисперсных и волокнистых материалов, внутри которых возможна жизнедеятельность бактерий и микроорганизмов, сопровождающаяся экзо-термическими проявлениями. Самовозгорание способствуют: повышенная влажность материалов; масличность; засорённость посторонними включениями; пористость, обеспечивающая диффузию кислорода к скоплениям дисперсных веществ и материалов и большую сорбционную способность продуктов термического и термо- окислительного распада, катализирующих процесс самонагревания и самовозгорания. При изменении температуры в объёме материала обычно фиксируют 2 температурных максимума, отстоящих друг от друга промежутком времени. Первый максимум наступает в промежутке от одного дня до недели с момента зарождения очага и достигает температуры 40-45 °С. В данном диапазоне температур выделение тепла происходит за счёт жизнедеятельности микрофлоры, неспособной существовать при температуре свыше 45 °С. Второй максимум, достигающий 75-85 °С, возникает за счёт развития термофильных бактерий. На процесс тепловыделения основное влияние оказывают 2 фактора - размер популяции микроорганизмов (размер очага самонагревания) и предельная температура, при которой они могут существовать. Дополнительным источником выделения тепла в материалах растительного происхождения является их дыхание (например, быстрый рост температуры в небольших кучах свежескошенной травы или при формировании стогов сена). Дисперсные материалы имеют чёткую границу соприкосновения с окружающей средой. По этой границе воздух проникает между частицами внутрь массы материала, адсорбируется в порах частиц или волокон. Наличие развитой поверхности твёрдого материала с адсорбированным на ней кислородом воздуха - одно из условий теплового самовозгорания, к которому наиболее склонны материалы, обладающие большой пористостью и структурой, обеспечивающей проникновение кислорода в зону реакции. Склонность к самовозгоранию увеличивается при повышении адсорбционной способности материала. Поскольку промежуточным продуктом при самовозгорании большинства органических материалов является уголь, закономерности его самовозгорания оказывают существенное влияние на процесс в целом. При этом значительную роль в самовозгорании угля играет его способность сорбировать пар и влагу на начальной стадии процесса, протекающего с экзотермическим эффектом. Чем больше объём дисперсного материала, тем лучше условия аккумуляции тепла в нём и выше вероятность его воспламенения . С увеличением пористости частиц и пористости слоя (начальной плотности) улучшается перенос кислорода к межфазной поверхности в зону реакции окисления. Это способствует более интенсивному самонагреванию материала, т. к. уменьшается теплопроводность смеси частиц с воздухом и увеличивается скорость нагрева засчет снижения теплоёмкости единицы объёма материала. Наоборот, уплотнение слоя частиц способствует отводу тепла из зоны реакции вследствие увеличения его теплопроводности . Важную роль в процессе самонагревания и самовозгорания веществ и материалов играет влага. Тепловое самовозгорание характеризуется тем, что оно начинается при предварительном умеренном нагреве. Примером такого вида самовозгорания является самовозгорание древесно-волокнистых плит и изоляционного материала из стекловолокна при складировании больших масс продукции после производственного процесса, связанного с повышенной температурой. В основе химического самовозгорания лежат процессы химического взаимодействия веществ и материалов или их окисления, которые сопровождаются выделением большого количества тепла. Примерами химических реакций, вызывающих горение при самовозгорании, являются: действие на органические материалы концентрированных серной и азотной кислот; самопроизвольное загорание промасленной ветоши; возникновение горения пирофорных материалов: некоторых металлов, гидридов металлов, металлоорганических соединений и другие (см. Пирофорность ). Методы определения склонности веществ и материалов к самовозгоранию основаны на определении критических условий воспламенения вещества (материала), характеризующих кинетику этого процесса. Профилактика самовозгорания основана на применении методов и средств, уменьшающих химическую активность реагирующих веществ или обеспечивающих стационарные условия теплообмена между материалом и окружающей средой при температуре ниже температуры самовозгорания для заданных условий применения, хранения или транспортирования материалов. Выбор метода защиты определяется свойствами материала, особенностями технологического процесса и экономической целесообразностью. Для обнаружения очага самовозгорания внутри массы хранящегося продукта устанавливают систему датчиков, реагирующих на повышение температуры. Эта система дистанционного контроля зачастую бывает малоэффективна в силу низкой теплопроводности и высокой теплоемкости дисперсного материала, вследствие чего очаг самонагревания и самовозгорания регистрируется с большим опозданием. Более оперативным способом обнаружения очага повышенной температурной активности, возникающего в силу различных причин в насыпи дисперсного материала, является способ, основанный на анализе продуктов термической и термо- окислительной деструкции (например, окись углерода, метан, водород), по номенклатуре и содержанию которых определяются стадии самонагревания и самовозгорания, а также местонахождение очага самовозгорания. При несвоевременном обнаружении очага самовозгорания горючие газы, выделяющиеся в замкнутом пространстве, в смеси с воздухом и при наличии источника зажигания (например, очага самовозгорания) могут привести к взрыву. Лит.: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения: Кольцов К.С. , Попов Б.Г. Самовозгорание твёрдых веществ и материалов и его профилактика. М., 1978; Горшков В.И. Самовозгорание веществ и материалов. М., 2003.

Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов, которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.

В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха. Этот вид окислителя и принят в дальнейшем изложении. Горение возможно при наличии вещества, способного гореть, кислорода (воздуха) и источника зажигания. При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях, а источник зажигания имел необходимый запас тепловой энергии.

Известно, что в воздухе содержится около 21% кислорода. Горение большинства веществ становится невозможным, когда содержание кислорода в воздухе понижается до 14-18%, и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается.

Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник зажигания вызывает в ней реакцию горения. Источником зажигания может быть горящее пли накаленное тело, а также электрический разряд, обладающий запасом энергии, достаточным для возникновения горения и др.

Горючие системы подразделяются на однородные и неоднородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют горением кинетическим. Скорость его определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации. Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным горением, так как его скорость определяется главным образом сравнительно медленно протекающим процессом-диффузией.

Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения. По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси, наоборот, имеют в избытке горючий компонент и в недостатке окислитель.

Возникновение горения связано с обязательным самоускорением реакции в системе. Процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Самоускорение химической реакции при горении подразделяется на три основных вида: тепловой, цепной и комбинированный - цепочечно-тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.

Сгорание различают полное и неполное. При полном сгорании образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды. Неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.

Ориентировочно количество воздуха (м 3), необходимое для сгорания 1 кг вещества (или 1 м 3 газа),

где Q - теплота сгорания, кДж/кг, или кДж/м 3 .

Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг; древесины воздушно-сухой -14 600 кДж/кг; ацетилена - 54400 кДж/м 3 ; метана - 39400 кДж/м 3 ; окиси углерода - 12600 кДж/м 3 .

По теплоте сгорания горючего вещества можно определить, какое количество тепла выделяется при его сгорании, температуру горения, давление при взрыве в замкнутом объеме и другие данные.

Температура горения вещества определяется как теоретическая, так и действительная. Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло, выделяющееся при горении, идет на их нагревание.

Теоретическая температура горения

где m - количество продуктов горения, образующихся при сгорании 1 кг вещества; с - теплоемкость продуктов горения, кДж/ (кг*К); θ - температура воздуха, К; Q - теплота сгорания, кДж/кг.

Действительная температура горения на 30-50% ниже теоретической, так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.

Высокая температура горения способствует распространению пожара, при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется.

При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.

Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Возгораемость - способность возгораться (воспламеняться) под воздействием источника зажигания.

Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

Горение при этом возникает без внесения источника зажигания - за счет теплового или микробиологического самовозгорания.

Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.

Микробиологическое самовозгорание возникает в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси). Температура самовоспламенения является важной характеристикой горючего вещества.

Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл. 28.

Таблица 28 Температуры самовоспламенения некоторых жидкостей

Вещество Температура самовоспламенения, °С

Фосфор белый

20

Сероуглерод

112

Целлулоид

140-180

Сероводород

246

Масла нефтяные

250-400
250

Бензин А-76

255
380-420

Каменный уголь

400

Ацетилен

406

Этиловый спирт

421

Древесный уголь

450

Нитробензол

482
530
612
625

Окись углерода

644
700

Помимо температуры самовоспламенения, горючие вещества характеризуются периодом индукции или временем запаздывания самовоспламенения. Периодом индукции называют промежуток времени,

в течение которого происходит саморазогревание до воспламенения. Период индукции для одного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температуры и давления.

Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом, если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.

Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения. Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов.

Некоторые вещества могут самовозгораться, находясь при обычной температуре. Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф, ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности. Этим обусловлена возможность самовозгорания промасленной ветоши. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла кислородом воздуха сопровождается выделением тепла. В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара.

Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.

На машиностроительных предприятиях применяются многие вещества, способные к самовозгоранию. Самовозгораться при взаимодействии с воздухом могут сульфиды железа, сажа, алюминиевая и цинковая пудра и др. Самовозгораться при взаимодействии с водой могут щелочные металлы, карбиды металлов и др. Карбид кальция (СаС 2), реагируя с водой, образует ацетилен (С 2 Н 2).